JPH01305526A - Formation of silicon dioxide film - Google Patents
Formation of silicon dioxide filmInfo
- Publication number
- JPH01305526A JPH01305526A JP13641788A JP13641788A JPH01305526A JP H01305526 A JPH01305526 A JP H01305526A JP 13641788 A JP13641788 A JP 13641788A JP 13641788 A JP13641788 A JP 13641788A JP H01305526 A JPH01305526 A JP H01305526A
- Authority
- JP
- Japan
- Prior art keywords
- silicon dioxide
- dioxide film
- water flow
- aspirator
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 235000012239 silicon dioxide Nutrition 0.000 title claims abstract description 37
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 title description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- 230000001590 oxidative effect Effects 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract 2
- 239000010409 thin film Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 15
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 239000010408 film Substances 0.000 claims 1
- 239000010453 quartz Substances 0.000 abstract description 12
- 238000002791 soaking Methods 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 11
- 235000012431 wafers Nutrition 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- 210000000988 bone and bone Anatomy 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、半導体装置製造に用いる二酸化珪素薄膜形成
工程に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for forming a silicon dioxide thin film used in the manufacture of semiconductor devices.
従来の技術
従来、半導体装置製造工程における半導体ウェハの熱酸
化は、正確に温度制御された清浄な反応管(材質は主と
して石英)に酸化性気体を流し、反応管中に治具によっ
て支持された半導体ウェハを、大気圧または大気圧より
も加圧雰囲気化によって熱酸化することにより、二酸化
珪素薄膜を形成するものであった。Conventional technology Traditionally, thermal oxidation of semiconductor wafers in the semiconductor device manufacturing process involved flowing an oxidizing gas into a clean reaction tube (mainly made of quartz) whose temperature was precisely controlled, and supporting the reaction tube with a jig. A silicon dioxide thin film was formed by thermally oxidizing a semiconductor wafer under atmospheric pressure or a pressurized atmosphere above atmospheric pressure.
発明が解決しようとする課題
従来の熱酸化工程では、大きな酸化速度を得ることがで
きるため、半導体ウェハを処理する能力は大きいが、極
薄の二酸化珪素薄膜を均一に形成することにはかなりの
困難が存在する。特に、半導体ウェハが大口径化するに
つれて困難さは増大する。Problems to be Solved by the Invention Conventional thermal oxidation processes can achieve high oxidation rates and have a great ability to process semiconductor wafers, but it takes considerable effort to uniformly form ultra-thin silicon dioxide thin films. Difficulties exist. In particular, the difficulty increases as the diameter of semiconductor wafers increases.
課題を解決するための手段
本発明は、脱イオン水によって駆動される水流アスピレ
ータを用いる減圧酸化法で二酸化珪素薄膜の形成を達成
した。すなわち、大気圧よりもかなり低い圧力に制御さ
れた雰囲気を脱イオン水駆動の水流アスピレータによっ
て実現し、その雰囲気中て半導体ウェハの熱酸化を行っ
て二酸化珪素薄膜を均一形成する方法である。SUMMARY OF THE INVENTION The present invention accomplishes the formation of silicon dioxide thin films using a vacuum oxidation process using a water jet aspirator driven by deionized water. That is, in this method, an atmosphere controlled to a pressure considerably lower than atmospheric pressure is realized using a water aspirator driven by deionized water, and a semiconductor wafer is thermally oxidized in this atmosphere to uniformly form a silicon dioxide thin film.
