JPH01305265A - Refrigerating air conditioner - Google Patents

Refrigerating air conditioner

Info

Publication number
JPH01305265A
JPH01305265A JP13256888A JP13256888A JPH01305265A JP H01305265 A JPH01305265 A JP H01305265A JP 13256888 A JP13256888 A JP 13256888A JP 13256888 A JP13256888 A JP 13256888A JP H01305265 A JPH01305265 A JP H01305265A
Authority
JP
Japan
Prior art keywords
difference
temperature
heating degree
degree
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13256888A
Other languages
Japanese (ja)
Inventor
Shigeru Nakayama
茂 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13256888A priority Critical patent/JPH01305265A/en
Publication of JPH01305265A publication Critical patent/JPH01305265A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PURPOSE:To prevent a hunting by calculating a heating degree difference with a heating degree of the difference of a refrigerant gas temperature and a saturation temperature and a target heating degree, and controlling the interval of the opening operations of an expansion valve in response to a variation from that at the time of previous detection. CONSTITUTION:The pressure of refrigerant gas to be sucked into a refrigerating compressor 1 is detected by a pressure sensor 5, and its temperature is detected by a temperature sensor 6. A controller 8 calculates the saturation temperature of the refrigerant with respect to the detection pressure and further heating degree S by the difference between the saturation temperature and the detection temperature, and obtains a heating degree difference D by the difference between the degree S and a target heating degree. Then, a variation DELTAD is calculated by the difference between the difference D and the heating degree difference at the time of previous detection, the interval of the opening operations of an electric expansion valve 4, i.e., the opening operation per unit time is altered in response to the variation DELTAD, and a control system is followed to a varying load. Thus, it can prevent the control system from hunting.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、膨張弁により冷媒の流量制御を行うように
した冷凍空調装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a refrigeration and air conditioning system in which the flow rate of refrigerant is controlled by an expansion valve.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭60−178254号公報に示さ
れた従来の冷凍空調装置のブロック図を示し、図におい
て、■は冷媒ガスを高温、高圧に加熱圧縮する冷媒圧縮
機、2は冷媒圧縮機1からの冷媒ガスを冷却して高圧の
冷媒液に変換する凝縮器、15は凝縮器2からの冷媒液
を減圧する温度式自動膨張弁、3は温度式自動膨張弁1
5からの冷媒液を熱交換して冷媒ガスに変換することに
より、冷却作用を行う蒸発器で、上記冷媒ガスは冷媒圧
縮機1に送られる。16は冷媒圧縮機1に送られる冷媒
ガスの温度を検出して、その温度を冷媒の飽和温度とす
る冷媒圧力を発生させるための感温筒、17は冷媒圧縮
機1に送られる冷媒ガスの圧力を温度式自動膨張弁15
に導くための均圧管である。
FIG. 4 shows a block diagram of a conventional refrigeration and air conditioning system disclosed in, for example, Japanese Patent Application Laid-Open No. 60-178254. A condenser cools the refrigerant gas from the compressor 1 and converts it into a high-pressure refrigerant liquid; 15 is a temperature-type automatic expansion valve that reduces the pressure of the refrigerant liquid from the condenser 2; 3 is a temperature-type automatic expansion valve 1;
The refrigerant gas is sent to the refrigerant compressor 1 by the evaporator which performs a cooling action by heat-exchanging the refrigerant liquid from 5 and converting it into refrigerant gas. 16 is a temperature sensing cylinder for detecting the temperature of the refrigerant gas sent to the refrigerant compressor 1 and generating refrigerant pressure to make the detected temperature the saturation temperature of the refrigerant; 17 is a temperature sensing tube for detecting the temperature of the refrigerant gas sent to the refrigerant compressor 1; Pressure and temperature type automatic expansion valve 15
This is a pressure equalizing pipe to lead to.

次に動作について説明する。冷媒圧縮機1で圧縮された
高温、高圧の冷媒ガスは凝縮器2に送られて凝縮される
ことにより、高圧の冷媒液となり、この冷媒液は温度式
自動膨張弁15により減圧されて蒸発器3に送られる。
Next, the operation will be explained. The high-temperature, high-pressure refrigerant gas compressed by the refrigerant compressor 1 is sent to the condenser 2 and condensed to become a high-pressure refrigerant liquid, and this refrigerant liquid is depressurized by the thermostatic automatic expansion valve 15 and sent to the evaporator Sent to 3.

