JPH01306822A - Reflection type lenticular screen - Google Patents

Reflection type lenticular screen

Info

Publication number
JPH01306822A
JPH01306822A JP63135629A JP13562988A JPH01306822A JP H01306822 A JPH01306822 A JP H01306822A JP 63135629 A JP63135629 A JP 63135629A JP 13562988 A JP13562988 A JP 13562988A JP H01306822 A JPH01306822 A JP H01306822A
Authority
JP
Japan
Prior art keywords
lens
lenticular lens
light
lenticular
intensity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63135629A
Other languages
Japanese (ja)
Inventor
Morihito Ishibashi
石橋 守人
Susumu Ichinose
一之瀬 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63135629A priority Critical patent/JPH01306822A/en
Publication of JPH01306822A publication Critical patent/JPH01306822A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the lightness of an image in the central part of a lenticular screen and its right and left ends by arranging a mirror face in contact with the back of a scattering layer placed on the back of a lenticular lens and forming the cross-sectional shape of the back of the mirror face in the shape of an arc with curvature. CONSTITUTION:The mirror face 24 is arranged on the back 12 of the lenticular lens 1 in contact with the back of the extremely thin, scattering layer 3, and the cross-sectional shape of the back 12 of the lenticular lens 1 is formed in the shape of an arc with curvature. Therefore, light transmitting the scattering layer 3 turns into reflected light on the face 24. A scattering intensity distribution 22 is added to a scattering intensity distribution 23 to obtain a composite scattering intensity distribution 25, which substantially increases the quantity of reflected light in the incident direction. As a result, the lightness of an image projected on the lenticular screen can be improved from its central part to both ends.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は、映像を投影機によってレンチキュラスクリー
ン上に投影し、この反射画像を立体視する反射型レンチ
キュラスクリーンに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a reflective lenticular screen that projects an image onto a lenticular screen using a projector and views the reflected image stereoscopically.

(従来の技術) 従来より三次元画像の表示方法の一つとして、レンチキ
ュラスクリーンに画像を投影して、その反射画像により
立体視を得る方法がある。
(Prior Art) One conventional method for displaying three-dimensional images is to project the image onto a lenticular screen and obtain stereoscopic vision from the reflected image.

第8図は従来の三次元画像表示用のレンチキュラスクリ
ーンを形成するレンチキュラレンズ1の外観斜視図を示
し、レンズ本体2は水平面内で裁断した断面がカマボコ
型をしたレンズが多数配置され、レンズ表面11がカマ
ボコ型、レンズ裏面12に非常に薄い光の拡散層3が配
置されている。
FIG. 8 shows an external perspective view of a lenticular lens 1 forming a conventional lenticular screen for displaying three-dimensional images.The lens body 2 has a large number of lenses cut in a horizontal plane and each having a semicylindrical cross section. Reference numeral 11 has a semicylindrical shape, and a very thin light diffusion layer 3 is arranged on the back surface 12 of the lens.

このレンチキュラレンズを用いた従来の三次元画像の表
示方法を第9図に示す。同図(A)は上から見た平面図
、同図(B)は(A)を横からみた側面図である。これ
は、観察者4への両眼視差画像を投影する2台以上の投
影機5を、両眼と同じ間隔で配置し、この投影機の上部
または下部位置(回倒)に目を置くことにより立体視す
る。
A conventional three-dimensional image display method using this lenticular lens is shown in FIG. The figure (A) is a plan view seen from above, and the figure (B) is a side view of (A) seen from the side. This involves arranging two or more projectors 5 that project binocular parallax images onto the observer 4 at the same distance as both eyes, and placing the eyes at the upper or lower position (tilted) of the projectors. This allows for stereoscopic viewing.