作用
大気圧よりも減圧下での半導体ウェハの熱酸化において
は、酸化性気体分圧が極めて低く保たれるため、二酸化
珪素薄膜の成長速度は、従来方法の熱酸化にくらべて、
非常に遅くなる。このことにより、目標とする厚みを有
する二酸化珪素薄膜を再現良く成長させることが可能と
なる。また、反応管内の酸化性気体分圧分布も、従来方
式よりも良くなるため、二酸化珪素薄膜の厚み均一性も
従来方式の熱酸化方法による二酸化珪素薄膜よりもずく
れたものとなる。さらに、本発明では排気装置として、
脱イオン水によって駆動される水流アスピレータを用い
ているため、排気側からの反応管側への汚染は皆無であ
り、極めて清浄な減圧雰囲気での酸化が可能となる。In thermal oxidation of semiconductor wafers at a pressure lower than working atmospheric pressure, the oxidizing gas partial pressure is kept extremely low, so the growth rate of silicon dioxide thin films is faster than that of conventional thermal oxidation methods.
It becomes very slow. This makes it possible to grow a silicon dioxide thin film having a target thickness with good reproducibility. Furthermore, since the oxidizing gas partial pressure distribution within the reaction tube is also better than in the conventional method, the thickness uniformity of the silicon dioxide thin film is also more irregular than in the silicon dioxide thin film produced by the conventional thermal oxidation method. Furthermore, in the present invention, as an exhaust device,
Since a water aspirator driven by deionized water is used, there is no contamination from the exhaust side to the reaction tube side, and oxidation can be performed in an extremely clean reduced pressure atmosphere.
実施例 以下、本発明の一実施例を図面にもとづいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.
図において、1は減圧状態に耐え得る肉厚石英管、2は
石英管1内の温度を正確に制御可能な発熱体である。半
導体ウェハ5は支持台4」二に設置され石英管1内で減
圧熱酸化反応を受ける。石英管]内への酸化性カスは酸
化性ガス導入1」3からなされる。石英管1内の排気は
下部骨は具6に設けられた排気口10からなされる。排
気系は水流アスピレータ16.真空計8.真空度制御用
水流調節器15.脱イオン水導入口12.脱イオン水送
り管13.水流アスピレータ排水管14.排水管7より
成る。In the figure, 1 is a thick-walled quartz tube that can withstand a reduced pressure state, and 2 is a heating element that can accurately control the temperature inside the quartz tube 1. The semiconductor wafer 5 is placed on a support stand 4'' and subjected to a reduced pressure thermal oxidation reaction within the quartz tube 1. The oxidizing scum is introduced into the quartz tube through the oxidizing gas introduction 1''3. The inside of the quartz tube 1 is exhausted from an exhaust port 10 provided in the lower bone tool 6. The exhaust system is a water aspirator 16. Vacuum gauge8. Water flow regulator for vacuum degree control 15. Deionized water inlet 12. Deionized water feed pipe 13. Water aspirator drain pipe 14. It consists of a drain pipe 7.
本装置を用いた、半導体ウェハ」二での二酸化珪素薄膜
形成工程は次のとおりである。The process of forming a silicon dioxide thin film on a semiconductor wafer using this apparatus is as follows.
まず、支持台4」二に半導体ウニ/′X5を設置する。First, the semiconductor urchin/'X5 is installed on the support stand 4''.
支持台4は初期状態では下部骨は具6の位置まで下がっ
ており、下部骨は具6を下方に移動させて支持台4上に
ウェハを設置する。次に、下部骨は具6を上方に移動し
て、図の位置に固定した後、支持台4を上方に押し上げ
、石英管1内均熱部の中央に固定する。半導体ウコーハ
5の設置完了後、水流アスピレータ16による排気操作
に移る。水流アスピレータ16は脱イオン水導入口12
から取り入れられ水流アスピレータ排水管14から排水
される脱イオン水によって駆動され、真空度は真空計8
によって検出された信号によって脱イオン水流を調節す
る真空度制御用水流調節器15により水流アスピレータ
16に送り込む水流を調節することにより一定に保たれ
る。支持台4と下部骨は具6の可動部分には、それぞれ
、Oリング9、Oリング11があって石英管1内の真空
度を保っている。In the initial state of the support table 4, the lower bone is lowered to the position of the tool 6, and the lower bone moves the tool 6 downward to set the wafer on the support table 4. Next, the lower bone moves the tool 6 upward and fixes it at the position shown in the figure, then pushes the support stand 4 upward and fixes it at the center of the soaking section in the quartz tube 1. After the installation of the semiconductor pump 5 is completed, the process moves to an exhaust operation using the water aspirator 16. The water aspirator 16 is a deionized water inlet 12
The vacuum level is determined by the vacuum gauge 8.
