JPH01304022A - Honeycobm-shape filter - Google Patents

Honeycobm-shape filter

Info

Publication number
JPH01304022A
JPH01304022A JP13144688A JP13144688A JPH01304022A JP H01304022 A JPH01304022 A JP H01304022A JP 13144688 A JP13144688 A JP 13144688A JP 13144688 A JP13144688 A JP 13144688A JP H01304022 A JPH01304022 A JP H01304022A
Authority
JP
Japan
Prior art keywords
honeycomb
filter
hole
whiskers
inflow side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13144688A
Other languages
Japanese (ja)
Other versions
JP2675071B2 (en
Inventor
Kiyotaka Tsukada
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP63131446A priority Critical patent/JP2675071B2/en
Publication of JPH01304022A publication Critical patent/JPH01304022A/en
Application granted granted Critical
Publication of JP2675071B2 publication Critical patent/JP2675071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To efficiently collect and remove fine particles contained in exhaust gas, by filling piercing holes opened at the end parts thereof on a gas inflow side with a ceramic fiber in a honeycomb-shape filter wherein the end parts of predetermined piercing holes are sealed. CONSTITUTION:The end parts of the predetermined piercing holes 1a, 1c of a honeycomb structure composed of a porous ceramic material are sealed with seal materials 2, 3. The piercing holes 1c opened at the end parts thereof on a gas inflow side are filled with a ceramic fiber or whisker. As a result, fine particles contained in exhaust gas can be efficiently collected and removed and this filter is reduced in pressure loss in long-term use and can be used stably.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気体中に含まれる微粒子、特に自動車の排ガ
ス中に含まれるカーボンや未反応燃料等の微粒子を捕集
・除去して排ガスを・浄化するためのハニカム状フィル
ターに関する6 [従来の技術及び発明が解決しようとする課題]例えば
第5図、第6図に示すような薄い隔壁ibを介して蜂の
巣状に連なる無数の貫通孔を有するハニカム構造体の一
方の端部に例えば縦横−つおきに封止材2を充填して封
止し、この封止した貫通孔に隣接している貫通孔の他端
部に封止材3を充填して封止した多孔質隔壁からなるセ
ラミック質のハニカム状フィルターは、自動車のディー
ゼルエンジンを初めとして各種燃焼機器の排ガス中に含
まれる微粒子を吸着して浄化する排ガス浄化装置として
知られている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for collecting and removing fine particles contained in gas, particularly fine particles such as carbon and unreacted fuel contained in automobile exhaust gas, thereby reducing exhaust gas.・Regarding a honeycomb-shaped filter for purification 6 [Problems to be solved by the prior art and the invention] For example, as shown in FIG. 5 and FIG. The sealing material 2 is filled and sealed in one end of the honeycomb structure, for example, in every vertical and horizontal direction, and the sealing material 3 is filled in the other end of the through hole adjacent to the sealed through hole. Ceramic honeycomb filters, which are made of porous partition walls filled and sealed, are known as exhaust gas purification devices that adsorb and purify fine particles contained in the exhaust gas of various combustion equipment, including automobile diesel engines. There is.

通常、排ガス中に含まれる微粒子は前記セラミック質ハ
ニカム状フィルターの隔壁表面に捕集・蓄積されるので
、長期に亙って使用すると、目詰まりが生じ圧力損失が
高くなる。従来、かかる欠点を解消する手段として、フ
ィルターの微粒子捕集部、すなわち隔壁にニクロム線ヒ
ーターなどの発熱金属を組合せて通電加熱したり、該捕
集部に加熱空気を供給したり、あるいは燃料や火花放電
を用いて加熱したり、さらには、フィルター自体をヒー
ターとして電極を設けて発熱させるなどして、前記微粒
子を燃焼・除去してフィルターを再生する方法が採られ
ている。また、上記した手段に触媒等を併用して燃焼効
率を高めて再生する手段も行なわれている。
Normally, fine particles contained in exhaust gas are collected and accumulated on the surface of the partition walls of the ceramic honeycomb filter, so when used for a long period of time, clogging occurs and pressure loss increases. Conventionally, as a means to eliminate such drawbacks, the particulate collecting part of the filter, that is, the partition wall, has been combined with a heat-generating metal such as a nichrome wire heater and heated by electricity, heated air is supplied to the particulate collecting part, or fuel or Methods have been adopted to regenerate the filter by heating it using spark discharge, or by providing the filter itself with an electrode as a heater to generate heat, thereby burning and removing the fine particles. In addition, a method for regenerating fuel by increasing the combustion efficiency by using a catalyst or the like in combination with the above-mentioned means is also being used.

