JPH01305846A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH01305846A
JPH01305846A JP63135655A JP13565588A JPH01305846A JP H01305846 A JPH01305846 A JP H01305846A JP 63135655 A JP63135655 A JP 63135655A JP 13565588 A JP13565588 A JP 13565588A JP H01305846 A JPH01305846 A JP H01305846A
Authority
JP
Japan
Prior art keywords
oxide superconductor
composition
orientation
starting material
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63135655A
Other languages
Japanese (ja)
Inventor
Shuichi Shibata
修一 柴田
Hisaaki Okazaki
岡崎 久晃
Takeshi Kitagawa
毅 北川
Takao Kimura
隆男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63135655A priority Critical patent/JPH01305846A/en
Priority to EP88905427A priority patent/EP0486686B2/en
Priority to US07/313,965 priority patent/US5294599A/en
Priority to DE3854400T priority patent/DE3854400T3/en
Priority to PCT/JP1988/000585 priority patent/WO1988010233A1/en
Publication of JPH01305846A publication Critical patent/JPH01305846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To increase the critical current density of a lanthanoid-alkaline-earth metal-Cu-O type oxide superconductor by specifying starting material and carrying out producing stages under specified conditions when the oxide superconductor is produced. CONSTITUTION:When an Ln-Ae-Cu-O (Ln is one or more kinds of lanthanoids and Ae is one or more kinds of alkaline earth metals) type oxide superconductor is produced, a fine powdery mixture of Ln, Ae and Cu compds. giving a compsn. consisting of <16.6mol% Ln (e.g., Y), >50mol% Cu and the balance Ae (e.g., Ba) is used as starting material (100mol% total). This starting material is sintered to form a superconducting phase and the sintered body is pulverized. The resulting fine powder is molded by applying pressure from a specified direction, e.g., the direction of c-axis to obtain an oxide superconductor having axes, e.g., c-axes oriented in a certain direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、一定方向にC@をそろえた超伝導酸化物体を
形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a superconducting oxide body in which C@ is aligned in a certain direction.

[従来の技術] 高い臨界温度(Tc)を有する超伝導酸化物材料系とし
てLn−^e−Cu−0系(Lnはランタノイドの少な
くとも1種、八〇はアルカリ土類金属の少なくとも1f
fl)が知られている。
[Prior art] As a superconducting oxide material system having a high critical temperature (Tc), Ln-^e-Cu-0 system (Ln is at least one kind of lanthanide, 80 is at least 1f of alkaline earth metal)
fl) is known.

超伝導体を実用に供するためには、臨界電流密度や臨界
磁場が大きな値をとれることが重要であり、そのために
は、単結晶体であることが最も望ましい。しかし、望む
形状のしかも大形の単結晶を得ることは大変困難であり
、そのため、超伝導を示す結晶相を特定の方向(c 9
4方向)にそろえることが試みられた。
In order to put a superconductor into practical use, it is important that the critical current density and critical magnetic field can take large values, and for this purpose, a single crystal is most desirable. However, it is very difficult to obtain a large single crystal with the desired shape, and therefore it is difficult to obtain a crystal phase that exhibits superconductivity in a specific direction (c 9
Attempts were made to align them in four directions.

例えば、電流はa、b軸方向によりよく流れることが知
られており、C@を一定方向にそろえ、C釉に垂直な方
向に電流を流すことにより臨界電流密度も向上する。1
−2−3組成(YB、12c1430X超伝導相)から
なる微粉体をベレットに作製したとき、C@配向が観察
された例はあるが、C軸配向を実現するための効果的な
方法は報告されていない。
For example, it is known that current flows better in the a- and b-axis directions, and by aligning C@ in a certain direction and flowing current in a direction perpendicular to C glaze, the critical current density can also be improved. 1
-2-3 When fine powder with the composition (YB, 12c1430X superconducting phase) was made into a pellet, there is an example in which C@ orientation was observed, but no effective method to achieve C-axis orientation has been reported. It has not been.

