JPH01307441A - Method for fluidizing stationary powder-packed bed - Google Patents

Method for fluidizing stationary powder-packed bed

Info

Publication number
JPH01307441A
JPH01307441A JP13543588A JP13543588A JPH01307441A JP H01307441 A JPH01307441 A JP H01307441A JP 13543588 A JP13543588 A JP 13543588A JP 13543588 A JP13543588 A JP 13543588A JP H01307441 A JPH01307441 A JP H01307441A
Authority
JP
Japan
Prior art keywords
powder
gas
packed bed
fluidization
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13543588A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Kobayashi
小林 和良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP13543588A priority Critical patent/JPH01307441A/en
Publication of JPH01307441A publication Critical patent/JPH01307441A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To smoothly carry out fluidization and to prevent the flying out and damage of powder by providing separate gas inlets in the stationary powder- packed bed in a vessel, and gradually transferring the gas inlet from the upper part toward the lower part when fluidization is started. CONSTITUTION:In the device for fluidizing the stationary powder-packed bed in the vessel of a fluidized-bed reactor, etc., the powder 2 is packed into the vessel 1, and a gas diffusion plate 3 for supporting the packed bed and uniformly diffusing the gas is provided. Three gas inlets 5-7 are separately provided. When fluidization is started, the valve of a passage 4 is firstly opened to exert an appropriate pressure on the diffusion plate 3, the uppermost passage 7 is then opened little by little to produce a pressure in the upper space of the powder, and the caked powder in the space is disintegrated and fluidized. The passages 6 and 5 are then successively opened. By this method, fluidization is smoothly carried out, and the flying out and damage of the powder are prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は容器内に充填した静止粉体を流動化する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for fluidizing static powder filled in a container.

本発明の方法は、流動層反応器や粉体を取り扱う各種装
置に通用される。
The method of the present invention is applicable to fluidized bed reactors and various devices that handle powder.

(従来の技術およびその問題点) 流動層反応器や粉体を流動化して移送する装置等におい
ては、通常静止粉体充填層の底部にガス分散板を設け、
底部よりガスを導入することにより粉体の流動化が行わ
れる。
(Prior art and its problems) In a fluidized bed reactor or a device that fluidizes and transfers powder, a gas dispersion plate is usually provided at the bottom of a stationary powder packed bed.
The powder is fluidized by introducing gas from the bottom.

流動層反応器のように室温より高い温度で反応が行われ
、停止時に温度が低下する場合や、静止粉体の充填層が
高い場合には、長時間静止状態にi5)体を保つことに
より、温度の低下や、粉体自重による圧密化、或いは粉
体の持つ粘着力によって固結化が進行する。
When the reaction is carried out at a temperature higher than room temperature, such as in a fluidized bed reactor, and the temperature drops when stopping, or when the packed bed of stationary powder is high, by keeping the body in a stationary state for a long time. Consolidation progresses due to a decrease in temperature, compaction due to the powder's own weight, or the adhesive force of the powder.

このように固結化した状態から粉体の流動化を開始する
操作を行う場合、従来の充填層底部よりガスを導入する
方法では次のような現象が起る。
When performing an operation to start fluidizing the powder from such a solidified state, the following phenomenon occurs in the conventional method of introducing gas from the bottom of the packed bed.

(1)充填層底部より導入されたガスは、最初粉体を押
し上げる力が殆ど容器の壁面や内装物の表面に吸収され
るので、固結粉体を崩壊させるための力が小さい。この
ため充填層底部より導入するガスは相当大きな圧力が必
要である。
(1) For the gas introduced from the bottom of the packed bed, most of the force that initially pushes up the powder is absorbed by the wall surface of the container and the surface of the interior components, so the force for disintegrating the solidified powder is small. For this reason, the gas introduced from the bottom of the packed bed requires a considerably high pressure.

(2)固結粉体の崩壊が突発的に発生し、その瞬間に多
量の粉体が容器内から飛び出し、系外に排出される。こ
れにより次の工程の濾過器や熱交換器が汚染され、その
機能が失われる。
(2) Collapse of the solidified powder occurs suddenly, and at that moment a large amount of powder flies out from inside the container and is discharged to the outside of the system. This contaminates the filters and heat exchangers used in the next process, causing them to lose their functionality.