しかしながら、前記微粒子中、あるいは、各種燃焼器中
に供給される燃料中には灰分などの金属化合物が少なか
らず含まれていたり、燃焼器内の構成部品が酸化したり
摩耗したりして発生する金属微粉、あるいは、自動車用
エンジン等における摺動用の潤滑オイルからの灰分等の
不燃性微粒子が存在する。これらの金属微粉あるいは灰
分等の不燃性微粒子は可燃性微粒子とともに前記隔壁表
面で捕集・蓄積されるが、前記フィルターを再生する際
、隔壁表面で化学反応を起こし、逆に−1強く付着して
目詰まりしてしまい、長期に亙って使用すると圧力損失
が徐々に高くなって、最終的にフィルターの再生が不可
能となる、という欠点があった。
However, the fine particles or the fuel supplied to various combustors contain a considerable amount of metal compounds such as ash, and metal compounds such as ash are generated due to oxidation or wear of the components inside the combustor. Non-flammable fine particles such as metal fine powder or ash from sliding lubricating oil in automobile engines and the like are present. These non-combustible particles such as fine metal powder or ash are collected and accumulated on the surface of the partition wall together with combustible particles, but when the filter is regenerated, a chemical reaction occurs on the surface of the partition wall, and conversely -1 becomes strongly attached. The problem is that the filter becomes clogged, and when used for a long period of time, the pressure loss gradually increases, eventually making it impossible to regenerate the filter.

一方、高分子発泡体材料にセラミック泥漿を含浸し、該
高分子発泡体材料を熱処理により消失せしめた後、さら
に焼成して得られたセラミックスケルトン構造体を前記
排ガス用のフィルターに使用することが考えられている
。しかしながら、該セラミックスケルトン構造体を使用
しても、圧力損失は極めて低いが、捕集効率は比較的小
さいという欠点を有している。したがって、自動車の徘
ガス用のようにフィルターの排ガス流入側の圧力変動が
極めて激しい場合には、捕集された微粒子が吹き抜けて
しまうことがあり、効率よくしかも安定して微粒子を捕
集・除去することは困難となるおそれがある。
On the other hand, a ceramic skeleton structure obtained by impregnating a polymer foam material with ceramic slurry, causing the polymer foam material to disappear by heat treatment, and then firing it can be used for the exhaust gas filter. It is considered. However, even if the ceramic skeleton structure is used, the pressure drop is extremely low, but the collection efficiency is relatively low. Therefore, if there are extremely large pressure fluctuations on the exhaust gas inflow side of the filter, such as in cases where the filter is used for stray gas, the collected particulates may blow through, making it possible to efficiently and stably collect and remove particulates. It may be difficult to do so.

本発明は、上記した問題点を解消し、徘ガス中に含まれ
る微粒子を効率的に捕集・除去でき、しかも長期に亙り
使用しても圧力損失が小さく安定して使用することがで
きるハニカム状フィルターの提供を目的とする。
The present invention solves the above-mentioned problems, and provides a honeycomb that can efficiently collect and remove particulates contained in wandering gas, and can be used stably with low pressure loss even after long-term use. The purpose is to provide filters with similar properties.