一方、本発明者らは特願昭63−25605号にお5)
て、基板上に膜を形成する場合、Ln−Ba−Cu−0
系において1:2:3組成(YBai[:u、Ox )
からずれ、Cuが比較的多く、Lnが少ない組成を選択
することにより、配向度の優れた膜を形成すること、さ
らに、アルコキシドを出発原料にして、粒径の小さな微
粒子から作製することにより、優れたC軸配向度が実現
できることを明らかにしてきた。
On the other hand, the present inventors have disclosed in Japanese Patent Application No. 63-25605 (5)
When forming a film on a substrate, Ln-Ba-Cu-0
1:2:3 composition (YBai[:u,Ox) in the system
By selecting a composition with a relatively high content of Cu and low content of Ln, a film with an excellent degree of orientation can be formed.Furthermore, by using alkoxide as a starting material and producing fine particles with a small particle size, It has been revealed that an excellent degree of C-axis orientation can be achieved.

[発明が解決しようとする課題] 種々の応用を考える時、膜だけでなくもちろんバルク形
状においても特定方向にC軸配向された超伝導酸化物体
が望ましく配向度もよりすぐれたものが望まれている。
[Problems to be solved by the invention] When considering various applications, it is desirable to have a superconducting oxide whose C-axis is oriented in a specific direction, not only in the film but also in the bulk shape, and one with a better degree of orientation. There is.

本発明は、LローAe−Cu−0系において、強くC軸
配向したバルク状の酸化物超伝導体を実現する方法を提
供することを目的とする。
An object of the present invention is to provide a method for realizing a bulk oxide superconductor with strong C-axis orientation in the L-low Ae-Cu-0 system.

[課題を解決するための手段1 このような目的を達成するため、本発明は、Ln−Ae
−Cu−0系(ただし、Lnはランタノイドの少なくと
も1種、 Aeはアルカリ土類金属の少なくとも1種)
超伝導酸化物体において、Ln、AeおよびCuの化合
物をLn/ (Ln+Ae+Cu) < 16.6モル
%。
[Means for Solving the Problems 1 In order to achieve such an object, the present invention provides Ln-Ae
-Cu-0 system (Ln is at least one kind of lanthanoid, Ae is at least one kind of alkaline earth metal)
In superconducting oxide bodies, the compound of Ln, Ae and Cu is Ln/(Ln+Ae+Cu) < 16.6 mol%.

Cu/ (Ln+Ae+(:u) > 50モル%およ
び残部Aeのそル比で含む微粉体からなる出発原料を焼
結して超伝導相を出現せしめる工程と、焼結した焼結体
を微粉体にする工程と、微粉体に特定の方向から圧力を
加えて形成する工程とを含む。
A process of sintering a starting material consisting of a fine powder containing Cu/(Ln+Ae+(:u) > 50 mol% and the balance Ae in the same ratio as above to make a superconducting phase appear, and sintering the sintered body into a fine powder. and a step of applying pressure to the fine powder from a specific direction to form it.

[作 用] 本発明においては、配向しやすい出発組成を適用するこ
とにより、焼結粉体中には、圧力によって一方向に並び
やすい板状結晶が多く含有されており、その後の圧力成
形によっても優れた配向度をもつバルク状サンプルを得
ることができる。
[Function] In the present invention, by applying a starting composition that is easy to orient, the sintered powder contains many plate-like crystals that are easy to align in one direction due to pressure, and are easily oriented in one direction by pressure forming. It is also possible to obtain bulk samples with an excellent degree of orientation.

第1図にこの様子を模式的・に示す。a、bおよびC軸
(a = 3.818A、 b = 3.888八、 
c = 11.668A)からなるユニットセル1が板
状の結晶2を構成するため、圧力に対してより安定する
方向に並ぶものと考えられる。
Figure 1 schematically shows this situation. a, b and C axes (a = 3.818A, b = 3.888A,
c = 11.668A) constitutes the plate-shaped crystal 2, so it is thought that they are arranged in a direction that is more stable against pressure.