蒸発器3の熱交換作用により得られる低圧の冷媒ガスは
再び冷媒圧縮機lに送られる。
The low-pressure refrigerant gas obtained by the heat exchange action of the evaporator 3 is sent to the refrigerant compressor 1 again.

上記の動作サイクルにおいて、冷媒流量の制御が主とし
て温度式自動膨張弁15によって、次のように行われて
いる。怒温箇16により検出された冷媒ガスの温度を冷
媒の飽和温度とする圧力をP8.均圧管17により導か
れた冷媒ガスの圧力をPS温度式自動膨張弁15に設定
された静止加熱度設定値を内部スプリング圧に換算した
値をPSとすると、Ps>P+Piのとき、温度式自動
膨張弁15の弁を開き、PS<P+PSのとき、上記弁
を閉じる。冷媒圧縮機1に送られる冷媒ガスの加熱度が
静止加熱度設定値と路間−値を保持し、安定した運転が
行われていれば、PS =P+Pffとなって、温度式
自動膨張弁15の弁開度は一定に保持される。しかしな
がら運転条件によって加熱度が変化するため、上記の関
係式に従って弁開度が変化することになる。即ち、冷媒
ガスの加熱度が静止加熱度設定値より大きくなると弁が
開き、小さくなると弁が閉じる。以上述べたように、温
度式自動膨張弁15の弁開度は、冷媒圧縮機1に送られ
る冷媒ガスの加熱度に応じて連続的に制御され、その弁
開度制御量は3つの圧力PS、PSPSによって決まる
In the above operation cycle, the refrigerant flow rate is controlled mainly by the thermostatic automatic expansion valve 15 as follows. P8. The pressure that makes the temperature of the refrigerant gas detected by the extreme temperature point 16 the saturation temperature of the refrigerant. The pressure of the refrigerant gas guided by the pressure equalization pipe 17 is PS The value obtained by converting the static heating degree setting value set in the temperature type automatic expansion valve 15 into the internal spring pressure is PS. When Ps>P+Pi, the temperature type automatic expansion valve 15 The expansion valve 15 is opened, and when PS<P+PS, the valve is closed. If the heating degree of the refrigerant gas sent to the refrigerant compressor 1 maintains the static heating degree setting value and the road-to-road value and stable operation is performed, PS = P + Pff, and the temperature-type automatic expansion valve 15 The valve opening degree of is kept constant. However, since the heating degree changes depending on the operating conditions, the valve opening degree changes according to the above relational expression. That is, when the heating degree of the refrigerant gas becomes larger than the static heating degree setting value, the valve opens, and when it becomes smaller, the valve closes. As described above, the valve opening degree of the thermostatic automatic expansion valve 15 is continuously controlled according to the degree of heating of the refrigerant gas sent to the refrigerant compressor 1, and the valve opening degree control amount is determined by the three pressures PS. , determined by PSPS.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の冷凍空調装置は以上のよ・うに構成されているの
で、同じ加熱度変化に対して冷媒循環量が多くても少な
くても、温度式自動膨張弁15の弁開度は、加熱度に応
じて直ちに変化するため、低負荷運転時のような冷媒循
環量が少いときは、弁開の操作が早過ぎることになり、
このため冷媒圧縮機1へ送られる冷媒ガスの圧力、加熱
度等が急激に変化してハンチング現象が生じ易い状態と
なり、場合によっては、弁開度が大きくなり過ぎて冷媒
液の逆流が生じるなどの危険性があり、またこのような
ことは、温度式自動膨張弁15の機構、動作上、防ぐこ
とが困難となっているなどの問題点があった。
Conventional refrigeration and air conditioners are configured as described above, so whether the refrigerant circulation amount is large or small for the same change in heating degree, the valve opening degree of the thermostatic automatic expansion valve 15 will change depending on the heating degree. Therefore, when the amount of refrigerant circulating is small, such as during low-load operation, the valve may be opened too quickly.
For this reason, the pressure, heating degree, etc. of the refrigerant gas sent to the refrigerant compressor 1 change rapidly, making it easy for hunting to occur, and in some cases, the valve opening becomes too large, causing a backflow of refrigerant liquid. There is a risk of this happening, and there are other problems such as it is difficult to prevent such a thing due to the mechanism and operation of the thermostatic automatic expansion valve 15.