これはレンチキュラレンズ1に対する投影角度θを大き
くすると、レンズの左右周辺部が暗くなるという現象が
起る。即ち、第10図はレンチキュラレンズ1の中心部
6と左右周辺における明度分布7を示し、図面に示すよ
うに中心部に比べ左右周辺の明度が乏・しいく暗い)こ
とが分る。
This is because when the projection angle θ with respect to the lenticular lens 1 is increased, a phenomenon occurs in which the left and right peripheral parts of the lens become dark. That is, FIG. 10 shows the brightness distribution 7 at the center 6 and the left and right peripheries of the lenticular lens 1, and as shown in the drawing, it can be seen that the brightness at the left and right peripheries is poor and dark compared to the center.

これらのことはレンズ表面11に投影機5から光線をあ
てたときの各入射角における反射特性(第11図)から
も分る。即ち、第10図のレンズ中心部6の近辺におい
ては、レンズ表面11に直角またはそれに近い角度で光
線があたるので、第11図のグラフ8のような反射特性
を示すが、レンズ中心部6から左右周辺部に行くにつれ
レンズ表面11にあたる光線の入射角は小さくなり、例
えばレンズ表面に対し80度であるときグラフ9,70
度であたるときグラフ10のようになる。即ちグラフ8
では入射方向と同一の方向に最大強度の反射光が測定さ
れるが、グラフ9,10では最大強度の反射方向は入射
方向が異なるため暗くなる。
These facts can also be seen from the reflection characteristics (FIG. 11) at each incident angle when the lens surface 11 is irradiated with a light beam from the projector 5. That is, in the vicinity of the lens center 6 in FIG. 10, the light rays strike the lens surface 11 at a right angle or at an angle close to it, so it exhibits reflection characteristics as shown in graph 8 in FIG. The angle of incidence of the light ray hitting the lens surface 11 becomes smaller as it goes to the left and right peripheries.For example, when the angle is 80 degrees to the lens surface, graphs 9 and 70
When it hits in degrees, it will look like graph 10. That is, graph 8
In graphs 9 and 10, the reflected light with the maximum intensity is measured in the same direction as the incident direction, but in graphs 9 and 10, the reflected light with the maximum intensity is dark because the incident direction is different.

上述したレンズ表面への入射角度による反射光と透過光
について詳述する。第12図の(A)は第11図のグラ
フ8で示した最大強度の反射光が測定されるときの状態
を示し、入射光]3はレンズ裏面12において反射方向
14と透過方向15とに分れ、反射方向は入射光13が
入射した同一線上に反射する。
The reflected light and transmitted light depending on the angle of incidence on the lens surface described above will be explained in detail. (A) of FIG. 12 shows the state when the reflected light with the maximum intensity shown in graph 8 of FIG. The light beams are separated and reflected on the same line on which the incident light 13 was incident.

これに対し、第12図の(B)は第11図のグラフ9゜
グラフlOで示したようなある角度で入射された入射光
16は、レンズ裏面12の反射面17において反射光1
8と透過光19とに分れ、入射光16と反射光18とは
レンズ裏面12と直角な線20を挟んで同じ角度θ1=
02で人2反射される。なお、03は反射面17におい
て全反射を起す臨界角である。
On the other hand, (B) in FIG. 12 shows that the incident light 16 incident at a certain angle as shown in the graph 9° and the graph 10 in FIG.
8 and transmitted light 19, and the incident light 16 and reflected light 18 are at the same angle θ1= across a line 20 perpendicular to the back surface 12 of the lens.
At 02, 2 people are reflected. Note that 03 is a critical angle at which total reflection occurs at the reflecting surface 17.

このようにレンズ表面11へ入射する光線の角度の違い
により反射光の方向が異なる結果、レンズの中心部で明
るく、左右周辺部で暗くなる。
As described above, the direction of the reflected light differs due to the difference in the angle of the light rays incident on the lens surface 11, and as a result, the center of the lens becomes bright and the left and right peripheral parts become dark.

これまではレンチキュラレンズ1への人2反射について
のべたが、拡散層3がこれに作用する。
So far, we have talked about the reflection of the person 2 onto the lenticular lens 1, but the diffusion layer 3 acts on this.