〔実施例] 以下、実施例によって本発明の詳細な説明する。〔Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

ゑ」し吐土 y、o、、 BaCO3,(:uOをY:Ba:Cu−
1:2:3となる組成(1−2−3組成と呼ぶ)  (
Y−16,7モル%、 Ba−33,3モル%、 Cu
−50モル%)と、Y−8モル%、 Ba−30モル%
、 Cu=62モル%からなる組成(配向組成と呼ぶ)
の2種類の組成比に混合し、酸素雰囲気下において95
0℃で5時間予備焼結を行った。これらを粉砕して粉体
を作製し、それぞれX線回折パターンを測定した。
ゑゑゑゑ and deposit y, o, BaCO3, (:uO to Y:Ba:Cu-
A composition with a ratio of 1:2:3 (referred to as a 1-2-3 composition) (
Y-16.7 mol%, Ba-33.3 mol%, Cu
-50 mol%), Y-8 mol%, Ba-30 mol%
, a composition consisting of Cu=62 mol% (referred to as an oriented composition)
95% in an oxygen atmosphere.
Preliminary sintering was performed at 0°C for 5 hours. These were pulverized to produce powders, and the X-ray diffraction patterns of each powder were measured.

第2図に、配向組成および1−2−3組成のX線回折パ
ターンを示す。(OON)のピーク(Nは整数)とその
他のピーク、例えば(110)および(113)ピーク
とを比較するとそのC軸配向の程度がわかる。ピーク比
R= (006) / (110) (113)を求め
ると、配向組成ではR= 1.06.1−2−3組成で
は、R= 0.52となる。
FIG. 2 shows the X-ray diffraction patterns of the oriented composition and the 1-2-3 composition. Comparing the (OON) peak (N is an integer) with other peaks, such as (110) and (113) peaks, reveals the degree of C-axis orientation. When the peak ratio R = (006) / (110) (113) is determined, R = 1.06 for the oriented composition, and R = 0.52 for the 1-2-3 composition.

この2種類の組成粉末(950℃焼結後)を用い、第3
図に示すようにシリンダー3に加え′る圧力を変えてベ
レット4を作製し、X線回折の測定を行った。圧力は第
1図に示したC軸に平行な方向にかけられる。第4図に
、これらのベレットサンプルの配向度((OOa)と(
110) (113)のピーク比で評価した)を成形圧
力に対して示す。曲線Aは配向組成、曲線Bは1−2−
3組成のサンプルのそれぞれのピーク比を示す。配向組
成のサンプルの方がより強く配向することがわかる。
Using these two types of composition powders (after sintering at 950°C), the third
As shown in the figure, pellets 4 were prepared by varying the pressure applied to the cylinder 3, and X-ray diffraction measurements were performed. Pressure is applied in a direction parallel to the C axis shown in FIG. Figure 4 shows the degree of orientation ((OOa) and (
110) (evaluated by the peak ratio of (113)) is shown against molding pressure. Curve A is the orientation composition, curve B is the 1-2-
The peak ratios of samples with three compositions are shown. It can be seen that the sample with the oriented composition is more strongly oriented.

実施例2 Y:Ba:(:uの組成比を変えて圧力によって配向し
やすい組成の探索を行った。焼結条件は、実施例1と同
様に、酸素雰囲気下で950℃とし、圧力は19000
kg/cm2でベレット作製を行った。第5図に結果を
示す。配向組成に匹敵する配向度が得られたものはO印
で、1−2−3 i成程度またはそれ以下の配向度のも
のは・印で三角ダイヤグラム中に示す。0印で示す組成
範囲は、本発明者らが、特願昭63−25605号に示
した膜の場合の配向組成とほぼ一致し、y/ (Y+B
a+Cu) < 16.6モル%、Cu/(Y+Ba+
Cu) > 50モル%となった。
Example 2 By changing the composition ratio of Y: Ba: 19000
A pellet was made at kg/cm2. The results are shown in Figure 5. Those with an orientation degree comparable to the orientation composition are indicated by O, and those with an orientation degree of 1-2-3 i or less are indicated by . in the triangular diagram. The composition range indicated by the 0 mark almost coincides with the orientation composition of the film shown in Japanese Patent Application No. 63-25605 by the present inventors, and is y/(Y+B
a+Cu) < 16.6 mol%, Cu/(Y+Ba+
Cu)>50 mol%.