[課題を解決するための手段・作用] 本発明のハニカム状フィルターは、多孔質セラミック材
より成るハニカム構造体の所定の貫通孔の端部を封止し
て成るハニカム状フィルターであって、気体流入側の端
部が開口している貫通孔内に、セラミック繊維またはウ
ィスカーを充填したことを特徴とする。
[Means and effects for solving the problem] The honeycomb-shaped filter of the present invention is a honeycomb-shaped filter formed by sealing the ends of predetermined through holes of a honeycomb structure made of a porous ceramic material. It is characterized by filling ceramic fibers or whiskers into the through hole whose inflow end is open.

以下、図面に基づき本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail based on the drawings.

第1図は本発明のハニカム状フィルターの縦断面模式図
である。
FIG. 1 is a schematic vertical cross-sectional view of the honeycomb filter of the present invention.

すなわち、本発明のハニカム状フィルターは、多孔性の
薄い隔壁1bを介してハチの巣状に連なる多数の貫通孔
のうちの所定の貫通孔1aの一端を封止材2によって封
止し、該封止した貫通孔を除く貫通孔1cの他端を封止
材3によって封止して、排ガスが隔壁1bを通過する構
造となっているハニカム状フィルターであり、該フィル
ターの気体流入側の端部が開口している貫通孔1cの中
にセラミックよりなる繊維、あるいはウィスカーが充填
された構造である。
That is, in the honeycomb filter of the present invention, one end of a predetermined through hole 1a among a large number of through holes connected in a honeycomb shape through a thin porous partition wall 1b is sealed with a sealing material 2, It is a honeycomb-shaped filter having a structure in which the other end of the through hole 1c except for the sealed through hole is sealed with a sealing material 3 so that exhaust gas passes through the partition wall 1b, and the end of the filter on the gas inflow side It has a structure in which ceramic fibers or whiskers are filled in a through hole 1c which is open at the end.

別言すれば、排ガス中に含まれる゛不燃性微粒子と可燃
性微粒子とを主として前記セラミック繊維あるいはウィ
スカ一部分で捕集し、一方、セラミック繊維あるいはウ
ィスカーで捕集されず吹き抜けた微粒子をハニカム状フ
ィルターの隔壁1bの表面で捕集せんとする構造体であ
る。したがって、捕集された微粒子は、加熱空気を加え
たり燃料を用いたり、あるいはそれらの手段に触媒を加
える等の方法を施してフィルターの燃焼再生処理を行な
うと、残存する不燃性微粒子は、前記セラミック繊維あ
るいはウィスカーに主として蓄積されるのである。
In other words, the non-flammable particles and combustible particles contained in the exhaust gas are mainly collected by the ceramic fibers or part of the whiskers, while the particles that have blown through without being collected by the ceramic fibers or whiskers are filtered through the honeycomb filter. This is a structure that attempts to collect the particles on the surface of the partition wall 1b. Therefore, when the collected particulates are regenerated by burning the filter by adding heated air, using fuel, or adding a catalyst to these methods, the remaining non-flammable particulates are It accumulates primarily in ceramic fibers or whiskers.

したがって、本発明のハニカム状フィルターは、従来の
フィルターのように隔壁1bのみで微粒子の捕集・除去
を行なうのではなく、セラミック繊維あるいはウィスカ
ーと隔壁1bとの2段階の濾過手段が施されているので
、不燃性微粒子の隔壁1bへの蓄積を極めて低く抑える
ことができる。長期使用により、セラミック繊維等に不
燃性微粒子が多く蓄積した場合は、該セラミック繊維等
のみを交換すれば、再びフィルターを使用することがで
きる。
Therefore, the honeycomb-shaped filter of the present invention does not collect and remove particulates only by the partition wall 1b as in conventional filters, but has a two-stage filtration means of ceramic fibers or whiskers and the partition wall 1b. Therefore, the accumulation of nonflammable fine particles on the partition wall 1b can be suppressed to an extremely low level. If a large amount of nonflammable particles accumulate in the ceramic fibers etc. due to long-term use, the filter can be used again by replacing only the ceramic fibers etc.