The water flow sent to the water aspirator 16 is kept constant by regulating the water flow fed to the water flow aspirator 16 by the water flow regulator 15 for controlling the degree of vacuum, which regulates the flow of deionized water according to the signal detected by the vacuum level controller 15. The movable parts of the support base 4 and the lower bone tool 6 are provided with an O-ring 9 and an O-ring 11, respectively, to maintain the degree of vacuum within the quartz tube 1.
石英管1内の圧力が一定になった後、酸化性カス導入口
3から酸化性ガスが導入され、二酸化珪素薄膜の形成が
開始される。本実施例では、反応温度約1. OO○°
C1石英管1内の反応降圧力20〜5QTorrという
条件下で二酸化珪素薄膜を成長させた。この方法では二
酸化珪素薄膜成長速度を5人/分以下にすることが可能
であり、従来方式の酸化では困難とされていた100A
以下の膜厚の二酸化珪素薄膜を再現性良く生成させるこ
とがてきた。After the pressure inside the quartz tube 1 becomes constant, oxidizing gas is introduced from the oxidizing gas inlet 3, and formation of a silicon dioxide thin film is started. In this example, the reaction temperature was about 1. OO○°
A silicon dioxide thin film was grown under conditions of a reaction drop pressure of 20 to 5 QTorr in the C1 quartz tube 1. With this method, it is possible to reduce the growth rate of silicon dioxide thin film to less than 5 people/min, and it is possible to reduce the growth rate of silicon dioxide thin film to 100A, which was considered difficult with conventional oxidation methods.
We have been able to produce silicon dioxide thin films with the following thicknesses with good reproducibility.
発明の効果
本発明によれば、従来方式の酸化方法では困難とされて
いた極薄の二酸化珪素薄膜を再現性・均一性良(形成す
ることが可能である。Effects of the Invention According to the present invention, it is possible to form an ultra-thin silicon dioxide thin film with good reproducibility and uniformity, which has been considered difficult with conventional oxidation methods.
図は脱イオン水駆動による水流アスピレータを用いた減
圧酸化装置の概略図である。
■・・・・・・石英製反応管、2・・・・・・発熱体、
3・・・・・・酸化性ガス導入口、4・・・・・・ウェ
ハ支持台、5・・・・・・半導体ウェハ、6・・・・・
・下部骨は具、7・・・・・・排気管、8・・・・・・
真空計、9・・・・・・Oリング、10・・・・・・排
気口、11・・・・・・Oリング、12・・・・・・脱
イオン水導入口、13・・・・・・脱イオン水送り管、
14・・・・・・水流アスピレータ排水管、15・・・
・・・真空度制御用水流調節器、16・・・・・・水流
アスピレータ。The figure is a schematic diagram of a reduced pressure oxidation apparatus using a water aspirator driven by deionized water. ■...Quartz reaction tube, 2...Heating element,
3...Oxidizing gas inlet, 4...Wafer support stand, 5...Semiconductor wafer, 6...
・The lower bone is the tool, 7... Exhaust pipe, 8...
Vacuum gauge, 9...O ring, 10...Exhaust port, 11...O ring, 12...Deionized water inlet, 13... ...deionized water feed pipe,
14... Water aspirator drain pipe, 15...
...Water flow regulator for vacuum level control, 16...Water flow aspirator.