この発明は上記のような問題点を解消するためになされ
たもので、弁開度の操作問薩を運転負荷に応じて制御す
ることにより、低負荷運転時でも、ハンチングを起すこ
とがなく、また高負荷運転時にも追随性の良い冷凍空調
装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and by controlling the valve opening according to the operating load, hunting does not occur even during low-load operation. Another object of the present invention is to obtain a refrigeration and air conditioning system that has good followability even during high-load operation.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る冷凍空調装置は、冷凍圧縮機1に送られ
る冷媒ガスの圧力、温度を検出手段で検出し、その圧力
に対する冷媒の飽和温度と上記温度との差により加熱度
を求め、この加熱度と目標加熱度とにより加熱度差を求
め、さらにこの加熱度差と前回の加熱度差との差を求め
、この差に応じて膨張弁の弁開度操作間隔を演算制御部
で制御するようにしたものである。
The refrigeration air conditioner according to the present invention detects the pressure and temperature of the refrigerant gas sent to the refrigeration compressor 1 with a detection means, determines the degree of heating from the difference between the saturation temperature of the refrigerant with respect to the pressure and the above temperature, and determines the degree of heating. A heating degree difference is determined from the heating degree and the target heating degree, and a difference between this heating degree difference and the previous heating degree difference is determined, and the valve opening operation interval of the expansion valve is controlled by the calculation control unit according to this difference. This is how it was done.

(作用〕 この発明における冷凍空調装置は、今回の加熱度差と前
回の加熱度差との差に応じて、膨張弁の弁開度操作間隔
が変更されることにより、単位時間当りの弁開度操作量
が変更され、これによって変動する負荷に制御系が追従
する。
(Function) The refrigeration air conditioner according to the present invention changes the valve opening operation interval of the expansion valve according to the difference between the current heating degree difference and the previous heating degree difference, thereby increasing the valve opening per unit time. The manipulated variable is changed, and the control system follows the changing load.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、i、2.3は第4図の同一符号部分と対応
するので説明を省略する。4は第4図の温度式自動膨張
弁15に代わる膨張弁で、この実施例においては電気式
膨張弁が用いられている。5は冷凍圧縮機1に送られる
冷媒ガスの圧力を検出する半導体センサ等から成る検出
手段としての圧力センサ、6゛は上記冷媒ガスの温度を
検出するサーミスタ等から成る検出手段としての温度セ
ンサ、7は冷媒圧縮機1の運転信号を取り出すためのケ
ーブル、8は運転信号、圧力検出信号及び温度検出信号
が加えられると共に、電気式膨張弁4を制御するコント
ロールである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, i, 2.3 correspond to the same reference numerals in FIG. 4, so their explanation will be omitted. Reference numeral 4 designates an expansion valve in place of the thermostatic automatic expansion valve 15 shown in FIG. 4, and an electric expansion valve is used in this embodiment. 5 is a pressure sensor as a detection means consisting of a semiconductor sensor etc. that detects the pressure of the refrigerant gas sent to the refrigeration compressor 1; 6゛ is a temperature sensor as a detection means consisting of a thermistor etc. for detecting the temperature of the refrigerant gas; 7 is a cable for taking out the operating signal of the refrigerant compressor 1; 8 is a control to which the operating signal, pressure detection signal and temperature detection signal are applied, and also controls the electric expansion valve 4.

第2図はコントローラ8の構成を示し、9は冷凍圧縮機
1からの運転信号、圧力センサ5からの圧力検出信号及
び温度センサ6からの温度検出信号が加えられる入力部
、10は入力部9から送られる圧力検出信号及び温度検
出信号をディジタル信号に変換するA/D変換部、11
は上記ディジタル信号及び入力部9から送られる運転信
号を一時記憶すると共に、後述する演算結果を記憶する
記憶部、12は記憶部11に記憶されたデータに基いて
後述する所定の演算を行う演算部、18は電気式膨張弁
4の弁開度操作の間隔を設定する弁開度操作タイマ、1
3は電気式膨張弁4に制御信号を送る出力部、14は入
力部9、A/D変部10、記憶部11、演算部12、弁
開度操作タイマ18及び出力部13等を所定のタイミン
グで所定の動作制御を行う制御部である。そして、この
制御部14、演算部12、記憶部11で演算制御部19
を構成する。
FIG. 2 shows the configuration of the controller 8, where 9 is an input section to which an operating signal from the refrigeration compressor 1, a pressure detection signal from the pressure sensor 5, and a temperature detection signal from the temperature sensor 6 are applied, and 10 is an input section 9. an A/D converter that converts the pressure detection signal and temperature detection signal sent from the 11 into digital signals;
12 is a storage unit that temporarily stores the digital signals and the operating signal sent from the input unit 9 and also stores the calculation results described later; 12 is a calculation unit that performs a predetermined calculation described below based on the data stored in the storage unit 11; 18 is a valve opening operation timer for setting the interval of valve opening operation of the electric expansion valve 4;
3 is an output section that sends a control signal to the electric expansion valve 4; 14 is an input section 9, an A/D conversion section 10, a storage section 11, an arithmetic section 12, a valve opening operation timer 18, an output section 13, etc.; This is a control unit that performs predetermined operation control at timing. The control unit 14, the calculation unit 12, and the storage unit 11 are connected to the calculation control unit 19.
Configure.

