JPH01305219A - Liquid fuel combustion device - Google Patents

Liquid fuel combustion device

Info

Publication number
JPH01305219A
JPH01305219A JP63133775A JP13377588A JPH01305219A JP H01305219 A JPH01305219 A JP H01305219A JP 63133775 A JP63133775 A JP 63133775A JP 13377588 A JP13377588 A JP 13377588A JP H01305219 A JPH01305219 A JP H01305219A
Authority
JP
Japan
Prior art keywords
orifice
fuel
bypass nozzle
fuel oil
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63133775A
Other languages
Japanese (ja)
Inventor
Tatsuo Fujimoto
藤本 竜男
Harumi Ando
安藤 治美
Takeshi Takahashi
健 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63133775A priority Critical patent/JPH01305219A/en
Publication of JPH01305219A publication Critical patent/JPH01305219A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/26Fuel nozzles
    • F23N2235/28Spray fuel nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/30Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/06Liquid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/04Heating water

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To vary the combustion rate through a single burner head, by a method wherein, through regulation of the amount of fuel returned from the bypass nozzle of a liquid fuel combustion device used for a kerosene hot water boiler, the amount of sprayed fuel is varied. CONSTITUTION:Fuel fed to a bypass nozzle 26 from a fuel pump 21 is sprayed by means of the bypass nozzle 26 for combustion. A part of fuel oil is returned to a return flow passage 31 having a solenoid valve 32 and an orifice 33. A control part 34 drives the fuel pump 21, opens and closes the solenoid valve 32 to vary the spray amount, and varies the combustion rate. Since the orifice 33 is molded integrally with a piping connecting member 35 through which an outlet piping part 32A on the downstream side of fuel oil is connected to a piping 31A of the return flow passage 31, mounting of an orifice 33A to the return flow passage 31 is facilitated, resulting in reduction of a cost.

Description

【発明の詳細な説明】 産業上の利用分野 ヒ 本発明は石油温水ポイフなどの熱源して使用される液体
燃料燃焼装置、特に液体燃料燃焼装置に使用されるオリ
フィスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid fuel combustion device used as a heat source for oil hot water boilers, etc., and particularly to an orifice used in the liquid fuel combustion device.

従来の技術 近年、液体燃料燃焼装置には燃焼量を可変する方式が採
用されている。
BACKGROUND OF THE INVENTION In recent years, liquid fuel combustion devices have adopted a method of varying the amount of combustion.

以下従来の上記液体燃料燃焼装置を図面に基づいて説明
する。第6図は従来の液体燃料燃焼装置の構成図である
。オイルタンク(図示せず)から供給される燃料油aは
オイルストレーナ1を通り燃料ポンプ2によって加圧さ
れ、一方の送り流路3Aを通り、ノズルホルダ4Aに固
定され九ノズA’5Aに送られ、また燃料ポンプ2から
他方の送り流路3Bを通り電磁弁6を介してノズルホル
ダ4Bに固定されたノズ/l15Bに送られる。これら
の燃料油aはノズ/’5A、5Bから噴霧され、高圧プ
ラグ(図示せず)などの点火器により点火され、モータ
7とファン8からなる送風機9により、ノズ1v5A、
5Bが配設されたバーナヘッドIOA、IOBに送られ
てくる空’jKbと混合され、バーナヘッド10A、1
0Bの前面で燃焼する。制御部11は燃料ポンプ2.送
風機9のモータ7および電磁弁6を制御しており、電磁
弁6を開閉することによってノズIv5Bに供給される
燃料油aをしゃ断あるいは開放し、噴′4g量を可変さ
せて燃焼量を可変している。
The conventional liquid fuel combustion apparatus will be explained below based on the drawings. FIG. 6 is a block diagram of a conventional liquid fuel combustion device. Fuel oil a supplied from an oil tank (not shown) passes through an oil strainer 1, is pressurized by a fuel pump 2, passes through one feed channel 3A, is fixed to a nozzle holder 4A, and is sent to the nine nozzles A'5A. The fuel is also sent from the fuel pump 2 through the other sending channel 3B to the nozzle 115B fixed to the nozzle holder 4B via the solenoid valve 6. These fuel oils a are sprayed from nozzles 1v5A, 5B, ignited by an igniter such as a high-pressure plug (not shown), and driven by a blower 9 consisting of a motor 7 and a fan 8 to nozzles 1v5A, 5B.
5B is mixed with the empty 'jKb sent to the burner heads IOA and IOB where burner heads 10A and 1 are installed.
Burns in front of 0B. The control unit 11 controls the fuel pump 2. The motor 7 and solenoid valve 6 of the blower 9 are controlled, and by opening and closing the solenoid valve 6, the fuel oil a supplied to the nozzle Iv5B is cut off or released, and the amount of combustion is varied by varying the amount of injection '4g. are doing.