(3)固結粉体の崩壊が起る瞬間に急激な圧変動が容器
内に起るので、その衝撃的な流動により伝熱管やセパレ
ーター等の内装物や濾過器が1員傷する。
(3) At the moment when the solidified powder collapses, a sudden pressure change occurs in the container, and the impact flow damages internal components such as heat exchanger tubes and separators, as well as the filter.

(問題点を解決するための手段) 発明者等は流動層式メタノール合成反応器の開発に従事
し、粉体触媒の流動化開始時における前述の如き問題に
ついて鋭意検討した結果、粉体充填層中に一個以上のガ
ス導入口を別に設け、流動化開始時には粉体充填層の底
部からではなく、ガス導入口を上部より徐々に下部に移
すようにすれば、これらの問題点が解決されることを見
出し、本発明に至った。
(Means for Solving the Problems) The inventors were engaged in the development of a fluidized bed methanol synthesis reactor, and as a result of intensive study on the above-mentioned problems at the start of fluidization of a powder catalyst, the inventors developed a powder packed bed methanol synthesis reactor. These problems can be solved by separately providing one or more gas inlets inside the powder bed and moving the gas inlets gradually from the top to the bottom when fluidization starts, rather than from the bottom of the powder packed bed. This discovery led to the present invention.

即ち本発明は、容器内に充填した静止粉体充填層中に一
個以上のガス導入口を別に設置し、最上層のガス導入口
より下方のガス導入口へと、順次ガスを導入することを
特徴とする静止粉体充填層の流動化法である。
That is, the present invention separately installs one or more gas inlets in a stationary powder packed bed filled in a container, and sequentially introduces gas from the gas inlet in the uppermost layer to the gas inlets below. This is a unique method for fluidizing a static packed bed of powder.

本発明の方法は、静止粉体の充填層が高い場合に特に有
効である。本発明の方法において採用される静止粉体の
充填層高さは、粉体の粒径、密度および粘着性等の物性
により異なるが、一般に2m以上である。充填高さが2
m未満の場合には、高粘着性粉体の場合等を除いて前述
の如き問題点が生じにくい。
The method of the invention is particularly effective when the packed bed of stationary powder is high. The height of the packed bed of stationary powder employed in the method of the present invention varies depending on the physical properties of the powder, such as particle size, density, and stickiness, but is generally 2 m or more. Filling height is 2
If it is less than m, the above-mentioned problems are unlikely to occur, except in the case of highly adhesive powder.

設置するガス導入口の数は、上記の如き粉体の物性およ
び充填高さによるが、一般に静止粉体充填層には1〜3
m毎にガス導入口を設けることが望ましく、特に粉体の
自重等により固結し易い粉体においては、充填層下部で
のガス導入口の間隔を小さくすることが好ましい。
The number of gas inlets to be installed depends on the physical properties of the powder and the filling height as described above, but in general, 1 to 3 gas inlets are installed for a stationary powder packed bed.
It is desirable to provide a gas inlet every m, and especially for powders that tend to solidify due to their own weight, it is preferable to reduce the interval between the gas inlets at the bottom of the packed bed.