第13図(A)は拡散層3が完全な拡散面3Aを有する
場合(現在のところ期待できないが、論理上仮定)と、
第13図(B)のようにやや光沢のある拡散i3Bの場
合についてのべる。
FIG. 13(A) shows the case where the diffusion layer 3 has a perfect diffusion surface 3A (this is not expected at present, but is a logical assumption),
The following describes the case of slightly glossy diffused i3B as shown in FIG. 13(B).

第13図(A)の拡散層3Aの場合、ある角度をもった
入射光16が拡散面3aにあたっても、あらゆる方向に
辺遍なく散乱され、その散乱強度分布22は、観察方向
と拡散面積の法1iI21とのなす角度を0とすれば、
cos eに比例して−様な散乱が行なわれる。
In the case of the diffusion layer 3A in FIG. 13(A), even if the incident light 16 at a certain angle hits the diffusion surface 3a, it is scattered evenly in all directions, and the scattering intensity distribution 22 is the same as the observation direction and the diffusion area. If the angle made with modulus 1iI21 is 0, then
-like scattering takes place in proportion to cos e.

これに対し、第13図CB)の場合は現在の技術で実現
できる拡散層であり、(A)と異なり法線21を境とし
て一方向に散乱強度分布22が図示のように散乱する。
On the other hand, the case of FIG. 13 CB) is a diffusion layer that can be realized with current technology, and unlike in FIG. 13A, the scattered intensity distribution 22 is scattered in one direction with the normal line 21 as the boundary as shown.

即ち観察者にとっては(A)に比較して明るさが低下す
る。即ち、光線の入射方向にいる観察者にとっては(A
)と比較して明度の低下が感じられる。
That is, for the observer, the brightness is lower than in (A). That is, for the observer in the direction of incidence of the light beam, (A
), the brightness is perceived to be lower.

以上のべた従来のレンチキュラスクリーンの機能を総括
すると第14図によって説明できる。即ち。
The functions of the conventional lenticular screen described above can be summarized with reference to FIG. That is.

レンチキュラレンズ表面11にある角度をもつ入射光1
6は、拡散層3による光の拡散作用によって、反射方向
への散乱強度分布22と、透過方向への散乱強度分布2
3とに分れるが、入射光のほとんどが透過光となり、入
射光16が全反射を起す臨界角θ3(第12図)より小
さくならない限り反射光の量は少ないという欠点がある
Incident light 1 at a certain angle on the lenticular lens surface 11
6 is a scattering intensity distribution 22 in the reflection direction and a scattering intensity distribution 2 in the transmission direction due to the light diffusion effect of the diffusion layer 3.
However, most of the incident light becomes transmitted light, and the amount of reflected light is small unless the incident light 16 becomes smaller than the critical angle θ3 (FIG. 12) at which total internal reflection occurs.

これは、レンチキュラレンズ1のレンズ裏面12が平面
のために起る反射方向の変化や、拡散層3の散乱特性に
起因し、これまで、画像の明度が低くなることを避ける
ことができなかった。
This is due to changes in the reflection direction that occur because the lens back surface 12 of the lenticular lens 1 is flat, and the scattering characteristics of the diffusion layer 3, and until now it has been impossible to avoid lowering the brightness of the image. .

(発明の目的) 本発明は上述した従来のレンチキュラレンズの欠点を解
消し、レンチキュラレンズの透過光を失くして反射光量
を増加させ、レンチキュラスクリーン上に投影される画
像の明度を、中心部から左右周辺部に至るまで同じくし
向上させることを目的とするものである。
(Objective of the Invention) The present invention solves the above-mentioned drawbacks of the conventional lenticular lens, eliminates the transmitted light of the lenticular lens and increases the amount of reflected light, and increases the brightness of the image projected on the lenticular screen from the center. The purpose is to improve the sameness even in the left and right peripheral areas.

