JPH01306076A - Plasma torch with magnetic field generator - Google Patents
Plasma torch with magnetic field generatorInfo
- Publication number
- JPH01306076A JPH01306076A JP63133766A JP13376688A JPH01306076A JP H01306076 A JPH01306076 A JP H01306076A JP 63133766 A JP63133766 A JP 63133766A JP 13376688 A JP13376688 A JP 13376688A JP H01306076 A JPH01306076 A JP H01306076A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- plasma
- plasma torch
- cathode
- field generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 abstract description 2
- 238000003754 machining Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
- Arc Welding Control (AREA)
- Plasma Technology (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はプラズマ加工機の磁場発生装置付きプラズマト
ーチに係わり、殊に耐久性を向上させたプラズマトーチ
、かつ、高精度プラズマ加工を行うに好適なるプラズマ
トーチに関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a plasma torch equipped with a magnetic field generator for a plasma processing machine, and in particular to a plasma torch with improved durability and for high-precision plasma processing. Concerning a preferred plasma torch.
(従来の技術)
従来のプラズマ加工機のプラズマトーチについて、この
種の代表的プラズマトーチの模式断面図(第4図)を参
照し以下説明する。同図(a)に基づき、先ずプラズマ
トーチの構成について説明する。これは大きく分けて電
極1とノズル3とから構成される。電極1は直流高周波
回路からの配線IAに接続され、高熱伝導率かつ導体な
る銅材Cu等のホルダIBと、このホルダIBの放電空
間側の先端部中心部内に埋め込まれたハフニウムHf、
ジルコニウムZ「又はタングステンW等の陰極IC部材
とで構成される。一方ノズル3は前記電極1に絶縁機能
を有するスワラ−6を介して外接しこの電極1を保持す
るための構成体であって、その先端のオリフィス3Cの
中心線は前記電極1の中心線と一致する。尚、かかる構
成であっても、その材質又はサイズ等は、被加工材の材
質、加工形態、プラズマガスの種類、作動電流等諸条件
が勘案された上、これらが適宜選択され組み合わされる
のが一般である。次にプラズマ放電4Aの安定化につい
て説明する。従来、プラズマトーチの耐久性の向上及び
プラズマ加工の精度の向上は、プラズマ加工分野の学究
機関及び産業界における達成必須なる課題とされており
、このプラズマ放電の安定化を解決するための有効なる
手段として採用されている技術に旋回気流によるアーク
の安定化がある。動作ガス2は所定の圧力Poで導入通
路3Aを経てスワラ−3Bに至る。ここで旋回速度成分
2人が付与され、オリフィス3Cまでの間において旋回
流2Bを生じ、この旋回流2Bにより、陰極点(以下、
放電点と呼ぶ)が電極lの中心に安定的に保持されるよ
うになる。換言すれば、放電点が電極1中心に安定的に
保持されれば、この放電点からのプラズマアーク柱4A
もまた安定的に保持される。この作用を、より詳細に説
明すれば、同図(b)に示す通り、旋回流2Bがなす圧
力分布Pnはその旋回中心の圧力がその旋回外周部の圧
力よりもより低いことから、放電電流がこの低圧部を経
由して流れようとする。(Prior Art) A plasma torch of a conventional plasma processing machine will be described below with reference to a schematic cross-sectional view (FIG. 4) of a typical plasma torch of this type. First, the configuration of the plasma torch will be explained based on FIG. This is broadly divided into an electrode 1 and a nozzle 3. The electrode 1 is connected to the wiring IA from the DC high-frequency circuit, and includes a holder IB made of a copper material such as Cu, which has high thermal conductivity and is a conductor, and hafnium Hf embedded in the center of the tip of the holder IB on the discharge space side.