1履」旦 1−2−3組成および配向組成の2 f!!+類につき
、加圧成形後、再度875℃40時間大気中において焼
結を行い、配向度の変化をX線回折で調べた。第6図に
1−2−3組成サンプルの(ooa) / (110)
 (113)のピーク比の圧力依存性の結果を示す。曲
線Cは加圧成形のみのサンプル、曲線りは加圧成形後、
再度875℃で焼結したサンプルの配向度を示す。特に
再焼結によって配向度が減少することは見られなかった
。配向組成については、図示しないが、同様の傾向が畢
られている。
1-2-3 composition and orientation composition 2 f! ! For the + class, after pressure molding, sintering was performed again in the atmosphere at 875° C. for 40 hours, and changes in the degree of orientation were examined by X-ray diffraction. Figure 6 shows (ooa) / (110) of the 1-2-3 composition sample.
The results of the pressure dependence of the peak ratio of (113) are shown. Curve C is a sample with pressure molding only, the curve is after pressure molding,
The degree of orientation of the sample sintered at 875° C. is shown again. In particular, no decrease in the degree of orientation was observed due to resintering. Regarding the orientation composition, although not shown, a similar tendency is observed.

再焼結を行ったベレット形状サンプルの抵抗の温度特性
を四端子法で測定したところ93にでオンセット(抵抗
か急激に減少を開始する温度)、90にで零抵抗となり
、転移幅3にの値が得られた。
When the temperature characteristics of the resistance of the resintered pellet-shaped sample were measured using the four-probe method, the onset was at 93 (the temperature at which the resistance begins to decrease rapidly), the resistance was zero at 90, and the transition width was 3. The value of was obtained.

本実施例においては、加圧成形後に再焼結を行って固形
体としたが、これは超伝導特性を測定するためである。
In this example, a solid body was obtained by re-sintering after pressure molding, and this was for the purpose of measuring superconducting properties.

λ屋旦ユ 酸化物を形成した時、Cu−60,Ba=30およびy
−i。
When forming λ Yatan oxide, Cu-60, Ba=30 and y
-i.

モル%の割合になるようにGuのアルコキシドCu (
i−OC311,) 、のi−プロパツール溶液、バリ
ウムのアルコキシドBa (n−OC41(g)2%イ
ツトリウムのアルコキシドY (n−OCJ9) s 
、の各n−ブタノール溶液を混合した。
Gu alkoxide Cu (
i-OC311,), i-propertool solution, barium alkoxide Ba (n-OC41 (g) 2% yttrium alkoxide Y (n-OCJ9) s
, n-butanol solutions were mixed.

この混合溶液を20時間還流後、10℃において、超音
波振動を加えながらCu、BaおよびY総モルユに対し
て約5〜20倍の純水を滴下して加え、さらにその後、
加水分解を十分に行わせるため、再度約10時間還流を
行った。この溶液を120−150℃で約2〜3日加熱
して乾燥し、これを酸素7囲気下、 900℃で5時間
焼結した。
After refluxing this mixed solution for 20 hours, at 10°C, while applying ultrasonic vibration, pure water in an amount of about 5 to 20 times the total amount of Cu, Ba, and Y was added dropwise, and then,
Refluxing was performed again for about 10 hours to ensure sufficient hydrolysis. This solution was dried by heating at 120-150°C for about 2-3 days, and then sintered at 900°C for 5 hours under 7 atmospheres of oxygen.