なお、前記セラミック繊維等の交換は、ハニカム状フィ
ルターの気体流出側より加圧逆洗して除去し、新たな繊
維やウィスカーを充填すればよい。
The ceramic fibers and the like may be replaced by backwashing the honeycomb filter with pressure from the gas outflow side, and then filling the honeycomb filter with new fibers or whiskers.

本発明によれば、前記セラミック繊維あるいはウィスカ
ーは平均繊維径が80μm以下であることが好ましい。
According to the present invention, it is preferable that the ceramic fibers or whiskers have an average fiber diameter of 80 μm or less.

平均繊維径が80μmより大きいと1つの貫通孔に入る
繊維の数量が少なくなり、排ガスとの接触面積が小さく
なるため、この部分での排ガス中の微粒子を効率よく除
去することができなくなるからである。
If the average fiber diameter is larger than 80 μm, the number of fibers that enter one through hole will be small, and the contact area with the exhaust gas will be small, making it impossible to efficiently remove particulates in the exhaust gas in this area. be.

また、前記セラミック繊維あるいはウィスカーは気体流
入側に開口部を有する貫通孔の容積に対し、少なくとも
1ovol%充填されていることが好ましい、10vo
l%よりも少ないと効率のよい排ガス濾過ができなくな
るからである。
Preferably, the ceramic fibers or whiskers are filled at least 1 ovol% with respect to the volume of the through hole having an opening on the gas inflow side.
This is because if the amount is less than 1%, efficient exhaust gas filtration will not be possible.

より効率のよい濾過を行なうためには繊維径が細く、そ
れらが複雑に絡み合って充填されていることが好ましく
、中でも繊維径が0.5〜lOμmのものを20〜30
vol%充填することによって圧力損失が小さく、しか
も高い効率で排ガス中の微粒子を除去することができ効
果的である。
In order to perform more efficient filtration, it is preferable that the fiber diameter is small and that the fibers are intertwined in a complicated manner. Among them, fibers with a diameter of 0.5 to 10μm are preferably packed with a diameter of 20 to 30μm.
By vol% filling, pressure loss is small and fine particles in the exhaust gas can be removed with high efficiency, which is effective.

さらに、上記充填物が複雑に絡み合って形成された平均
気孔径が20〜180μm、さらには50〜150μm
であることがより一層効果的である。
Furthermore, the average pore diameter formed by the above-mentioned fillers being intricately intertwined is 20 to 180 μm, and further 50 to 150 μm.
It is even more effective.

前記セラミック繊維またはウィスカーとしては、S i
C,5x3N< 、Ti Bx 、ZrBz 。
The ceramic fibers or whiskers include S i
C, 5x3N<, TiBx, ZrBz.

B、C,BN、ALa○3.Zro、、チラノ繊維、T
i0z、MgOから選ばれるいずれか少なくとも1つの
化合物を主体として構成されるものが好ましい。
B, C, BN, ALa○3. Zro, Tyranno fiber, T
Preferably, the material is mainly composed of at least one compound selected from i0z and MgO.

これらの成分で構成される繊維あるいはウィスカーは、
フィルター再生時、すなわち可燃性微粒子の燃焼除去時
において発生する熱に対して優れた耐熱性と耐酸化性を
有しており、溶融したりあるいは融着してハニカム母体
と結合することが極めて小さいからであり、なかでもS
iC繊維、SiCウィスカー、S L3 N 4ウイス
カー、A1□03繊維、A1□03ウィスカー、チラノ
繊維が優れている。
Fibers or whiskers composed of these components are
It has excellent heat resistance and oxidation resistance against the heat generated during filter regeneration, that is, when burning and removing flammable particulates, and is extremely unlikely to melt or fuse and bond to the honeycomb matrix. from the beginning, especially S.
iC fiber, SiC whisker, S L3 N 4 whisker, A1□03 fiber, A1□03 whisker, and Tyranno fiber are excellent.