It is composed of a cathode IC member such as zirconium Z or tungsten W. On the other hand, the nozzle 3 is a structure for circumscribing the electrode 1 through a swirler 6 having an insulating function and holding the electrode 1. , the center line of the orifice 3C at its tip coincides with the center line of the electrode 1. Even with such a configuration, its material or size depends on the material of the workpiece, the processing form, the type of plasma gas, Generally, these are selected and combined as appropriate after taking various conditions such as operating current into consideration.Next, stabilization of plasma discharge 4A will be explained.Conventionally, improvements in the durability of plasma torches and accuracy of plasma processing have been made. The improvement of plasma processing is considered to be an essential task for academic institutions and industries in the field of plasma processing, and stabilization of the arc by swirling airflow is one of the technologies adopted as an effective means to solve the problem of stabilizing plasma discharge. The working gas 2 reaches the swirler 3B through the introduction passage 3A at a predetermined pressure Po.Two swirling speed components are applied here, and a swirling flow 2B is generated up to the orifice 3C, and this swirling flow 2B, the cathode point (hereinafter,
(referred to as a discharge point) is stably held at the center of the electrode l. In other words, if the discharge point is stably held at the center of the electrode 1, the plasma arc column 4A from this discharge point
is also stably maintained. To explain this effect in more detail, as shown in Figure (b), the pressure distribution Pn formed by the swirl flow 2B is such that the pressure at the center of the swirl is lower than the pressure at the outer circumference of the swirl, so the discharge current tries to flow through this low pressure section.
従来のプラズマトーチの構成はかかる性質を積極的に利
用しプラズマ放電を安定化しようとするものである。The configuration of conventional plasma torches actively utilizes such properties to stabilize plasma discharge.
(発明が解決しようとする課題)
しかしながら、かかる従来の構成のプラズマトーチには
、次に掲げる問題がある。従来の技術では放電点の安定
化(即ち、プラズマアーク柱の安定化)が旋回流という
流体力学的手段により得られた圧力分布によって行われ
ているため、微視的には放電点の揺らぎ(即ち、プラズ
マアーク柱の揺らぎ)が常時発生することになる。更に
第5図に示す通り、陰極IC部材が使用で消耗する(同
図(a)→(b))と、陰極表面が初期表面よりも内部
に8頃し、これに追従して陰極表面の圧力分布がより鈍
くなるため、放電点の揺らぎが更に増大する。陰極表面
の8損が更に進行し、圧力分布による放電点の維持が不
可能になると、異常放電を起こし破壊に至る(同図(a
)→(C))。(Problems to be Solved by the Invention) However, the conventional plasma torch has the following problems. In conventional technology, the stabilization of the discharge point (that is, the stabilization of the plasma arc column) is performed using the pressure distribution obtained by a hydrodynamic means called swirl flow, so microscopically, the fluctuation of the discharge point ( In other words, fluctuations in the plasma arc column always occur. Furthermore, as shown in Fig. 5, when the cathode IC member wears out due to use ((a) → (b) in the same figure), the cathode surface moves inwards from the initial surface, and the cathode surface follows this. Since the pressure distribution becomes more blunt, fluctuations in the discharge point further increase. 8 loss on the cathode surface further progresses, and when it becomes impossible to maintain the discharge point due to pressure distribution, abnormal discharge occurs, leading to destruction (see figure (a)
)→(C)).
即ち、従来の構成では、放電点の揺らぎ、そして使用中
の揺らぎ増大という必然性のため、放電点(ffl]ち
、プラズマアーク柱)の安定化が期待以上に達成され得
ない。換言すれば、放電点の揺らぎがプラズマトーチの
耐久性の低下と、力■工精度の悪化と言う問題の主要な
要因となっていると考えられる。That is, in the conventional configuration, stabilization of the discharge point (ffl, ie, plasma arc column) cannot be achieved to a greater extent than expected due to the fluctuation of the discharge point and the inevitable increase in fluctuation during use. In other words, the fluctuation of the discharge point is considered to be the main cause of the problems of reduced durability of the plasma torch and deterioration of mechanical accuracy.
本発明は、かかる従来の問題点に着目し、放電点の揺ら
ぎ発生を可能な限り抑制することにより、耐久性の高い
プラズマトーチを、そして高精度なるプラズマ加工が行
えるプラズマトーチを提供することを目的とする。The present invention focuses on such conventional problems and aims to provide a highly durable plasma torch and a plasma torch that can perform highly accurate plasma processing by suppressing the fluctuation of the discharge point as much as possible. purpose.