発明が解決しようとする課題 しかし従来の構成では、2木のノズ/115A、5Bを
設け、ノズ/L’5A、5Bのそれぞれにバーナヘッド
10A。
Problems to be Solved by the Invention However, in the conventional configuration, two nozzles /115A and 5B are provided, and a burner head 10A is provided for each of the nozzles /L'5A and 5B.

10Bを設けており、燃焼量をさらに細く制御しようと
すれば多数のバーナヘッドが必要となるtめ、バーナの
構成が複雑となり、バーナを熱交換器に取付ける部分の
構成が複雑になるという問題があつ几。ま几、燃料ポン
プ2の圧力はノス1v5A、5Bを2木とも使用する場
合と1本だけ使用する場合では異なり、さらにバーナヘ
ッド10A、10Bを1本だけ使用している場合と2木
とも使用している場合では、互いの火炎の影響や燃焼し
ていないバーナヘッド10A、10Bから吹き出す空気
流のe[が異なる几めに、バーナの燃焼性能が変化する
という問題や、温度変化により空燃比が変化しバーナの
燃焼性能が悪化するという問題があつfc。
10B, and if you try to control the combustion amount even more finely, you will need a large number of burner heads, so the structure of the burner becomes complicated, and the structure of the part where the burner is attached to the heat exchanger becomes complicated. It's hot. The pressure of the fuel pump 2 differs depending on whether both NOS 1v5A and 5B are used and when only one is used, and furthermore, the pressure of the fuel pump 2 is different when using only one burner head 10A and 10B and when both are used. In the case where the combustion performance of the burner changes due to the influence of each other's flames and the different e[ of the air flows blown out from the burner heads 10A and 10B that are not burning, there is a problem that the combustion performance of the burner changes, and the air-fuel ratio changes due to temperature changes. There is a problem that the combustion performance of the burner deteriorates due to changes in fc.

本発明は上記問題を解決するものであり、バーナヘッド
の数を減らしてバーナの構成を簡単にで課題を解決する
定めの手段 上記問題を解決する九め本発明は、燃料油全噴霧するバ
イパスノズ〜と、前記バイパスノズyに燃料油全加圧し
て供給する燃料ポンプと、前記バイパスノズルの戻り口
から前記燃料ポンプの入口側に燃料油を戻す流路中に直
列接続された電磁弁とオリフィスとを設けて構成し、前
記オリフィスを配管接続部材の先端に一体に形成したも
のである。また、本考案は、前記オリフィスを薄板とし
、戻し流路方向、@後に2分割し定配管接続部材間に挟
み込んで一体的に固定したものである。さらに本考案は
、内径を先端に向って先細りとし、先端部に前記オリフ
ィスを形成しtオリフィス成形部材を、戻し流路方向面
後に2分割しt配管接続部材間に挟み込んで一体的に固
定しtものである。
The present invention solves the above-mentioned problems, and provides a defined means for solving the problems by reducing the number of burner heads and simplifying the burner configuration. ~, a fuel pump that supplies fully pressurized fuel oil to the bypass nozzle y, and a solenoid valve and an orifice connected in series in a flow path that returns the fuel oil from the return port of the bypass nozzle to the inlet side of the fuel pump. The orifice is integrally formed at the tip of the piping connection member. Further, in the present invention, the orifice is made of a thin plate, divided into two parts in the direction of the return flow path and at the rear, and is sandwiched between fixed pipe connecting members and fixed integrally. Furthermore, in the present invention, the inner diameter is tapered toward the tip, the orifice is formed at the tip, and the orifice molded member is divided into two parts in the direction of the return flow path, and is sandwiched between the piping connection members and fixed integrally. It's a thing.