また、本発明のハニカム状フィルターの開放気孔率は5
5〜80vol%であることが好ましい。
Furthermore, the open porosity of the honeycomb filter of the present invention is 5.
It is preferably 5 to 80 vol%.

開放気孔率が55vol%よりも小さいとフィルター内
での圧力損失が高くなり、80vol%を超えると圧力
損失は小さくなるが、同時に隔壁の厚さが薄くなるので
、フィルターの機械的強度が小さくなるおそれがある。
If the open porosity is less than 55 vol%, the pressure loss within the filter will be high, and if it exceeds 80 vol%, the pressure loss will be small, but at the same time the thickness of the partition wall will be thin, so the mechanical strength of the filter will be reduced. There is a risk.

より好ましくは60〜75vol%である。また、以上
のことと相撲って、隔壁の厚さは、0.1mm以上が好
ましい。
More preferably, it is 60 to 75 vol%. Further, in consideration of the above, the thickness of the partition wall is preferably 0.1 mm or more.

また、本発明のハニカム状フィルターの気体流入側の端
部が開口している貫通孔(以下、場合により、「流入側
貫通孔」と称す。)と気体流出側の端部が開口している
貫通孔(以下、場合により、「流出側貫通孔」と称す、
)との容積比率は、1.1〜2:1であることが好まし
い。その理由は、流入側貫通孔には前記充填・物が充填
されているので、流入側貫通孔の容積を大きくすること
により、流入側と流出側の有効開口面積が同一になり、
その結果、気体の流速を同一にすることができ濾過効率
が上昇するからである。流入側貫通孔が流出側貫通孔に
対して1.1倍よりも小さい場合、あるいは2倍よりも
大きい場合には、いずれも気体の有効通過面積が小さく
なり使用時の濾過圧力が大きくなる傾向がある。
In addition, the honeycomb filter of the present invention has a through hole that is open at the end on the gas inflow side (hereinafter referred to as an "inflow side through hole" in some cases) and an open end on the gas outflow side. Through hole (hereinafter referred to as "outflow side through hole" in some cases)
) is preferably 1.1 to 2:1. The reason is that the inflow side through hole is filled with the above-mentioned material, so by increasing the volume of the inflow side through hole, the effective opening area on the inflow side and the outflow side becomes the same.
As a result, the gas flow rate can be made the same and the filtration efficiency increases. If the inflow side through-hole is smaller than 1.1 times the outflow side through-hole, or if it is more than 2 times larger than the outflow side through-hole, the effective gas passage area tends to decrease and the filtration pressure during use tends to increase. There is.

なお、ハニカム状フィルターの材質は 威的な材料、コ
ージヱライト、ムラメト、炭化ケイ素。
The honeycomb filter is made of powerful materials such as cordierite, muramet, and silicon carbide.

アルミナ等を使用できるが、とりわけ、熱伝導性に優れ
た炭化ケイ素が好適である。
Although alumina and the like can be used, silicon carbide, which has excellent thermal conductivity, is particularly suitable.

次に、本発明を実施例を用いて説明する。Next, the present invention will be explained using examples.

実施例1 炭化ケイ素98%、ホウ素0.3%からなる粉末より押
出成形によって製造したハニカム構造体に、封止材をハ
ニカム構造体と同じ材料を使用して製造し所定の位置の
貫通孔の端部に栓詰めした。このハニカム状フィルター
は、隔壁の厚み0.4mrn、開口部寸法、すなわち貫
通孔の横断面形状が1.5X1.5mmの正方形であり
、開放気孔率が61.5vol%、隔壁の平均気孔径が
28%m、直径142mmX長さ150mmであった。
Example 1 A honeycomb structure was manufactured by extrusion molding from powder consisting of 98% silicon carbide and 0.3% boron. A sealing material was manufactured using the same material as the honeycomb structure, and a sealing material was used to fill the through holes at predetermined positions. The ends were plugged. This honeycomb-like filter has a partition wall thickness of 0.4 mrn, an opening dimension, that is, a square cross-sectional shape of the through hole of 1.5 mm x 1.5 mm, an open porosity of 61.5 vol%, and an average pore diameter of the partition wall. 28% m, diameter 142 mm x length 150 mm.