次に動作について説明する。Next, the operation will be explained.

冷媒圧縮機1が駆動され、その運転信号がケーブル7を
通じてコントローラ8に加えられると、検出手段として
の圧力センサ5および温度センサ6より圧力検出信号及
び温度検出信号が得られる。
When the refrigerant compressor 1 is driven and its operating signal is applied to the controller 8 through the cable 7, a pressure detection signal and a temperature detection signal are obtained from the pressure sensor 5 and temperature sensor 6 as detection means.

これらの信号は入力部9を通じてA/D変換部10でデ
ィジタル信号に変換されて記憶部11に記憶される。演
算部12は記憶部11に記憶された検出圧力PS及び温
度TSに基いて次の演算を行う。
These signals are passed through the input section 9, converted into digital signals by the A/D conversion section 10, and stored in the storage section 11. The calculation unit 12 performs the following calculation based on the detected pressure PS and temperature TS stored in the storage unit 11.

先ず、圧力PSに対する冷媒の飽和温度T’t’sを算
出し、次に温度TSと飽和温度TSとの差をとることに
より、加熱度5=TS  Tpsを求める。次にこの加
熱度Sと予め設定器(図示せず)により設定されて記憶
部11に記憶されている目標加熱度S0との加熱度差D
=S−3,を求め、これを記憶部11に記憶する。制御
部14はこの記憶された加熱度差りに応じた制御信号を
作り、出力部13を通じて電気式膨張弁4の弁開度をD
=j=0、即ちS中30となるように制御する。これに
よってD>Oのとき弁開度が大きくなり、D<0のとき
弁開度が小さくなり、D中0のとき弁開度はそのままに
保持される。
First, the saturation temperature T't's of the refrigerant with respect to the pressure PS is calculated, and then the difference between the temperature TS and the saturation temperature TS is calculated to determine the degree of heating 5=TS Tps. Next, a heating degree difference D between this heating degree S and a target heating degree S0 set in advance by a setting device (not shown) and stored in the storage unit 11
=S-3, and stores this in the storage unit 11. The control section 14 creates a control signal according to the stored heating degree difference, and changes the valve opening degree of the electric expansion valve 4 to D through the output section 13.
=j=0, that is, 30 in S. As a result, when D>O, the valve opening becomes large, when D<0, the valve opening becomes small, and when D is 0, the valve opening is maintained as it is.

上記の弁開度制御と共に、弁開度操作の時間間隔Tが次
のようにして決められる。前回の弁開度操作が行われた
後、次回の弁開度操作を行う際に、加熱度SがΔSだけ
変化して、加熱度差りがΔDだけ変化した場合について
述べる。前回の弁開度操作の結果である加熱度変化ΔS
が極めて小さくΔ3+Qのとき、即ち、加熱度差りがほ
とんど変化せずD中Oのとき、ID1>>0の場合は、
次回の弁開度操作の間隔Tを短くする。逆にΔSが大き
く、ΔD4−0.IΔDl>>0で、且っDの正又は負
の符号が反転したとき、即ち、S>SoからS<S、へ
又はS<SoからS>S、に変化したときは、次回の弁
開度操作の間隔Tを長くする。
In addition to the above valve opening degree control, the time interval T of valve opening degree manipulation is determined as follows. A case will be described in which the heating degree S changes by ΔS and the heating degree difference changes by ΔD when performing the next valve opening degree operation after the previous valve opening degree operation is performed. Heating degree change ΔS which is the result of the previous valve opening degree operation
When is extremely small and Δ3+Q, that is, when the difference in heating degree hardly changes and is O in D, when ID1>>0,
Shorten the interval T between the next valve opening operations. On the contrary, ΔS is large and ΔD4-0. When IΔDl>>0 and the positive or negative sign of D is reversed, that is, when it changes from S>So to S<S or from S<So to S>S, the next valve opening is Increase the interval T between operation.