作用 上記構成により、燃料ポンプから加圧して供給され之燃
料油はバイパスノズルから噴霧され、燃料油の一部はバ
イパスノズルの戻り口を通り、戻り流路を通って燃料ポ
ンプの入口側に戻される。
Operation With the above configuration, the fuel oil supplied under pressure from the fuel pump is sprayed from the bypass nozzle, and a portion of the fuel oil passes through the return port of the bypass nozzle and returns to the inlet side of the fuel pump through the return flow path. It will be done.

そこで、燃料ポンプを駆動し、戻り流路中にオリフィス
とともに設けている電磁弁を開閉し、戻り油量を加減し
てバイパスノズルから噴霧される燃料油の噴霧量を可変
し、燃焼量全調整できる。このとき、ノズμが1台で済
むため、バーナヘッドも1台で済み、バーナおよびバー
ナを熱交換器に取付ける部分の構成が簡単となり、かつ
ノズルおよびバーナヘッドがそれぞれ複数の場合と比較
して、燃料ポンプの圧力が安定し、バーナ間の火炎や空
気流の影響がなくなる友め、バーナの燃焼性能が安定す
る。さらに、オリフィスを配管接続部材の先端に一体に
形成することにより、オリフィスを流路中に藺単に取付
けることができ、さらに液体燃料燃焼装fitを構成す
る部品点数を減らすことが可能となり、コストダウンを
計ることができる。また、オリフィスあるいはオリフイ
スヲ先端に形成した成形部材全2分割し定配管接続部材
に挟み込むことにより、オリフィスの組み込みが容易と
なり、かつ径および厚さの異なるオリフィスに対する互
換性もよくなる。さらに厚さの厚いオリフィスを取付け
ることによって、オリフィスを通過する燃料油量を温度
変化に応じて変化させることが可能となり、温度変化に
より変動する空気量に対応して燃料油の噴霧t′(il
−自動的に可変でき、常に最適の空燃比を維持できて、
燃焼性能を高めることができる。
Therefore, by driving the fuel pump and opening and closing the solenoid valve installed in the return flow path together with the orifice, the amount of fuel oil sprayed from the bypass nozzle is varied by adjusting the amount of return oil, and the total amount of combustion is adjusted. can. At this time, since only one nozzle μ is required, only one burner head is required, which simplifies the configuration of the burner and the part that attaches the burner to the heat exchanger, and compared to the case where there are multiple nozzles and multiple burner heads. This stabilizes the fuel pump pressure and eliminates the effects of flame and air flow between the burners, resulting in stable burner combustion performance. Furthermore, by integrally forming the orifice at the tip of the pipe connection member, the orifice can be easily installed in the flow path, and the number of parts that make up the liquid fuel combustion system can be reduced, reducing costs. can be measured. Furthermore, by dividing the orifice or the molded member formed at the tip of the orifice into two parts and sandwiching them between fixed pipe connecting members, the orifice can be easily assembled and the compatibility with orifices of different diameters and thicknesses is improved. Furthermore, by installing a thicker orifice, it is possible to change the amount of fuel oil passing through the orifice according to temperature changes, and the fuel oil spray t'(il
- Automatically variable and always maintains the optimum air-fuel ratio,
Combustion performance can be improved.