(発明の構成) (発明の特徴と従来技術との差異) 本発明は、上記目的を達成するため、レンチキュラレン
ズ裏面に設けた拡散層の背面に接触して鏡面を配置し、
かつレンチキュラレンズの裏面の断面形状が平面あるい
は曲率を有する円弧状に形成されたことを特徴とする。
(Structure of the Invention) (Characteristics of the Invention and Differences from the Prior Art) In order to achieve the above object, the present invention arranges a mirror surface in contact with the back surface of the diffusion layer provided on the back surface of the lenticular lens,
Further, the lenticular lens is characterized in that the cross-sectional shape of the back surface thereof is formed into a flat surface or a circular arc shape having curvature.

従来技術は、入射光に対する透過光の割合が多いのに対
し、本発明は透過光を失くし入射方向への反射光量を増
加させた点が異なる。
In contrast to the prior art, in which the ratio of transmitted light to incident light is high, the present invention is different in that transmitted light is lost and the amount of reflected light in the incident direction is increased.

(実施@) 第1図は本発明の一実施例によるレンチキュラレンズを
模式的に示した断面図であり、レンチキュラレンズ1の
裏面12には、非常に薄い拡散層3の背面に接して、鏡
面24を配置したものである。
(Implementation@) FIG. 1 is a cross-sectional view schematically showing a lenticular lens according to an embodiment of the present invention.The back surface 12 of the lenticular lens 1 has a mirror surface in contact with the back surface of a very thin diffusion layer 3. 24 are arranged.

本実施例によれば、拡散層3を通過する透過光は、鏡面
24上で反射(図面では便宜上、拡散層3の表面で画い
ているが、実際は拡散層が非常に薄いので、鏡面上と同
等である)した反射光となり。
According to this embodiment, the transmitted light passing through the diffusion layer 3 is reflected on the mirror surface 24 (in the drawing, the surface of the diffusion layer 3 is shown for convenience, but in reality, since the diffusion layer is very thin, it is reflected on the mirror surface 24). (equivalent) is the reflected light.

散乱強度分布22は、透過光(第14図)による散乱強
度分布23を加え、合成された散乱強度分布25が得ら
れ、入射方向への反射光量を著しく増加させる。
The scattered intensity distribution 22 is added with the scattered intensity distribution 23 due to the transmitted light (FIG. 14), and a synthesized scattered intensity distribution 25 is obtained, which significantly increases the amount of reflected light in the incident direction.

この場合の反射特性を第2図に示し、グラフ26が本実
施例、グラフ27が従来例である。この反射特性の測定
は、入射光16がレンズ表面11に対し80度の傾きか
ら光線が入射した場合である。この反射特性から明らか
なように入射方向だけでなく、従来例に比べて全体的に
反射量が増加していることが分る。
The reflection characteristics in this case are shown in FIG. 2, with graph 26 showing this embodiment and graph 27 showing the conventional example. The reflection characteristics were measured when the incident light 16 was incident on the lens surface 11 at an angle of 80 degrees. As is clear from this reflection characteristic, it can be seen that the amount of reflection increases not only in the incident direction but also overall compared to the conventional example.

第3図は本発明の別の実施例を示すレンチキュラレンズ
の断面図を示し、第4図でのべるレンチキュラレンズ1
のレンズ裏面12の形状によって形成されている。即ち
、第4図に示すようにレンチキュラレンズの裏面12の
断面形状は、レンズ表面11の中央を中心点28として
半径29(焦点距離30でもある)で画かれた円周の一
部(円弧)で形成される。
FIG. 3 shows a sectional view of a lenticular lens showing another embodiment of the present invention, and the lenticular lens 1 shown in FIG.
It is formed by the shape of the back surface 12 of the lens. That is, as shown in FIG. 4, the cross-sectional shape of the back surface 12 of the lenticular lens is a part of the circumference (arc) defined by the center point 28 of the lens surface 11 and the radius 29 (also the focal length 30). is formed.

このような形状になっているので、レンズに入射した光
線(入射光16)は、反射面となるレンズ裏面12にお
いて常に直角にあたり、反射光18は入射した方向(同
一軸線上)に向けられる。
Because of this shape, the light rays that enter the lens (incident light 16) always strike the back surface 12 of the lens, which is the reflective surface, at right angles, and the reflected light 18 is directed in the direction of incidence (on the same axis).