焼結したサンプルを粉砕後、板状のサンプル保持板と加
圧板との間に挟み、加圧板に垂直方向から圧力を加えて
保持板上に粉末を付着させ、X線回折を測定した。その
結果、C@配向の傾向が見られ、R= (006) /
 (110) (113) = 1.55〜4の値が得
られた。これは、通常の市販粉末から作製した配向組成
のサンプルのR値=1.06より、さらに大きな配向度
を示すものである。
After pulverizing the sintered sample, it was sandwiched between a plate-shaped sample holding plate and a pressure plate, pressure was applied to the pressure plate from the vertical direction to adhere the powder onto the holding plate, and X-ray diffraction was measured. As a result, a tendency toward C@ orientation was observed, with R= (006) /
Values of (110) (113) = 1.55 to 4 were obtained. This shows an even greater degree of orientation than the R value of 1.06 for a sample with an oriented composition prepared from a normal commercially available powder.

第7図にこのようにして得られたR=4のサンプルのX
線回折パターンを示す。
Figure 7 shows the X of the sample with R=4 obtained in this way.
The line diffraction pattern is shown.

[発明の効果] 以上説明したように、Cu>50モル%、 Ln< 1
6.6モル%の組成を有るLローAe−Cu−0系(L
nはランタノイド、Aeはアルカリ土類金属)酸化物材
料を焼結して超伝導相を析出せしめ、粉砕し、特定方向
から加圧して形成体を作製することにより、c釉が強く
特定方向にそろった超伏浮体を得ることができる。
[Effect of the invention] As explained above, Cu>50 mol%, Ln<1
L-low Ae-Cu-0 system (L
n is a lanthanoid, Ae is an alkaline earth metal) oxide material is sintered to precipitate a superconducting phase, crushed, and pressurized from a specific direction to create a formed body. You can get a complete super floating body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加圧することによってC@配向することを模式
的に示す原理図、 第2図は配向組成および1’−2−3組成の粉末サンプ
ルのX線回折パターンを示す図、 第3図はC軸配向のための加圧方向を示す図、 第4図は加圧形成サンプルのC軸配向度と加えた圧力の
関係を示す図、 第5図はC軸配向しやすい組成を示す図、第6図は1−
2−3組成サンプルの加圧形成後、および加圧成形−再
焼結後のC@配向度と加えた圧力の関係を示す図、 第7図はアルコキシドを原料にして作製した粉末サンプ
ルのX線回折パターンを示す図である。 特許出願人  日木電信電話株式会社 代理人  弁理士 谷  義 − 圧力 C7申E13百乙匈 を木火人台勺に示1[図第1図 圧力 1\勇δヨ月 〃ツじ7134列 E;#lす、る 力
ロ刀ヨつf旬を力(11βn第3図
Figure 1 is a diagram schematically showing the principle of C@ orientation by applying pressure, Figure 2 is a diagram showing the orientation composition and the X-ray diffraction pattern of a powder sample with a 1'-2-3 composition, Figure 3 Figure 4 is a diagram showing the direction of pressure applied for C-axis orientation, Figure 4 is a diagram showing the relationship between the degree of C-axis orientation of a pressure-formed sample and the applied pressure, and Figure 5 is a diagram showing compositions that tend to have C-axis orientation. , Figure 6 is 1-
2-3 A diagram showing the relationship between C@ orientation degree and applied pressure after pressure forming and after pressure forming and resintering of composition samples. It is a figure showing a line diffraction pattern. Patent Applicant: Japan Telegraph and Telephone Co., Ltd. Agent, Patent Attorney Yoshi Tani - Pressure C7, E13, 1,000 匈 is shown in the 1 [Fig. #lsu、ru Power of power (11βnFigure 3)

Claims (1)