実施例 以下本発明の一実施例を図面に基づいて説明する。Example An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示す液体燃料燃焼装置の構
成図である。第1図において、21はオイルタンク(図
示せず)からオイμレベラ22を介し、油の供給路23
を通って送られてくる燃料油Cを加圧して送り流路24
を通してノズルホルダ25に固定されたバイパスノズ/
L/26に供給する燃料ポンプであり、燃料ポンプ21
からパイバスノズ1v26に送られてきた燃料油Cはバ
イパスノズ/L’26にて噴霧され、高圧プラグ(図示
せず)などの点火器によって点火され、バイパスノズ/
I/26が配設され九バーナヘッドIにモータ28とフ
ァン29からなる送風機30から送られてくる燃焼用の
空Xdと混合され、バーナヘッドnの前面で燃焼される
。また、パイバスノズ1v26に送られてき友燃料油C
の一部は、パイバスノズ/v26の戻し口から燃料ポン
プ21の入口側のオイμレペラ221C戻す戻り流路3
1に戻される。戻り流路31中には直列接続され几電磁
弁32とオリフィス33が設けられている。そして制御
部34は、燃料ポンプ21を駆動し、電磁弁32を開閉
してバイパスノズ/L/26から噴霧される燃料油Cの
噴霧量を可変し、噴霧量にあわせて送風機30のモータ
281r−制御して空気量を可変し、燃焼′jkを可変
している。
FIG. 1 is a block diagram of a liquid fuel combustion apparatus showing an embodiment of the present invention. In FIG. 1, reference numeral 21 indicates an oil supply path 23 from an oil tank (not shown) through an oil μ leveler 22.
The fuel oil C sent through the feed channel 24 is pressurized.
Bypass nozzle fixed to nozzle holder 25 through
It is a fuel pump that supplies fuel to L/26, and fuel pump 21
The fuel oil C sent to the bypass nozzle 1v26 is atomized at the bypass nozzle/L'26, ignited by an igniter such as a high-pressure plug (not shown), and then
I/26 is installed, and the air is mixed with combustion air Xd sent from a blower 30 consisting of a motor 28 and a fan 29 to the nine burner heads I, and is combusted in front of the burner head n. Also, friend fuel oil C sent to Pybus Nozzle 1v26
A part of the return passage 3 returns the oil μ repeller 221C from the return port of the pibus nozzle/v26 to the inlet side of the fuel pump 21.
It is returned to 1. A solenoid valve 32 and an orifice 33 are provided in the return flow path 31 and are connected in series. Then, the control unit 34 drives the fuel pump 21, opens and closes the solenoid valve 32 to vary the spray amount of fuel oil C sprayed from the bypass nozzle/L/26, and controls the motor 281r- of the blower 30 according to the spray amount. The amount of air is controlled to vary, and the combustion 'jk is varied.

このように、バイパスノズ/L/26およびバーナヘッ
ド27f:それぞれ1台で燃焼量を制御できるため、バ
ーナの構成およびバーナを熱交換器に取付ける部分の構
成を簡単にすることができ、さらにノズμとバーナヘッ
ドが複数の場合と比較して互いの火炎の影響や全気流の
影響がなく、燃料ポンプ21の圧力が安定している定め
、バーナの燃焼性能を安定させることができる。
In this way, since the combustion amount can be controlled with one bypass nozzle/L/26 and one burner head 27f, the configuration of the burner and the configuration of the part where the burner is attached to the heat exchanger can be simplified. Compared to the case where there are a plurality of burner heads, there is no influence of each other's flames or influence of the total airflow, and the pressure of the fuel pump 21 is stabilized, making it possible to stabilize the combustion performance of the burner.

第2図にオリフィス33を先端に設けた配管接続部材の
断面図を示す。第2図に示す配管接続部材35は、電磁
弁32の燃料油下流側の出口配管部32Aと戻り流路3
1の配管31At−接続する配管部材であり、電磁弁3
2の接続部36にフィルタ37を設け、戻り流路31の
接続部38ヲテーバ状として、先端にオリフィスdi 
、有効厚さtlのオリフィス33Aを設ケている。
FIG. 2 shows a sectional view of a pipe connecting member provided with an orifice 33 at its tip. The piping connection member 35 shown in FIG.
1 piping 31At - is a piping member to be connected to the solenoid valve 3
A filter 37 is provided at the connecting portion 36 of the return flow path 31, and the connecting portion 38 of the return flow path 31 is shaped like a bar, with an orifice di at the tip.
, an orifice 33A having an effective thickness tl is provided.

このように、配管接続部#j35にオリフィス33Aを
一体に形成することにより、オリフィス33Aの戻り流
路31への取付けはきわめて容易となり、かつ、液体燃
料燃焼装置の構成部品を減少でき、コストダウン全針る
ことができる。またオリフィス33Aのオリフィス径d
lf変えることによりオリフィス33A ’e通る燃料
油Cの戻り流量を変えることができ、バイパスノズ、/
1/26からの燃料油Cの噴霧量を可変することができ
る。
In this way, by integrally forming the orifice 33A in the piping connection #j35, it becomes extremely easy to attach the orifice 33A to the return passage 31, and the number of components of the liquid fuel combustion device can be reduced, resulting in cost reduction. All needles can be used. Also, orifice diameter d of orifice 33A
By changing lf, the return flow rate of fuel oil C passing through the orifice 33A'e can be changed, and the bypass nozzle, /
The amount of fuel oil C sprayed from 1/26 can be varied.