各ガス導入口における導入ガス量は、充填層部でのガス
空塔速度(Do(m/s))が、粉体の流動化速度(O
ar(m/s))を若干上回る程度とする。このガス空
塔速度(Do(m/s))は、一般に0.01m八以へ
である。ガス導入方法は、′最初に最上部のガス導入口
に所−要ガス量を導入してこのガス導入口より上部をま
ず流動化し、続いて次の高さのガス導入口を開け、当該
充填層部の流動化を行う。このようにしてガス導入口を
順次下部に移動し、最終的に粉体充填層全体を流動化す
る。なお充填層に供給さるべきガスの導入量と粉体の流
動化特性等により、必要に応じて各段階で導入すべきガ
ス導入口より上部の弁を随時閉止する。特に流動層触媒
反応器においては、流動触媒層の効率を上げるため、充
填層底部のガス導入口以外の弁は流動化終了後閉止する
The amount of gas introduced at each gas inlet is determined by the gas superficial velocity (Do (m/s)) in the packed bed section, the powder fluidization velocity (O
ar (m/s)). This gas superficial velocity (Do (m/s)) is generally less than 0.01 m8. The gas introduction method is to first introduce the required amount of gas into the gas inlet at the top, fluidize the area above this gas inlet, then open the gas inlet at the next height, and then Fluidize the layer. In this way, the gas inlets are sequentially moved to the lower part, and finally the entire powder packed bed is fluidized. Depending on the amount of gas to be introduced into the packed bed, the fluidization characteristics of the powder, etc., the valve above the gas inlet to be introduced at each stage is closed at any time as necessary. Particularly in a fluidized bed catalytic reactor, in order to increase the efficiency of the fluidized catalyst bed, valves other than the gas inlet at the bottom of the packed bed are closed after fluidization is completed.

次に図面を用いて本発明を説明する。第1図は本発明の
方法により粉体充填層を流動化する場合の説明図である
。第1図において、円筒容器1に粉体2が充填され、且
つこの粉体充填層を支持し、均一なガス分散を行うため
のガス分散板3が設けられている。平常運転中のガス供
給は流路4から行われるが、静止粉体充填層中に3つの
ガス導入流路5,6.7が設けられている。
Next, the present invention will be explained using the drawings. FIG. 1 is an explanatory diagram when a powder packed bed is fluidized by the method of the present invention. In FIG. 1, a cylindrical container 1 is filled with powder 2 and is provided with a gas dispersion plate 3 for supporting this powder-filled layer and uniformly dispersing gas. During normal operation, gas is supplied through channel 4, but three gas introduction channels 5, 6, and 7 are provided in the stationary powder packed bed.

本図は粉体の静止状態を示しており、次に本発明による
流動化開始の手順について説明する。
This figure shows the powder in a static state, and next, the procedure for starting fluidization according to the present invention will be explained.

ます流路4〜7に設けられた弁を全て閉止した状態から
、流路4の弁を開け、ガス分散板3に適度の圧力を与る
。次いで最上部の流路7に設けられたを少しづつ開け、
この弁と粉体上部空間との間に圧力を生じさせ、この区
間の固結粉体を破壊し、緩やかに流動化状態を形成させ
る。続いて流路6の弁を開けることによって流路7と流
路6の区間を流動化する。なおこの場合必要に応じて流
路7の弁を閉める。更に流路5の弁を開けて流路6と流
路5の区間と云う具合に、上層より順に固結粉体を破壊
し、流動化し、最終的にから流路5の区間が流動化し、
静止粉体充填層全体を流動化する。
After all the valves provided in the flow paths 4 to 7 are closed, the valve of the flow path 4 is opened to apply an appropriate pressure to the gas distribution plate 3. Next, open the channel provided in the uppermost channel 7 little by little,
Pressure is generated between the valve and the space above the powder to break up the solidified powder in this section and form a gently fluidized state. Subsequently, by opening the valve of the flow path 6, the section between the flow path 7 and the flow path 6 is fluidized. In this case, the valve of the flow path 7 is closed as necessary. Furthermore, by opening the valve of the flow path 5, the solidified powder is destroyed and fluidized in order from the upper layer in the section between the flow path 6 and the flow path 5, and finally the section of the flow path 5 is fluidized.
Fluidize the entire stationary powder packed bed.

(実施例) 次に実施例により本発明を更に具体的に説明する。但し
本発明はこの実施例により限定されるものでは無い。
(Example) Next, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to this example.