【特許請求の範囲】[Claims] (1)Ln−Ae−Cu−O系(ただし、Lnはランタ
ノイドの少なくとも1種、Aeはアルカリ土類金属の少
なくとも1種)超伝導酸化物体において、 Ln、AeおよびCuの化合物をLn/(Ln+Ae+
Cu)<16.6モル%、Cu/(Ln+Ae+Cu)
>50モル%および残部Aeのモル比で含む微粉体から
なる出発原料を焼結して超伝導相を出現せしめる工程と
、前記焼結した焼結体を微粉体にする工程と、該微粉体
に特定の方向から圧力を加えて形成する工程とを含むこ
とを特徴とする超伝導酸化物体の製造方法。
(1) In the Ln-Ae-Cu-O system (where Ln is at least one kind of lanthanoid and Ae is at least one kind of alkaline earth metal) superconducting oxide, a compound of Ln, Ae, and Cu is formed by combining Ln/( Ln+Ae+
Cu)<16.6 mol%, Cu/(Ln+Ae+Cu)
A step of sintering a starting material consisting of a fine powder containing a molar ratio of >50 mol% and the remainder Ae to make a superconducting phase appear; a step of turning the sintered body into a fine powder; and a step of turning the sintered body into a fine powder; 1. A method for producing a superconducting oxide object, the method comprising: applying pressure from a specific direction to form a superconducting oxide object.
JP63135655A 1987-06-17 1988-06-03 Production of oxide superconductor Pending JPH01305846A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63135655A JPH01305846A (en) 1988-06-03 1988-06-03 Production of oxide superconductor
EP88905427A EP0486686B2 (en) 1987-06-17 1988-06-16 Process for producing oxide superconductors
US07/313,965 US5294599A (en) 1987-06-17 1988-06-16 Processes for preparing oxide powders and superconducting oxides
DE3854400T DE3854400T3 (en) 1987-06-17 1988-06-16 METHOD FOR PRODUCING SUPRAL-CONDUCTING OXYDES.
PCT/JP1988/000585 WO1988010233A1 (en) 1987-06-17 1988-06-16 Process for producing oxide powder and oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63135655A JPH01305846A (en) 1988-06-03 1988-06-03 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01305846A true JPH01305846A (en) 1989-12-11

Family

ID=15156860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63135655A Pending JPH01305846A (en) 1987-06-17 1988-06-03 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01305846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646097A (en) * 1994-12-27 1997-07-08 General Electric Company Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646097A (en) * 1994-12-27 1997-07-08 General Electric Company Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor

Similar Documents

Publication Publication Date Title
JPH01305846A (en) Production of oxide superconductor
JPH0259465A (en) Production of oxide high temperature superconductor
Taguchi et al. Electric properties of ferromagnetic La1− XSrXCoO3 (0.5≦ X≦ 0.9)
JPH01305845A (en) Production of oxide superconductor
Kirschner et al. High-Tc Superconductivity in La-Ba-Cu-O and Y-Ba-Cu-O Compounds
JP2696689B2 (en) Oxide superconducting material
Srinivasan et al. Anomalous behaviour of sound velocity in the high T c superconductor YBa 2 Cu 3 O 7
JPH0244057A (en) Ductile superconductive material
JPH02153822A (en) Oxide superconductor composition
JP2978538B2 (en) Superconducting material with high density crystal structure
JP3257000B2 (en) Copper oxide superconductor and method of manufacturing the same
JP2696691B2 (en) Oxide superconducting material
JP2789118B2 (en) Oxide superconductor and manufacturing method thereof
JP3444930B2 (en) Manufacturing method of oxide superconductor
JP2828213B2 (en) Superconductor and method of manufacturing the same
JPH02252650A (en) Oxide superconductor and preparation thereof
KR0174385B1 (en) Process for preparing the higg temperature superconductor having anisotropy
JP2866484B2 (en) Manufacturing method of oxide superconductor
JP2696690B2 (en) Oxide superconducting material
JPH02208225A (en) Oxide superconductor
JPH01126258A (en) Production of oxide high-temperature superconductive material
Tsudo et al. Superconductivity of Bi Pb Sr Ca Cu O Ag systems
JPH01179719A (en) Oxide superconductor and its production
JPH0477316A (en) Oxide superconductor and its production
JPH01286952A (en) Production of oxide superconductor composition