第3図にオリフィス33ヲ内部に設けた配管接続部材の
断面図を示す。第3図に示す配管接続部材39は、第2
図に示す配管接続部材35と同様に、電磁弁32の出口
配管部32Aと戻り流路31の配管31Aを接続する配
管部材であり、戻り経路方向前後に2分割されたフイ〃
り40および電磁弁32の接続部41を有する上流側部
材42と、戻り流路31の接続部43を有する下流側部
材44からなり、その間に薄板のオリフィス径市、有効
厚さtlのオリフィス33Bを挟み込み、0リング6で
シー!して構成されている。
FIG. 3 shows a sectional view of a pipe connecting member provided inside the orifice 33. The piping connection member 39 shown in FIG.
Similar to the piping connection member 35 shown in the figure, it is a piping member that connects the outlet piping part 32A of the solenoid valve 32 and the piping 31A of the return flow path 31, and is a piping member that is divided into two parts in the front and back in the return path direction.
It consists of an upstream member 42 having a connecting portion 41 for the return passage 40 and the solenoid valve 32, and a downstream member 44 having a connecting portion 43 for the return passage 31, and between them there is a thin plate orifice diameter and an orifice 33B having an effective thickness tl. Insert it and hit 0 ring 6! It is configured as follows.

このような構成により、オリフィス33Bを容易に取替
えることができ、しかも、オリフィス33Bのオリフィ
ス径d、を変えることによって、オリフィス33Bを通
る燃料Cの戻り流−!kを変えることができ、トクイパ
スノズ/L’26から噴霧される燃料油Cの噴霧量を変
えることができる。
With such a configuration, the orifice 33B can be easily replaced, and by changing the orifice diameter d of the orifice 33B, the return flow of the fuel C passing through the orifice 33B can be improved. k can be changed, and the amount of fuel oil C sprayed from the Tokui Pass nozzle/L'26 can be changed.

また、第5図(aJに示すように、送風機30のモータ
280回転数が一定であっても、バーナヘッド27に供
給される空気量e(2点鎖線で示す)は温度が上昇する
と減少する。しかし、電磁弁32が開のときの低噴W量
f(実線で示す)は温度が上昇してもほとんど一定であ
り、空燃比が悪化して燃焼性能が悪くなるため、理想的
な噴霧量g(破線マ示す)1r:得るように燃料油Cの
噴霧量、すなわちオリフィス338 ft通過する燃料
油Cの流量を変化させる必要がある。温度変化に応じて
オリフィス33B ft:通過する燃料油Cの流fを変
化させるには。
Furthermore, as shown in FIG. 5 (aJ), even if the motor 280 rotation speed of the blower 30 is constant, the amount of air e (indicated by the two-dot chain line) supplied to the burner head 27 decreases as the temperature rises. However, the low injection W amount f (indicated by the solid line) when the solenoid valve 32 is open is almost constant even when the temperature rises, and the air-fuel ratio deteriorates and combustion performance worsens, so the ideal spray It is necessary to change the spray amount of fuel oil C, that is, the flow rate of fuel oil C passing through the orifice 338 ft, so as to obtain the amount g (shown by the broken line) 1r. To change the flow f of C.

燃料ポンプ21の回転数を変化させるか、あるいはオリ
フィス33Bの有効厚さtxを厚くするとよい。
It is preferable to change the rotation speed of the fuel pump 21 or to increase the effective thickness tx of the orifice 33B.

オリフィス33Bの有効厚さt!を厚くすると燃料油C
の動粘性の影Wを受けるようになり、温度が上昇すると
動粘性が下がり、オリフィス33Bを通る燃料油Cの流
量は多くなり、したがって温度の上昇により噴miを下
げることができる。
Effective thickness t of orifice 33B! If it becomes thicker, fuel oil C
When the temperature rises, the kinematic viscosity decreases, and the flow rate of the fuel oil C passing through the orifice 33B increases, so that the injection mi can be lowered by the rise in temperature.

第5図fb)に、電磁弁32ヲ閉とし、制御部34で温
度変化に応じて燃料ポンプ21の回転数を減らしtとき
の高噴霧量りを2点m線で示し、電磁弁32を開とし、
燃料油Cの動粘性の影#を受けにくい、有効厚さt!の
薄いオリフィス33B ’fr使用したときの低噴霧量
31に実線で、有効厚さiの厚いオリフィス33Bを使
用したときの低噴霧量j++を破線で示す。
In Fig. 5 fb), the solenoid valve 32 is closed, the rotation speed of the fuel pump 21 is reduced by the control unit 34 according to the temperature change, and the high spray amount at time t is shown by the two-point m line, and the solenoid valve 32 is opened. year,
Effective thickness t that is less affected by the kinematic viscosity of fuel oil C! The solid line indicates the low spray amount 31 when using the thin orifice 33B'fr, and the broken line indicates the low spray amount j++ when using the thick orifice 33B with effective thickness i.