また上記以外のとき、即ち、D’FO,lΔD1〉〉O
でDの符号の反転が無いとき、又はΔD中0でIDI>
>0でないときは、弁開度操作の間隔Tは変更しない。
In addition, in cases other than the above, that is, D'FO, lΔD1〉〉O
When there is no reversal of the sign of D, or when ΔD is 0, IDI>
>0, the interval T of valve opening operation is not changed.

このようにして求められた各Tに基いて弁開度操作タイ
マ18がセットされる。なお、上述したΔD中0でID
I>>Oの状態とは、高負荷運転で、ある加熱度差りに
対する電気式膨張弁4の1回の制御量ΔVが固定されて
いる場合に、Tを短くしないとDをOに制御するのが困
難となっている状態である。またDの符号の反転がある
状態とは、低負荷運転で、Tを長くしないとハンチング
が発生するような動作状態である。
The valve opening degree operation timer 18 is set based on each T determined in this way. In addition, ID is 0 in ΔD mentioned above.
The state of I>>O means that in high-load operation, if the control amount ΔV of the electric expansion valve 4 at one time for a certain heating degree difference is fixed, D will be controlled to O unless T is shortened. This is a situation where it is difficult to do so. Further, a state in which the sign of D is reversed is an operating state in which hunting will occur if T is not made long during low-load operation.

第3図は上述した動作を実行するためのコントローラ8
で行われる信号処理のフローチャートを示す。先ず、ス
テップ5T(1)で圧力P3+温度TS等の所定のデー
タの入力を行う。これらのデータは、圧力センサ5、温
度センサ6からの圧力検出信号及び温度検出信号を入力
部9を介してA/D変換部10でディジタル信号に変換
した後、記憶部11に記憶されることにより得られる。
FIG. 3 shows a controller 8 for carrying out the above-mentioned operations.
A flowchart of the signal processing performed in is shown. First, in step 5T(1), predetermined data such as pressure P3+temperature TS are input. These data are stored in the storage unit 11 after the pressure detection signals and temperature detection signals from the pressure sensor 5 and temperature sensor 6 are converted into digital signals by the A/D conversion unit 10 via the input unit 9. It is obtained by

次にステップ5T(2)で冷凍圧縮機1からの運転信号
を待つ。運転信号が来ない間は、ステップ5T(3)で
弁開度操作タイマ18をリセットした後、ステップ5T
(1)に戻り、ステップ5T(1)、5T(2)、5T
(3)。
Next, in step 5T(2), an operation signal from the refrigeration compressor 1 is waited for. While the operation signal is not received, the valve opening operation timer 18 is reset in step 5T(3), and then step 5T
Return to (1) and step 5T (1), 5T (2), 5T
(3).

5T(1)のルーチンが繰り返される。次に運転信号が
入力されると、ステップ5T(4)に進んで、弁開度操
作タイマ18がカウントアツプしたか否かを判断する。
The routine of 5T(1) is repeated. Next, when the operation signal is input, the process proceeds to step 5T(4), where it is determined whether the valve opening degree operation timer 18 has counted up.

弁開度操作タイマ18がカウントアツプしないときは、
ステップ5T(1)に戻り、データ入力及びステップ5
T(2)の運転信号の入力判断のルーチンを繰り返す。
When the valve opening operation timer 18 does not count up,
Return to step 5T(1) and input data and step 5
Repeat the operation signal input determination routine in T(2).