第3図は第4図でのべたレンチキュラレンズ1を配設し
た断面図を示し、レンズ表面11のピッチ31とレンズ
裏面12のピッチ32は同じであって、対応した位置関
係にある。そして、レンズ裏面12に拡散層31次に鏡
面24が夫々接触して配置される。
FIG. 3 shows a sectional view of the lenticular lens 1 shown in FIG. 4, where the pitch 31 on the front surface 11 of the lens and the pitch 32 on the back surface 12 of the lens are the same and have a corresponding positional relationship. Then, the diffusion layer 31 and the mirror surface 24 are placed in contact with the back surface 12 of the lens.

これは、入射光16が常に入射方向に対して垂直となる
レンズ裏面で反射され、かつ鏡面の作用により1反射光
は入射方向に最大強度、即ち反射光成分と透過光成分と
が合成された散乱強度分布25が得られ1画像の明度の
向上がはかられる。
This is because the incident light 16 is always reflected on the back surface of the lens, which is perpendicular to the direction of incidence, and due to the action of the mirror surface, one reflected light has the maximum intensity in the direction of incidence, that is, the reflected light component and the transmitted light component are combined. A scattering intensity distribution 25 is obtained, and the brightness of one image is improved.

この場合の反射特性を第5図に示し、レンズ表面11に
対し直角な位置から光線入射のグラフ33゜80度入射
のグラフ34.70度入射のグラフ35に見られるよう
に、従来のレンチキュラレンズのようなレンズ表面に直
角な位置から光線入射したときだけでなく、他の角度で
も光線の入射方向に反射光が戻るという効果がある。
The reflection characteristics in this case are shown in FIG. 5. As can be seen in the graph 33 of the light beam incident from a position perpendicular to the lens surface 11, the graph 34 of the 80 degree incidence, and the graph 35 of the 70 degree incidence, the conventional lenticular lens There is an effect that the reflected light returns to the direction of incidence of the light ray not only when the light ray enters the lens surface from a position perpendicular to the lens surface, but also at other angles.

第6図は本発明の更に別の実施例によるレンチキュラレ
ンズの断面図を示し、レンズ裏面12の曲率半径rを第
7図に示すように中央部36で大きく左右の周辺部37
.38に行くに従って連続的(または階段的)に小さく
したものである。その他、拡散層3.鏡面24を設ける
ことは上述のとおりである。
FIG. 6 shows a cross-sectional view of a lenticular lens according to still another embodiment of the present invention, in which the radius of curvature r of the back surface 12 of the lens is larger at the center portion 36 than at the left and right peripheral portions 37, as shown in FIG.
.. It is made smaller continuously (or stepwise) as it goes to 38. Others, diffusion layer 3. Providing the mirror surface 24 is as described above.

このような構成においてレンチキュラスクリーンに映像
を投影すると、中央部では投影角度θが小さいためレン
チキュラレンズ裏面の曲率半径rが大きいにも拘らず反
射光は入射方向に戻り、周辺部においてもレンチキュラ
レンズ裏面の曲率半径rが小さいため投影角度θが大き
いにも拘らず反射光は入射方向に戻るという効果がある
When an image is projected onto the lenticular screen in such a configuration, the projection angle θ is small in the center, so the reflected light returns to the incident direction even though the radius of curvature r of the back surface of the lenticular lens is large, and even in the peripheral region, the reflected light returns to the incident direction. Since the radius of curvature r is small, there is an effect that the reflected light returns to the incident direction even though the projection angle θ is large.

これは、曲率半径の変化する割合を任意に設定すること
によって、反射強度分布を任意に設定できる特徴を有す
る。また、曲率半径を中央部では無限大(即ち平面)と
しても動作に支障がない。   ′(発明の効果) 以上説明したように本発明は構成されているので、レン
チキュラスクリーンの中央部、左右周辺部とも画像の明
度を著しく向上させるとともに、投影位置やm察位置も
一箇所に固定しなくとも。
This has the feature that the reflection intensity distribution can be arbitrarily set by arbitrarily setting the rate at which the radius of curvature changes. Further, even if the radius of curvature is infinite (ie, flat) at the center, there is no problem in operation. (Effects of the Invention) Since the present invention is configured as explained above, the brightness of the image is significantly improved in the center, left and right peripheral areas of the lenticular screen, and the projection position and m-viewing position are also fixed at one location. Even if you don't.