(課題を達成するための手段)
上記目的を達成するため、本発明に係わる磁場発生装置
付きプラズマトーチは、プラズマトーチに磁石を備え、
この磁石の生成する磁場が陰極表面近傍において、陰極
中心線と直交する平面上で、前記中心線上にて最大の磁
場強度を有するように磁石を配置する構成とした。(Means for Achieving the Object) In order to achieve the above object, a plasma torch with a magnetic field generator according to the present invention includes a plasma torch equipped with a magnet,
The magnets were arranged so that the magnetic field generated by the magnet had a maximum magnetic field strength on the center line near the cathode surface, on a plane perpendicular to the cathode center line.
ここで言う磁石きは、永久磁石若しくは電流によって作
られるコイルや電磁石又は磁化されたもの、即ち磁界を
備えるものの総称を指し、これら6fJ石の生成する磁
力線とほぼ並行してプラズマアーク柱の放電軸に沿うよ
う、該磁石を配置した構成の磁石付きプラズマトーチで
ある。The magnet here is a general term for permanent magnets, coils made by electric current, electromagnets, or magnetized things, that is, things with a magnetic field, and the discharge axis of the plasma arc column is almost parallel to the magnetic field lines generated by these 6fJ stones. This is a plasma torch with a magnet, in which the magnet is arranged along the
(作用)
プラズマトーチ内に形成される高温、高気圧のアーク柱
は、理論的に連続体としての導電性電磁流体として取り
扱うことができる。このような電磁流体は外部磁場が加
えられた場合、その磁力線に沿ってその密度、圧力、温
度等の熱力学的諸量を不変に保とうとする性質を有する
。例えば第2図(a)に示すように、アーク柱4Aに対
してほぼ並行に外部磁場が加えられた場合、任意の一本
の磁力線4Cに座標軸Sをとれば、アーク柱4Aの圧力
をPとすると、
θP
−= 0 −−−・−(1)
θS
なることを証明することができる。これは、アーク柱4
Aを構成するプラズマの圧力が磁力線4Cに沿って変化
しないことを表している。もしアークの温j変Tが磁力
線上にとられた座標軸S上の微小区間で不変であるなら
ば、アークの密度ρもまた、その微小区間で不変に保た
れる。実際に第2図(a)のような外部磁場を加えられ
たアーク打は、微小圧力変動等の揺らぎによりその位置
が変動する場合、式(1)を満足するために磁力線をひ
っばりながら磁力線とともに変動する。しかし、印加す
る磁場強度を強くすると、磁力線によるアークの揺らぎ
を防止しようとする力(磁気圧)が強くなるため、アー
ク柱は、その揺らぎを強力に抑制され、磁力線に沿って
安定的に維持されるようになる。(Operation) The high-temperature, high-pressure arc column formed within the plasma torch can theoretically be treated as a conductive electromagnetic fluid as a continuum. When an external magnetic field is applied to such a magnetic fluid, it tends to maintain thermodynamic quantities such as density, pressure, and temperature unchanged along the lines of magnetic force. For example, as shown in Fig. 2(a), when an external magnetic field is applied almost parallel to the arc column 4A, if the coordinate axis S is set at any one line of magnetic force 4C, the pressure in the arc column 4A is reduced to P. Then, it can be proven that θP −= 0 −−−·−(1) θS. This is arc pillar 4
This indicates that the pressure of the plasma constituting A does not change along the magnetic field line 4C. If the temperature change T of the arc is unchanged in a minute section on the coordinate axis S taken on the magnetic field lines, then the arc density ρ is also kept unchanged in that minute section. In fact, when an arc strike to which an external magnetic field is applied as shown in Fig. 2 (a) changes its position due to fluctuations such as minute pressure fluctuations, the magnetic field lines are stretched out in order to satisfy equation (1). It fluctuates with However, when the applied magnetic field strength is increased, the force (magnetic pressure) that tries to prevent the arc from fluctuating due to the lines of magnetic force becomes stronger, so the arc column is strongly suppressed from fluctuations and maintained stably along the lines of magnetic force. will be done.