弁開度操作タイマ18がカウントアツプしたときは、ス
テップ5T(5)に進んで加熱度Sを算出し、次いでス
テップ5T(6)で加熱度差りを算出し、さらにステッ
プ5T(7)で、今回の加熱度差りと前回の加熱度差D
Lとの差の変化分ΔDを求める。次にこの求められたΔ
DがΔD中0であるか否かがステップ5T(8)で判断
される。そしてD+Oであれば、ステップS T (9
)でIDI>>Oであるか否かが判断される。IDI>
>0であればステップ5TQO)で、弁開度操作タイマ
18に、前回の弁開度操作間隔Tより短いTをセットす
る。IDI>>Oでないときは、ステップ5TODで、
弁開度操作タイマ18に前回と同じTをセットする。ま
たステップ5T(8)でΔD4−Oでないときは、ステ
ップ5TO2)に進んで、Dの符号が反転されたか否か
を判断する。Dの符号が反転されていれば、ステップ5
TQ3)で弁開度操作タイマ18に前回より長いTをセ
ットする。Dの符号が反転していなければステップ5T
(10で弁開度操作タイマ18に前回と同じTをセット
する。ステップS T (5)からステップ5TQ3)
までの一連の処理は演算部12において行われ、演算結
果は記憶部工1に一時記憶される。最後にステップ5T
Q4)により、記憶部11に記憶されている弁開度操作
間隔Tに応じた制御信号を出力部13を通じて電気式膨
張弁4に送ってその弁開度操作間隔を制御する。以上述
べたステップ5T(1)からステップ5T(14)まで
の動作が、冷凍空調装置の運転中に、弁開度を制御する
周期で何回も繰り返される。
When the valve opening degree operation timer 18 counts up, proceed to step 5T(5) to calculate the heating degree S, then calculate the heating degree difference in step 5T(6), and then proceed to step 5T(7) to calculate the heating degree S. , the current heating degree difference and the previous heating degree difference D
Find the change ΔD in the difference from L. Next, this obtained Δ
It is determined in step 5T(8) whether D is 0 within ΔD. If D+O, step S T (9
), it is determined whether IDI>>O. IDI>
If >0, in step 5TQO), the valve opening operation timer 18 is set to T, which is shorter than the previous valve opening operation interval T. If IDI>>O, in step 5TOD,
Set the valve opening degree operation timer 18 to T, the same as last time. If ΔD4-O is not determined in step 5T(8), the process proceeds to step 5TO2), where it is determined whether the sign of D has been inverted. If the sign of D is inverted, step 5
At TQ3), the valve opening degree operation timer 18 is set to a longer T than the previous time. If the sign of D is not reversed, step 5T
(At step 10, set the valve opening operation timer 18 to the same T as last time. Step ST (5) to step 5TQ3)
The series of processes up to this point are performed in the calculation section 12, and the calculation results are temporarily stored in the storage section 1. Finally step 5T
Q4) sends a control signal corresponding to the valve opening operation interval T stored in the storage section 11 to the electric expansion valve 4 through the output section 13 to control the valve opening operation interval. The operations from step 5T(1) to step 5T(14) described above are repeated many times at the cycle of controlling the valve opening while the refrigeration air conditioner is operating.

なお、上記実施例では温度センサ6にサーミスタを用い
ているが、白金測温抵抗体や熱電対等を用いてもよい。
In the above embodiment, a thermistor is used as the temperature sensor 6, but a platinum resistance thermometer, a thermocouple, or the like may also be used.