三次元画像の表示が可能である。It is possible to display three-dimensional images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のレンチキュラレンズの断面
図、第2図は第1図の実施例と従来のレンチキュラレン
ズの反射特性図、第3図は本発明の別の実施例のレンチ
キュラレンズの断面図、第4図は第3図に用いられるレ
ンチキュラレンズ、第5図は第3図のレンチキュラレン
ズの反射特性図、第6図は本発明の更に他の実施例によ
るレンチキュラレンズの断面図、第7図は第6図に用ら
れるレンチキュラレンズの裏面部の説明図、第8図は従
来のレンチキュラレンズの一例の斜視外観図、第9図は
第8図のレンチキュラレンズを用いた三次元画像の表示
方法の一例図、第10図は第9図による明度分布の状態
図、第11図は従来のレンチキュラレンズへの入射角に
よる反射特性図、第12図はレンチキュラレンズの入射
光と反射光と透過光との説明図、第13図は拡散層によ
る散乱強度分布の説明図、第14図は第8図ないし第1
3図を総括した従来のレンチキュラレンズの動作説明図
である。 1 ・・・ レンチキュラレンズ、 2 ・・・ レン
ズ本体、 3 ・・・拡散層、 4 ・・・i察者。 5・・・投影機、 6 ・・・ レンズの中心部、7・
・・明度分布、 8〜10.26.27.33〜35・
・・反射特性グラフ、11・・・ レンズ表面、12・
・・レンズ裏面、13.16・・・入射光、14.18
・・・反射光、15・・・透過方向、17・・・反射面
、19・・・透過光、20・・・直角な線、21・・・
法線、22・・・反射方向の散乱強度分布、23・・・
透過方向の散乱強度分布、24・・・鏡面、25・・・
合成された散乱強度分布、28・・・中央の中心点、2
9・・・半径、30・・・焦点距離、31、32・・・
 ピッチ、36・・・中央部、37゜38・・・周辺部
。 特許出願人 日本電信電話株式会社 第4図 第6図 第7図 r臼午十臣 第8図 11し)久氏面 (B) 第10図 と□る 嘱;燗づ 第13図 (A) 3A尤金なw、数面 (B) 3Bや41沢のゐり拡散亘
FIG. 1 is a cross-sectional view of a lenticular lens according to an embodiment of the present invention, FIG. 2 is a reflection characteristic diagram of the embodiment of FIG. 1 and a conventional lenticular lens, and FIG. 3 is a lenticular lens according to another embodiment of the present invention. 4 is a cross-sectional view of the lens, FIG. 4 is a lenticular lens used in FIG. 3, FIG. 5 is a reflection characteristic diagram of the lenticular lens in FIG. 3, and FIG. 6 is a cross-sectional view of a lenticular lens according to still another embodiment of the present invention. Fig. 7 is an explanatory diagram of the back side of the lenticular lens used in Fig. 6, Fig. 8 is a perspective external view of an example of a conventional lenticular lens, and Fig. 9 is a tertiary lens using the lenticular lens shown in Fig. 8. An example of how to display an original image. Figure 10 is a state diagram of the brightness distribution according to Figure 9. Figure 11 is a reflection characteristic diagram depending on the incident angle to a conventional lenticular lens. Figure 12 is a diagram of the incident light on a lenticular lens. An explanatory diagram of reflected light and transmitted light, Fig. 13 is an explanatory diagram of the scattering intensity distribution by the diffusion layer, and Fig. 14 is an explanatory diagram of the scattered light distribution by the diffusion layer.
FIG. 3 is an explanatory diagram of the operation of a conventional lenticular lens, summarizing the operations of FIG. 1... Lenticular lens, 2... Lens body, 3... Diffusion layer, 4... i observer. 5... Projector, 6... Center of lens, 7...
・・Brightness distribution, 8~10.26.27.33~35・
... Reflection characteristics graph, 11... Lens surface, 12.
...Lens back surface, 13.16...Incoming light, 14.18
...Reflected light, 15... Transmission direction, 17... Reflective surface, 19... Transmitted light, 20... Right angle line, 21...
Normal line, 22...Scattered intensity distribution in the reflection direction, 23...
Scattered intensity distribution in the transmission direction, 24... mirror surface, 25...
Combined scattering intensity distribution, 28...Central center point, 2
9... Radius, 30... Focal length, 31, 32...
Pitch, 36...center, 37°38...periphery. Patent applicant: Nippon Telegraph and Telephone Corporation Figure 4 Figure 6 Figure 7 3A is so gold lol, several pages (B) 3B and 41 Sawa spread all over