このように有効厚さtxの異なるオリフィス33Bを取
替えることにより、特に有効厚さtxの厚いオリフィス
33Bに取替えることによって、温度変化による空気量
Cの変化に応じた理想的な噴霧量gを得ることができ、
温度変化があっても優れた空燃比で燃焼を行うことがで
き、燃焼性能を高めることができる。
By replacing the orifices 33B with different effective thicknesses tx in this way, especially by replacing with a thicker orifice 33B having an effective thickness tx, it is possible to obtain an ideal spray amount g in response to changes in the air amount C due to temperature changes. is possible,
Even if there are temperature changes, combustion can be performed at an excellent air-fuel ratio, improving combustion performance.

なお、第3図に示した薄板のオリフィス33Bの代りに
、第4図に示す、内径全先端に向って先細りとし、先端
部にオリフィス径ds、有効厚さ【3のオリフィス33
C1−形成し几オリフィス成形部材46を戻り流路方向
前後に2分割した配管接続部材に挟み込むようにしても
よい。
Note that instead of the thin plate orifice 33B shown in FIG. 3, an orifice 33 with an orifice diameter ds and an effective thickness [3] shown in FIG.
The orifice forming member 46 may be sandwiched between pipe connecting members divided into two parts in the front and rear directions of the return flow path.

また、第1図に示す木実施例では、バイパス、lズtv
26の先端から吸込まれ、戻り流路31全通ってくる空
気を大気中に放出させるためオイルレベラ22を使用し
ているが、オイルレベラ22の代りに戻シ流路31の途
中に自動空気抜き装置を設けてもよい。まt送風機30
からの空気量の制御をモータ28の回転数?制御するこ
とで行っているが、ダンパ全空気dの通路に設けてダン
パ開度を可変させることによっても行うことができる。
In addition, in the tree embodiment shown in FIG.
An oil leveler 22 is used to release the air that is sucked in from the tip of the oil filter 26 and passes through the entire return flow path 31 into the atmosphere, but instead of the oil leveler 22, an automatic air venting device is provided in the middle of the return flow path 31. You can. Blower 30
Control the amount of air from the rotation speed of the motor 28? Although this is done by controlling, it can also be done by providing a damper in the passage of all the air d and varying the damper opening degree.

発明の効果 以上のように本発明によれば、バイパスノズルの戻し口
から戻される燃料油の流量を電磁弁の開閉によって制御
することにより、バイパスノズルから噴霧される燃料油
の噴霧量を制御することができ、この噴霧量によって燃
焼量を制御することができる。さらに、バイパスノズル
は1台でWt h”2される九め、バーナヘッドは一台
で済み、バーナの構成およびバーナを熱交換器に取付け
る構成を節単にすることができ、またノズ〜およびバー
ナヘッドがそれぞれ2台以上の場合と比較して互いの火
炎の影響や空気流の影響がなく、燃料ポンプの圧力が安
定するためバーナの燃焼性能を安定させることができる
。3また、オリフィスを配管接続部材の先端に一体に形
成することによって、液体燃料燃焼袋eを構成する部品
点数fc削減することができ、コストダウンを計る仁と
ができる。さらに、オリフィスあるいはオリフィス金先
端に形成した成形部材を2分割された配管接続部材に挟
み込むようにしたことによって、径および厚さの異なる
オリフィスに対する互換性をよくすることができる。嘔
らに、Lllさの厚いオリフィス″f:取付け、温度変
化による。バーナヘッドに供給される空気量の変化に対
応して、オリフィス金通過する燃料油量t−温度変化に
応じて変化させることにより。
Effects of the Invention As described above, according to the present invention, the amount of fuel oil sprayed from the bypass nozzle is controlled by controlling the flow rate of the fuel oil returned from the return port of the bypass nozzle by opening and closing the solenoid valve. The combustion amount can be controlled by this spray amount. Furthermore, one bypass nozzle requires Wt h"2, and only one burner head is required, which simplifies the configuration of the burner and the configuration for attaching the burner to the heat exchanger. Compared to a case where there are two or more heads, there is no influence of flame or air flow from each other, and the pressure of the fuel pump is stabilized, making it possible to stabilize the combustion performance of the burner.3. By integrally forming the connecting member at the tip, it is possible to reduce the number of parts constituting the liquid fuel combustion bag, thereby reducing costs.Furthermore, the orifice or the molded member formed at the orifice metal tip can be reduced. By sandwiching the orifice between the two divided piping connecting members, it is possible to improve compatibility with orifices of different diameters and thicknesses. . In response to changes in the amount of air supplied to the burner head, the amount of fuel oil passing through the orifice (t) is varied in response to changes in temperature.