〔発明の効果] 以上のように、この発明によれば演算制御部で冷媒圧縮
機に送られる冷媒ガスの圧力、温度に基いて算出される
加熱温度差りと前回に算出された加熱温度差DLとの差
による変化分に応じて、膨張弁の弁開度操作間隔Tを制
御するように構成したので、運転負荷の変動に対して追
従性が良く、特に低負荷運転時には、ハンチングの兆候
を確実に捉えて、ハンチングが発生ずるのを防止するこ
とができ、安定性及び安全性に優れたものが得られる効
果がある。
[Effects of the Invention] As described above, according to the present invention, the heating temperature difference calculated based on the pressure and temperature of the refrigerant gas sent to the refrigerant compressor by the calculation control unit and the previously calculated heating temperature difference Since the valve opening operation interval T of the expansion valve is controlled according to the change due to the difference from DL, it has good followability to fluctuations in operating load, and especially during low-load operation, there is no sign of hunting. It is possible to reliably capture the occurrence of hunting and prevent hunting, which has the effect of providing excellent stability and safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による冷凍空調装置を示す
ブロック図、第2図は同装置におけるコントローラの構
成を示すブロック図、第3図は同装置の動作を示すフロ
ーチャート、第4図は従来の冷凍空調装置を示すブロッ
ク図である。 1は冷媒圧縮機、4は電気式膨張弁、5は圧力センサ(
検出手段)、6は温度センサ(検出手段)、8はコント
ローラ、19は演算制御部。 なお、図中、同一符号は同一、又は相当部分を示す。 1谷某圧、瘉抵゛ 第2: )9:1号j1叶       ・199第3図
FIG. 1 is a block diagram showing a refrigeration air conditioner according to an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of a controller in the device, FIG. 3 is a flowchart showing the operation of the device, and FIG. 4 is a block diagram showing the configuration of a controller in the device. It is a block diagram showing a conventional refrigeration air conditioner. 1 is a refrigerant compressor, 4 is an electric expansion valve, and 5 is a pressure sensor (
6 is a temperature sensor (detection means), 8 is a controller, and 19 is an arithmetic control section. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. 1 Valley certain pressure, resistance ゛ 2nd: ) 9:1 No. j1 leaf ・199 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  膨張弁の弁開度を制御することにより冷媒流量を制御
するようにした冷凍空調装置において、冷媒圧縮機に送
られる冷媒ガスの温度T_Sと圧力P_Sとを検出する
検出手段と、上記圧力P_Sに基いてこの圧力P_Sに
対する冷媒の飽和温度T_P_Sを算出し、この飽和温
度T_P_Sと上記温度T_Sとの差により加熱度Sを
算出し、この加熱度Sと予め設定されている目標加熱度
S_0との差により加熱度差Dを算出し、この加熱度差
Dと前回検出時に得られた加熱差D_Lとの差による変
化分ΔDを算出し、この変化分ΔDに応じて、上記膨張
弁の弁開度操作間隔を制御する演算制御部とを備えたこ
とを特徴とする冷凍空調装置。
In a refrigeration air conditioner that controls a refrigerant flow rate by controlling the opening degree of an expansion valve, a detection means for detecting a temperature T_S and a pressure P_S of refrigerant gas sent to a refrigerant compressor; Based on this, the saturation temperature T_P_S of the refrigerant with respect to this pressure P_S is calculated, the heating degree S is calculated from the difference between this saturation temperature T_P_S and the above temperature T_S, and the heating degree S and the preset target heating degree S_0 are calculated. A heating degree difference D is calculated from the difference, a change amount ΔD due to the difference between this heating degree difference D and the heating difference D_L obtained at the previous detection is calculated, and the valve opening of the expansion valve is calculated according to this change amount ΔD. 1. A refrigeration and air conditioner comprising: a calculation control unit that controls frequency operation intervals.
JP13256888A 1988-06-01 1988-06-01 Refrigerating air conditioner Pending JPH01305265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13256888A JPH01305265A (en) 1988-06-01 1988-06-01 Refrigerating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13256888A JPH01305265A (en) 1988-06-01 1988-06-01 Refrigerating air conditioner

Publications (1)

Publication Number Publication Date
JPH01305265A true JPH01305265A (en) 1989-12-08

Family

ID=15084349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13256888A Pending JPH01305265A (en) 1988-06-01 1988-06-01 Refrigerating air conditioner

Country Status (1)

Country Link
JP (1) JPH01305265A (en)

Similar Documents

Publication Publication Date Title
US5369597A (en) System for controlling heating or cooling capacity in heating or air conditioning systems
JPS588938A (en) Controller for defrosting of outdoor coil for refrigerator
KR960012739B1 (en) Automatic chiller stopping sequence
CN101852523B (en) Superheat degree control method and system for refrigeration circulation system
JPH01305265A (en) Refrigerating air conditioner
JPS63156978A (en) Refrigerating air conditioner
JPH0316581B2 (en)
JPH03267656A (en) Freezer
JP2504997Y2 (en) Air conditioner
JP2637304B2 (en) Multi-room air conditioner
JPH0282045A (en) Control device for air conditioner
JPH031055A (en) Cooling and heating apparatus
JPS611942A (en) Capacity control system of air conditioner
JP2646917B2 (en) Refrigeration equipment
JPH0275858A (en) Refrigerating air conditioner
CN114992816B (en) Control method and device of multi-split air conditioner, air conditioner and readable storage medium
JP2576349B2 (en) Control method of hot water valve for air conditioner
JPH04297771A (en) Refrigerating device
JP2757900B2 (en) Air conditioner
JPS58130925A (en) Controller for temperature of air conditioner
JPS6189455A (en) Flow controller for refrigerant in refrigeration cycle
KR880000935B1 (en) Control device for refrigeration cycle
JPH01119413A (en) Vehicle air-conditioning device
JPS62223571A (en) Method of controlling refrigeration cycle
JPH0486457A (en) Freezer device