前述のトーチの構成は、このような現象を考慮すること
によりなされたもので、陰極表面近傍で、第2図(b)
に示す如くアーク柱4Aとほぼ並行する磁力線分布を持
ち、かつ、陰極の中心線(プラズマアーク社中心線4B
)上で最大の磁場強度を有するような磁場を発生するよ
うに永久磁石5等の磁場発生装置を装着している。The configuration of the torch described above was made by taking such a phenomenon into consideration, and in the vicinity of the cathode surface, as shown in Fig. 2(b).
As shown in , it has a magnetic field line distribution that is almost parallel to the arc column 4A, and the center line of the cathode (Plasma Arc Co., Ltd. center line 4B
) is attached with a magnetic field generating device such as a permanent magnet 5 so as to generate a magnetic field having the maximum magnetic field strength.
このようにプラズマトーチを構成することにより、放電
点を陰極ICの中心部により安定的に固定することが可
能である。By configuring the plasma torch in this way, it is possible to more stably fix the discharge point to the center of the cathode IC.
(実施例)
以下本発明に係わる実施例を図面(第1回及び第3図)
を参照し説明する。第1回は本発明に係わる磁石付きプ
ラズマトーチの一実施例を示すは第3図は第1実施例の
効果を示す実験グラフ回である。第1図の実施例の磁石
付きプラズマトーチの構成は、(従来の技術)第4図で
概説の従来の代表的プラズマトーチに、磁石を備えた実
施例の模式断面を示す図である。従って、以下構成の説
明については、従前概説の従来構成を省略し、本発明に
係わる主要部の磁石の配置構成のみを主体に述べる。同
図において、磁石5は断面が略箱服外形がリング状の永
久磁石であって、これを陰極lの外周に外接してこの陰
極を保持する陰極ホルダ6の外周に固設した構成である
。そして該磁石5のリング中心及び平行間がプラズマア
ーク柱4Bの軸中心線4Bと路間−となるよう固設され
た構成とした。第3図はこの実験結果であり、これを説
明すると、従来のプラズマトーチP1が、その陰極が約
280回の発停回数において約80分の累積アーク時間
の寿命、また約150回の発停回数において約320分
の累積アーク時間の寿命であるに対し、本実施例のプラ
ズマトーチP2では、その陰極が約420回の発停回数
において約125分の累積アーク時間の寿命、また約2
60回の発停回数において約480分の累積アーク時間
の寿命を備えている。更にプラズマトーチP3に到って
は、その陰極が約480回の発停回数において約150
分の累積アーク時間の寿命、また約370回の発停回数
に到っては約740分の累積アーク時間の寿命という高
結果を得ることができた。これをグラフ上にプロントし
たものが第3図である。図面から分かるように、例えば
PlとP3とを同グラフ図に基づき比較すると、最大発
停回数(消耗曲線が縦軸と交わる点)の場合におけるP
IとP3との有異差は少ないが、定常運転状態(消耗曲
線が横軸と交わる点)では、数倍〜数十倍の耐久性の向
上を図り得ることが分かる。(Example) The following is an example of the present invention in drawings (Figures 1 and 3).
Refer to and explain. The first part shows an embodiment of a plasma torch with a magnet according to the present invention, and FIG. 3 shows an experimental graph showing the effects of the first embodiment. The structure of the magnet-equipped plasma torch of the embodiment shown in FIG. 1 is a diagram showing a schematic cross section of an embodiment in which a typical conventional plasma torch outlined in FIG. 4 is equipped with a magnet (prior art). Therefore, in the following description of the configuration, the conventional configuration outlined previously will be omitted, and only the arrangement and configuration of the magnets of the main parts related to the present invention will be mainly described. In the figure, a magnet 5 is a permanent magnet with a ring-shaped cross section and is fixed to the outer periphery of a cathode holder 6 that circumscribes the outer periphery of a cathode l and holds this cathode. . The magnet 5 is fixedly installed so that the center of the ring and the parallel space are at a distance from the axial center line 4B of the plasma arc column 4B. Figure 3 shows the results of this experiment. To explain this, the conventional plasma torch P1 has a cathode that has a cumulative arc time life of about 80 minutes for about 280 starts and stops, and a life span of about 150 times. In contrast, in the plasma torch P2 of this embodiment, the cathode has a life of about 125 minutes of cumulative arc time for about 420 starts and stops, and a life of about 2.