Claims (1)

【特許請求の範囲】[Claims] 映像を投影機によってレンチキュラスクリーン上に投影
し、この反射画像を立体視する反射型レンチキュラスク
リーンにおいて、レンチキュラレンズ裏面に設けた拡散
層の背面に接触して鏡面を配置し、かつレンチキュラレ
ンズの裏面の断面形状が平面あるいは曲率を有する円弧
状に形成されたことを特徴とする反射型レンチキュラス
クリーン。
In a reflective lenticular screen that projects an image onto a lenticular screen using a projector and views the reflected image stereoscopically, a mirror surface is placed in contact with the back surface of a diffusion layer provided on the back surface of the lenticular lens, and A reflective lenticular screen characterized by having a cross-sectional shape that is flat or arcuate with curvature.
JP63135629A 1988-06-03 1988-06-03 Reflection type lenticular screen Pending JPH01306822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63135629A JPH01306822A (en) 1988-06-03 1988-06-03 Reflection type lenticular screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63135629A JPH01306822A (en) 1988-06-03 1988-06-03 Reflection type lenticular screen

Publications (1)

Publication Number Publication Date
JPH01306822A true JPH01306822A (en) 1989-12-11

Family

ID=15156276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63135629A Pending JPH01306822A (en) 1988-06-03 1988-06-03 Reflection type lenticular screen

Country Status (1)

Country Link
JP (1) JPH01306822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242510A (en) * 1993-02-19 1994-09-02 Nitsuku Paru Enterp:Kk Reflective projection screen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242510A (en) * 1993-02-19 1994-09-02 Nitsuku Paru Enterp:Kk Reflective projection screen

Similar Documents

Publication Publication Date Title
JP3526157B2 (en) Directional reflective screen and image display device
US4078854A (en) Stereo imaging system
US4512631A (en) Rear projection television screen incorporating a prism lens
US6504649B1 (en) Privacy screens and stereoscopic effects devices utilizing microprism sheets
JPS62226778A (en) Rear projector
US3820873A (en) Screen for producing an enhanced impression of depth
US4333707A (en) Method of image enhancement
JP4747408B2 (en) Screen and 3D display system using it
JP3790072B2 (en) Image display device
JPH0628458B2 (en) Rear projection television display
US3687520A (en) Substage illuminating mirror for a stereomicroscope
JP3658246B2 (en) Image display device and image projection device
JP2000162710A (en) Directional reflection screen and image display device
JPWO2002025369A1 (en) Image display device
JPH01306822A (en) Reflection type lenticular screen
JP2003029344A (en) Screen
JPH10221642A (en) Image display device
JP2000275736A (en) Directional reflection screen and image display device
JPH04500415A (en) Improved screen for playing back three-dimensional still or moving images and method for manufacturing the same
JP2000338605A (en) Directive reflection screen and picture display device
CN1321252A (en) Projection screen for TV
JP3661494B2 (en) Directional reflective screen and image display device
JPS59111138A (en) Light transmitting type screen
JPH0588264A (en) Rear projection type display device
JPH0545733A (en) Front screen