温度変化による空気量の変化に応じてバイパスノズルか
ら噴霧される燃料油の噴霧量を変化させることができ、
温度変化があっても最適な?燃比で燃焼でき、燃焼性能
を高めることができる。
The amount of fuel oil sprayed from the bypass nozzle can be changed in response to changes in the amount of air due to temperature changes,
Is it optimal even with temperature changes? It can burn at the same fuel ratio and improve combustion performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す液体燃料燃焼装置の構
成図、第2図および第3図はそれぞれ同液体燃料燃焼装
置のオリフィスを設けた配管接続部材の断面図、第4図
は同液体燃料燃焼装置のオリフィスを設け、配管接続部
材に挟み込み可能な部品の断面図、第5E9(atおよ
びfblはそれぞれ同液体燃料燃焼装置の温度変化によ
る空気量と燃料油噴霧量の特性図、第6図は従来の液体
燃料燃焼装置の構成図である。 21・・・燃料ポンプ%26・・・バイパスノズル、3
1・・・戻り流路、32・・・電磁弁、33.33A、
33B、33C・・・オリフィス%35.39・・・配
管接続部材、4G・・・オリフィス成形部材、C・・・
燃料油、dl* dx +dx・・・オリフィス径、b
 *b l ts・・・(オリフィスの)有効厚さ。 代理人   森  木  義  弘 第1図 21  丈2に441丁?〉フ’      32  
電石a押26  ハ゛イハ0スノヌ・ル   J3−1
+1フィス3t−4すrJ+L、路     c  y
q、i+rm第2図 第3図 j2 ・オリフィス径 tz −一肴女〃/9コ 第4図 第う図 1贋(°C) (I X品/iCOC)
FIG. 1 is a block diagram of a liquid fuel combustion device showing an embodiment of the present invention, FIGS. 2 and 3 are sectional views of a piping connection member provided with an orifice of the same liquid fuel combustion device, and FIG. 5E9 (at and fbl are characteristic diagrams of the air amount and fuel oil spray amount due to temperature changes of the liquid fuel combustion device, respectively; Fig. 6 is a configuration diagram of a conventional liquid fuel combustion device. 21...Fuel pump %26...Bypass nozzle, 3
1... Return flow path, 32... Solenoid valve, 33.33A,
33B, 33C... Orifice % 35.39... Piping connection member, 4G... Orifice molding member, C...
Fuel oil, dl* dx +dx...orifice diameter, b
*b l ts... Effective thickness (of orifice). Agent Yoshihiro Moriki Figure 1 21 441 pieces in length 2? 〉F' 32
Electric stone a push 26 Haiha 0 Sunonuru J3-1
+1 fiss 3t-4srJ+L, road c y
q, i+rm Fig. 2 Fig. 3 j2 ・Orifice diameter tz - 1 piece / 9 pieces Fig. 4 U Fig. 1 False (°C) (I X product/iCOC)

Claims (1)