It has a lifespan of about 480 minutes of cumulative arc time when the number of starts and stops is 60 times. Furthermore, when it comes to plasma torch P3, its cathode is turned on and off about 150 times in about 480 times.
We were able to obtain high results with a cumulative arc time life of approximately 740 minutes, and a cumulative arc time life of approximately 740 minutes after approximately 370 starts and stops. Figure 3 shows this on a graph. As can be seen from the drawing, for example, if Pl and P3 are compared based on the same graph, P at the maximum number of starts and stops (the point where the wear curve intersects the vertical axis)
Although there is little difference between I and P3, it can be seen that in a steady operating state (the point where the wear curve intersects the horizontal axis), the durability can be improved several to several tens of times.
使用後(即ち、寿命後)の陰極部材()\フニウム11
f)の8打1深さをそれぞれPl、P2、P3で比較し
たところ、Plに対しP2とP3とは1.2〜1.3倍
の深さとなっていた(このことは単純計算によっても2
0〜30%の寿命向上を意味する。Cathode member ()\Funium 11 after use (i.e. after life)
When we compared the depth of 8 strokes in f) with Pl, P2, and P3, we found that P2 and P3 were 1.2 to 1.3 times deeper than Pl (this can also be confirmed by simple calculation). 2
This means an improvement in lifespan of 0-30%.
)更に、被加工材7の切断面について述べれば、P2と
P3とはl) 1のそれと比較し、ヘベル角やカーフ幅
の変動が格段に少ない優れた切断精度を得ることができ
た。他の実施例として、磁石材料5を上記第1実施例の
永久磁石から電流によって作られるコイルや電磁石又は
磁石化されたもの等に変えたものでもよい。更に磁石の
配置位置、形状、又は数量を変えるか又は組み合わせた
ものでもよい。) Furthermore, regarding the cut surface of the workpiece 7, P2 and P3 are as follows: 1) Compared to 1), it was possible to obtain excellent cutting accuracy with significantly less variation in hevel angle and kerf width. As another embodiment, the magnet material 5 may be changed from the permanent magnet of the first embodiment to a coil made by electric current, an electromagnet, or a magnetized material. Furthermore, the arrangement position, shape, or quantity of the magnets may be changed or combined.
(発明の効果)
以上説明したように本発明に係わる磁場発生装置付きプ
ラズマトーチは、電極寿命を大幅に増長すると同時によ
り高精度なプラズマ加工を行うことが出来る。(Effects of the Invention) As explained above, the plasma torch equipped with a magnetic field generator according to the present invention can greatly extend the life of the electrode and at the same time perform plasma processing with higher precision.
第1図は本発明に係わる磁石付きプラズマトーチの一実
施例を示す図、第2図(a)はプラズマアーク軸に直角
に交わる平面の磁束強度の分布を示す図、(b)はプラ
ズマアーク柱と磁力線との関係を説明する図、第3図は
上記実施例の効果を示す実験グラフ図、第4図は従来の
代表的プラズマトーチを示す図であって、図(a)はそ
の模式断面を示す図、図(b)は旋回流がなす圧力分布
を示す図、第5図は陰極部材が使用により消耗し破壊に
至る過程を示す図(図(a)→図(b)→図(C))で
ある。
1・・・電極 IA・・・配線
1B・・・ホルダ tC・・・陰極2 ・・動作ガ
ス 2B・・・旋回流3・・・ノズル 3A・
・・ガス導入通路−3B・・・スワラ−30・・・オリ
フィス4A・・・プラズマアーク柱
4B・・・プラズマアーク柱中心線
4C・・・磁力線 5・・・磁石
6・・・絶縁体(スワラ−)
7・・・被加工材Fig. 1 is a diagram showing an embodiment of a plasma torch with a magnet according to the present invention, Fig. 2 (a) is a diagram showing the distribution of magnetic flux intensity in a plane perpendicular to the plasma arc axis, and (b) is a diagram showing the plasma arc FIG. 3 is an experimental graph showing the effect of the above embodiment. FIG. 4 is a diagram showing a typical conventional plasma torch, and FIG. 3(a) is a schematic diagram thereof. A diagram showing a cross section, Figure (b) is a diagram showing the pressure distribution created by swirling flow, and Figure 5 is a diagram showing the process in which the cathode member wears out due to use and leads to destruction (Figure (a) → Figure (b) → Figure (C)). 1... Electrode IA... Wiring 1B... Holder tC... Cathode 2... Working gas 2B... Swirling flow 3... Nozzle 3A.