大嵐炎上 内径1.0m、高さ18mの流動層式メタノール合成反
応、器において、第1図に示すフローにより静止粉体充
填層の流動化を行った。粉体触媒には、粒径10〜15
0μmの粒度分布を有し、嵩比重1.2kg/lの銅系
触媒を用い、ガス分散板上に静止充填層として8mの高
さに充填した。この反応器に導入されるガスは水素およ
び一酸化炭素を主成分とする合成原料ガスであり、50
〜150kg/cm2Gの圧力下でメタノールを合成し
た。
In a fluidized bed type methanol synthesis reaction vessel with an inner diameter of 1.0 m and a height of 18 m, a stationary powder packed bed was fluidized according to the flow shown in Fig. 1. Powder catalyst has a particle size of 10 to 15
A copper-based catalyst having a particle size distribution of 0 μm and a bulk specific gravity of 1.2 kg/l was used and packed as a stationary packed bed at a height of 8 m on a gas distribution plate. The gas introduced into this reactor is a synthesis raw material gas whose main components are hydrogen and carbon monoxide.
Methanol was synthesized under a pressure of ~150 kg/cm2G.

各ガス導入流路のガス分散板よりの高さは、次の如くと
した。なお静止充填層内の粉体圧力を測定した結果、頂
部より4m以下ではほぼ同一であったため、分散板から
流路5と、流路5から流路6の区間を等しくした。
The height of each gas introduction channel from the gas distribution plate was determined as follows. In addition, as a result of measuring the powder pressure in the stationary packed bed, it was almost the same within 4 m from the top, so the sections from the dispersion plate to the flow path 5 and from the flow path 5 to the flow path 6 were made equal.

触媒充填後10日間静止状態にあった上記反応器を、流
動化開始のため供給ガスの各流路弁を閉止した状態から
流路4の弁を開け、反応器空間部の圧力より 1.0k
g/cm”高い圧力に保持した。次いで流路7の弁を開
け、合成原料ガスを導入したところ、この流路の圧力が
反応器空間部の圧力より0゜5 kg/cm2高くなっ
たのをピークとして降下し、圧力差0.36kg/cm
2で一定となり、この流路から上方の固結した触媒が崩
壊し、流動化が開始されたことが確認された。同様にし
て順次流路6、流路5および流路4の答弁を操作し、固
結した触媒の崩壊、流動化操作を行った。答弁の操作に
よるピーク圧力差および定常圧力差は次の通りであった
The above-mentioned reactor, which had been in a stationary state for 10 days after being charged with the catalyst, was closed to start fluidization, and the valve of flow path 4 was opened, and the pressure in the reactor space was lowered to 1.0 k.
The pressure in the flow path 7 was then opened and the synthesis raw material gas was introduced, and the pressure in this flow path became 0.5 kg/cm2 higher than the pressure in the reactor space. The pressure difference is 0.36 kg/cm.
It became constant at 2, and it was confirmed that the solidified catalyst above this flow path collapsed and fluidization started. Similarly, the channels 6, 5, and 4 were sequentially operated to disintegrate and fluidize the solidified catalyst. The peak pressure difference and steady pressure difference due to the response operation were as follows.

これにより粉体触媒充填層全体がスムーズに流動化され
、この操作においては反応器からの触媒粒子の飛び出し
が全く無く、次の工程であるナイフロン及び触媒フィル
ターへの影響も無かった。
As a result, the entire powder catalyst packed bed was smoothly fluidized, and during this operation, no catalyst particles were ejected from the reactor at all, and there was no effect on the next step of Nifilon and catalyst filter.

ル較桝土 実施例1において流路7.流路6.流路5の答弁を閉止
したままで、流路4からのみ原料合成ガスを導入し、粉
体触媒充填層を流動化したところ、反応器空間部との圧
力差が71tg/cm”を越える状況に達し、突発的に
固結触媒が崩壊した。この結果反応器内の伝熱管が損傷
し、またサイクロンに過大な負荷を与え、触媒フィルタ
ーが著しく汚染された。
In Example 1, flow path 7. Channel 6. When the feedstock synthesis gas was introduced only from flow path 4 and the powder catalyst packed bed was fluidized with the flow path 5 closed, the pressure difference with the reactor space exceeded 71 tg/cm. reached, and the solidified catalyst suddenly collapsed.As a result, the heat exchanger tubes in the reactor were damaged, the cyclone was overloaded, and the catalyst filter was severely contaminated.