【特許請求の範囲】 1、燃料油を噴霧するバイパスノズルと、前記バイパス
ノズルに燃料油を加圧して供給する燃料ポンプと、前記
バイパスノズルの戻り口から前記燃料ポンプの入口側に
燃料油を戻す流路中に直列接続された電磁弁とオリフィ
スとを設けて構成し、前記オリフィスを配管接続部材の
先端に一体に形成した液体燃料燃焼装置。 2、燃料油を噴霧するバイパスノズルと、前記バイパス
ノズルに燃料油を加圧して供給する燃料ポンプと、前記
バイパスノズルの戻り口から前記燃料ポンプの入口側に
燃料油を戻す流路中に直列接続された電磁弁とオリフィ
スとを設けて構成し、前記オリフィスを薄板とし、戻し
流路方向前後に2分割した配管接続部材間に挟み込んで
一体的に固定した液体燃料燃焼装置。 3、燃料油を噴霧するバイパスノズルと、前記バイパス
ノズルに燃料油を加圧して供給する燃料ポンプと、前記
バイパスノズルの戻り口から前記燃料ポンプの入口側に
燃料油を戻す流路中に直列接続された電磁弁とオリフィ
スとを設けて構成し、内径を先端に向つて先細りとし、
先端部に前記オリフィスを形成したオリフィス成形部材
を戻し流路方向前後に2分割した配管接続部材間に挟み
込んで一体的に固定した液体燃料燃焼装置。
[Claims] 1. A bypass nozzle that sprays fuel oil, a fuel pump that pressurizes and supplies fuel oil to the bypass nozzle, and supplies fuel oil from the return port of the bypass nozzle to the inlet side of the fuel pump. A liquid fuel combustion device comprising a solenoid valve and an orifice connected in series in a return flow path, the orifice being integrally formed at the tip of a piping connection member. 2. A bypass nozzle that sprays fuel oil, a fuel pump that pressurizes and supplies fuel oil to the bypass nozzle, and a flow path that returns fuel oil from the return port of the bypass nozzle to the inlet side of the fuel pump, which are connected in series. A liquid fuel combustion device comprising a solenoid valve and an orifice connected to each other, the orifice being a thin plate, sandwiched between pipe connecting members divided into two parts in the front and back in the direction of the return flow path, and fixed integrally. 3. A bypass nozzle that sprays fuel oil, a fuel pump that pressurizes and supplies fuel oil to the bypass nozzle, and a flow path that returns fuel oil from the return port of the bypass nozzle to the inlet side of the fuel pump, which are connected in series. Consisting of a connected solenoid valve and orifice, the inner diameter tapers toward the tip,
A liquid fuel combustion device in which an orifice molded member having the orifice formed at its tip is inserted and integrally fixed between piping connecting members divided into two parts in the front and back of the flow path direction.
JP63133775A 1988-05-31 1988-05-31 Liquid fuel combustion device Pending JPH01305219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133775A JPH01305219A (en) 1988-05-31 1988-05-31 Liquid fuel combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133775A JPH01305219A (en) 1988-05-31 1988-05-31 Liquid fuel combustion device

Publications (1)

Publication Number Publication Date
JPH01305219A true JPH01305219A (en) 1989-12-08

Family

ID=15112685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133775A Pending JPH01305219A (en) 1988-05-31 1988-05-31 Liquid fuel combustion device

Country Status (1)

Country Link
JP (1) JPH01305219A (en)

Similar Documents

Publication Publication Date Title
US4340362A (en) Fuel flow means for portable space heaters
JPS5828491B2 (en) Dual fuel injection system for gas turbine engine
US4004414A (en) Combustion chamber for supercharged internal combustion engine
JP2680181B2 (en) Proportional combustion control device
US4517802A (en) Turbocharger combustor method
US5344311A (en) Air atomizing system for oil burners
JPH01305219A (en) Liquid fuel combustion device
CN107883405A (en) The quick startup structure of vaporizer tube combustor, method, small aero
JPS60216121A (en) Oil burner
US5549099A (en) Injection and regulation device for atmospheric gas burners for heating appliance, in particular of the infra-red type
US3416733A (en) Gas burner and fuel igniter for fireplaces
US4358414A (en) Fuel delivery system for combustion devices
CN210980330U (en) Instant heating type heating equipment
RU2083921C1 (en) Rotary burner for liquid fuel
US2990117A (en) Air heater fuel control system
CN215602814U (en) Atomizing device
JP2558061B2 (en) Air atomization burner
CN210511655U (en) Liquid plant fuel combustion system
JPH0715266B2 (en) Fuel injection device for vehicle gas turbine
JPH01305220A (en) Liquid fuel combustion device
EP0023001B1 (en) Liquid fuel burner for generating a blue flame
CA1201373A (en) Blue flame burner for liquid fuels
US1296037A (en) Oil-burner.
JPH0674810U (en) Air volume control structure of pressure spray burner
JPH07293863A (en) Air-fuel ratio proportional controller for gas combustion apparatus