Claims (3)
化性雰囲気中で熱酸化することによって二酸化珪素薄膜
を形成することを特徴とする二酸化珪素薄膜の形成方法
。(1) A method for forming a silicon dioxide thin film, which comprises forming a silicon dioxide thin film by thermally oxidizing a semiconductor substrate in an oxidizing atmosphere maintained at a pressure lower than atmospheric pressure.
に水流アスピレータを用いることを特徴とする請求項1
に記載の二酸化珪素薄膜の形成方法。(2) Claim 1, characterized in that a water aspirator is used for exhaust to reduce the pressure inside the thermal oxide film forming apparatus.
The method for forming a silicon dioxide thin film described in .
を用いることを特徴とする請求項2に記載の二酸化珪素
薄膜の形成方法。(3) The method for forming a silicon dioxide thin film according to claim 2, characterized in that deionized water is used to operate the water aspirator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13641788A JPH01305526A (en) | 1988-06-02 | 1988-06-02 | Formation of silicon dioxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13641788A JPH01305526A (en) | 1988-06-02 | 1988-06-02 | Formation of silicon dioxide film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01305526A true JPH01305526A (en) | 1989-12-08 |
Family
ID=15174669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13641788A Pending JPH01305526A (en) | 1988-06-02 | 1988-06-02 | Formation of silicon dioxide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01305526A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693578A (en) * | 1993-09-17 | 1997-12-02 | Fujitsu, Ltd. | Method of forming thin silicon oxide film with high dielectric breakdown and hot carrier resistance |
US6258731B1 (en) | 1998-04-24 | 2001-07-10 | Nec Corporation | Method for fabricating oxide film |
-
1988
- 1988-06-02 JP JP13641788A patent/JPH01305526A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693578A (en) * | 1993-09-17 | 1997-12-02 | Fujitsu, Ltd. | Method of forming thin silicon oxide film with high dielectric breakdown and hot carrier resistance |
US6258731B1 (en) | 1998-04-24 | 2001-07-10 | Nec Corporation | Method for fabricating oxide film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6562720B2 (en) | Apparatus and method for surface finishing a silicon film | |
US20060216941A1 (en) | Method for removing silicon oxide film and processing apparatus | |
KR970052776A (en) | Plasma processing method and plasma processing apparatus | |
KR100996689B1 (en) | Manufacturing method of semiconductor apparatus, film forming method and substrate processing apparatus | |
US6287984B1 (en) | Apparatus and method for manufacturing semiconductor device | |
EP1162652A2 (en) | Semiconductor-manufacturing device | |
JPH01305526A (en) | Formation of silicon dioxide film | |
JPH08172084A (en) | Formation of semiconductor film and device thereof | |
JPH07176490A (en) | Cvd apparatus | |
EP0905288A1 (en) | Process for preparing semiconductor monocrystalline thin film | |
KR100239405B1 (en) | Semiconductor fabricating system | |
JPH065505A (en) | Equipment for treatment before application of photoresist | |
US20010042509A1 (en) | Method and apparatus for controlling the thickness of a gate oxide in a semiconductor manufacturing process | |
JP4453257B2 (en) | Wafer heat treatment method, heat treatment apparatus, and heat treatment boat | |
CN116844939A (en) | Low pressure oxidation process and apparatus for semiconductor workpieces | |
JP3582784B2 (en) | Substrate processing apparatus and substrate processing method | |
JPH0232532A (en) | Gaseous phase growth device | |
JPS5817614A (en) | Vapor phase grown film forming device | |
JPH01103832A (en) | Plasma doping process | |
JPS6272131A (en) | Vapor reaction method and vapor reaction device directly used therefor | |
JPH0834185B2 (en) | Vapor phase growth equipment | |
JPH03266428A (en) | Plasma etching process | |
KR100209746B1 (en) | Sio2 growh apparatus | |
JP2000195812A (en) | Vapor phase doping apparatus and vapor phase doping method | |
JP2868853B2 (en) | Heat treatment equipment |