(発明の効果) 本発明の方法により静止粉体充填層を流動化させる場合
には、流動化が非常にスムーズに行われ、容器からの粉
体の飛び出しや内装物の損傷が防止される。これにより
流動層反応器等の起動が容易且つ安全に行われるように
なり、本発明の工業的意義が大きい。
(Effects of the Invention) When a stationary powder packed bed is fluidized by the method of the present invention, the fluidization is performed very smoothly, and powder flying out of the container and damage to the contents inside the container are prevented. This makes it possible to start up a fluidized bed reactor etc. easily and safely, and the present invention has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により粉体充填層を流動化する場
合の説明図である。 ■=容器、2:静止粉体充填層、3:ガス分散板特許出
願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 真 文 尾1凹 手続主甫正書(自発) 昭和63年ら月28日
FIG. 1 is an explanatory diagram when a powder packed bed is fluidized by the method of the present invention. ■=Container, 2: Stationary powder packed bed, 3: Gas dispersion plate Patent applicant Mitsubishi Gas Chemical Co., Ltd. Agent Patent attorney Makoto Kobori Text 1 recessed procedure master's letter (self-motivated) 1985-28 Day

Claims (1)

【特許請求の範囲】[Claims] 容器内に充填した静止粉体充填層中に一個以上のガス導
入口を別に設置し、最上層のガス導入口より下方のガス
導入口へと、順次ガスを導入することを特徴とする静止
粉体充填層の流動化法
A stationary powder characterized in that one or more gas inlets are installed separately in a stationary powder packed bed filled in a container, and gas is introduced sequentially from the gas inlet in the uppermost layer to the gas inlets below. Fluidization method for body packed bed
JP13543588A 1988-06-03 1988-06-03 Method for fluidizing stationary powder-packed bed Pending JPH01307441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13543588A JPH01307441A (en) 1988-06-03 1988-06-03 Method for fluidizing stationary powder-packed bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13543588A JPH01307441A (en) 1988-06-03 1988-06-03 Method for fluidizing stationary powder-packed bed

Publications (1)

Publication Number Publication Date
JPH01307441A true JPH01307441A (en) 1989-12-12

Family

ID=15151654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13543588A Pending JPH01307441A (en) 1988-06-03 1988-06-03 Method for fluidizing stationary powder-packed bed

Country Status (1)

Country Link
JP (1) JPH01307441A (en)

Similar Documents

Publication Publication Date Title
US2433726A (en) Apparatus for contacting fluids with subdivided solids
Werther Scale-up modeling for fluidized bed reactors
US2425754A (en) Hydrogen production
US2457232A (en) Catalytic conversion system
Guo et al. A coupled DEM/CFD analysis of the effect of air on powder flow during die filling
JPH0553693B2 (en)
Rowe et al. Fluidized-bed reactors
US4246231A (en) Fluidized solids apparatus
US2389236A (en) Catalytic conversion system
Venkatesh et al. Fluidization of cryogels in a conical column
Li et al. Hydrodynamic behaviour of aerogel powders in high-velocity fluidized beds
US2481439A (en) Gas-solids contacting apparatus including means for stripping solid particles
AU673240B2 (en) Process and apparatus for distributing fluids in a container
JPS59184289A (en) Conversion of alcohol and oxygen adduct to hydrocarbon in turbulent flow fluidized bed reactor
JPH01307441A (en) Method for fluidizing stationary powder-packed bed
US3980439A (en) Fluidizing apparatus with foraminous member
US2448135A (en) Separation of suspended solids from fluids
US5110323A (en) Process for the return of recovered particulate solids by a cyclone separator to a vessel
JPH02145413A (en) Fluidized-bed reactor for production of trichlorosilane
Yoshida et al. Mechanism of particle mixing and segregation in gas fluidized beds
US2470395A (en) Apparatus for carrying out catalytic reactions
Song et al. Gas-solids circulating fluidization in a packed bed
US3226204A (en) Baffled reactor
JPH0616903Y2 (en) Gas dispersion plate for gas phase polymerization equipment
US2560604A (en) Manipulation of fluent solids