... Gas introduction passage-3B... Swirler-30... Orifice 4A... Plasma arc column 4B... Plasma arc column center line 4C... Line of magnetic force 5... Magnet 6... Insulator ( Swirler) 7...Work material
Claims (1)
場発生装置の生成する磁場がプラズマトーチの陰極表面
近傍で、この陰極の中心軸に対して軸対称であり、かつ
、この中心軸に直角に交わる平面上で前記中心軸上にお
いて最大の磁場強度を有することを特徴とする磁場発生
装置付きプラズマトーチ。The plasma torch is equipped with a magnetic field generator such as a magnet, and the magnetic field generated by the magnetic field generator is near the cathode surface of the plasma torch, is axially symmetrical to the central axis of the cathode, and is perpendicular to the central axis. A plasma torch equipped with a magnetic field generator, characterized in that the magnetic field strength is maximum on the central axis on the intersecting planes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63133766A JPH01306076A (en) | 1988-05-31 | 1988-05-31 | Plasma torch with magnetic field generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63133766A JPH01306076A (en) | 1988-05-31 | 1988-05-31 | Plasma torch with magnetic field generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01306076A true JPH01306076A (en) | 1989-12-11 |
Family
ID=15112461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63133766A Pending JPH01306076A (en) | 1988-05-31 | 1988-05-31 | Plasma torch with magnetic field generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01306076A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100486939B1 (en) * | 2002-03-26 | 2005-05-03 | 재단법인서울대학교산학협력재단 | Non-Transferred Type Plasma Torch With Step-Shaped Nozzle |
-
1988
- 1988-05-31 JP JP63133766A patent/JPH01306076A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100486939B1 (en) * | 2002-03-26 | 2005-05-03 | 재단법인서울대학교산학협력재단 | Non-Transferred Type Plasma Torch With Step-Shaped Nozzle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7235758B2 (en) | MIG-plasma welding | |
EP0727922B1 (en) | Plasma torch | |
KR101152406B1 (en) | arc plasma torch | |
WO2014104092A1 (en) | Plasma cutting machine and cutting method | |
JPH03151169A (en) | Electrode for plasma operation torch and torch corresponding thereto | |
KR20030077369A (en) | Non-Transferred Type Plasma Torch With Step-Shaped Nozzle | |
EP3550940A1 (en) | Bar nozzle-type plasma torch | |
EP0371128A1 (en) | Cathode structure of a plasma torch | |
US5202544A (en) | Method of machining plate materials with a plasma cutter and plasma torch | |
JPH01306076A (en) | Plasma torch with magnetic field generator | |
BR102013012164A2 (en) | Plasma cutting torch electrode as well as its use | |
US10201068B2 (en) | Method for the plasma cutting of workpieces | |
JPH11314162A (en) | Plasma torch | |
JP7439357B2 (en) | arc evaporation source | |
KR101002082B1 (en) | Electrode for plasma arc torch | |
KR100492068B1 (en) | Inductive plasma chamber for generating wide volume plasma | |
RU2682553C1 (en) | Electrode for arc melting of metals | |
Pandey et al. | An experimental investigation of electrode wear rate (EWR) on EDM of SS-202 using different electrodes | |
Singh et al. | Study on electric discharge machining and scope for new era | |
RU2769869C1 (en) | Device for spatial stabilization of the arc | |
KR101705292B1 (en) | Plasma Beam Condenser for Plasma cutting apparatus) | |
JPH0525200Y2 (en) | ||
JP7289046B2 (en) | Plasma processing apparatus, plasma processing method, and plasma processing method | |
JP5192665B2 (en) | Electrode guide for electrodes for spark erosion of workpieces | |
JPS635882A (en) | Mobile type plasma torch |