なお、流入側と流出側の開口部の封止状態は流入側貫通
孔容積:流出側貫通孔容積が1.2:1となるようにし
た1次いで、流入側開口部に99%が炭化ケイ素からな
るウィスカー、平均繊維径1.8μm、平均アスペクト
比85のものを25vol%充填した。
The sealed state of the openings on the inflow side and the outflow side was such that the ratio of the through hole volume on the inflow side to the volume of the through hole on the outflow side was 1.2:1.Next, 99% of the opening on the inflow side was made of silicon carbide. 25 vol % of whiskers consisting of 1.8 μm in average fiber diameter and 85 in average aspect ratio were filled.

このフィルターを第2図に示す排ガス処理装置内に装填
して、エンジン負荷100%回転数300Orpmで発
生したディーゼルエンジンのパティキュレートをt濾過
した。
This filter was loaded into the exhaust gas treatment apparatus shown in FIG. 2, and diesel engine particulates generated at 100% engine load and 300 rpm were filtered.

この時流出側の排ガスの含まれるパティキュレートの量
をサンプリングし、流入側の濃度とガス量により濾過効
率を求め、さらに初期圧力損失を調べた。
At this time, the amount of particulates contained in the exhaust gas on the outflow side was sampled, the filtration efficiency was determined from the concentration and gas amount on the inflow side, and the initial pressure loss was also investigated.

運転時間は圧力損失が200 mmHgとなるまで行な
った。そして、フィルター自体を酸化雰囲気中、800
℃で加熱して可燃性微粒子を完全に燃焼させ、フィルタ
ーを再生した。
The operation time was continued until the pressure loss reached 200 mmHg. Then, the filter itself was heated to 800°C in an oxidizing atmosphere.
The filter was regenerated by heating at ℃ to completely burn off the combustible particles.

フィルターの捕集効率および初期圧力損失を再生回数ご
とに調べたのが第3及び第4図である。
Figures 3 and 4 show that the collection efficiency and initial pressure loss of the filter were investigated for each number of regenerations.

第3図から明らかなように初回の捕集効率は76%で1
00回の繰り返し再生を行なっても78%であり、高い
捕集効率でその変動も少なかった。
As is clear from Figure 3, the initial collection efficiency was 76% and 1
Even after repeated regeneration 00 times, the collection efficiency was 78%, with high collection efficiency and little variation.

また、第4図から明らかなように、初期圧力損失は初回
と100回再生後とでは若干増加したにすぎず、少ない
圧力損失で高い捕集効率を得ることができた。100回
再生後、フィルターに2゜5kg/cm”で加圧逆洗を
施して充填していたウィスカーを除去し、再度、新しい
ウィスカーを同様に充填して圧力損失を測定したところ
、46 mmHgであり、フィルターの圧力損失はほと
んど上昇していないことがわかった。
Moreover, as is clear from FIG. 4, the initial pressure loss increased only slightly between the initial pressure loss and the 100th regeneration, and it was possible to obtain a high collection efficiency with a small pressure loss. After regenerating 100 times, the filter was backwashed under pressure at 2.5 kg/cm" to remove the filled whiskers, and the filter was filled with new whiskers in the same manner. When the pressure loss was measured, it was found to be 46 mmHg. It was found that there was almost no increase in the pressure loss of the filter.

比較例1 コージェライト質によって実施例1と同様、ハニカム構
造体に封止材を充填してハニカム状フィルターを製造し
た。このハニカム構造体は、隔壁の厚みは0.4mm、
貫通孔の横断面形状は1.5X1.5mmの正方形、開
放気孔率は61.9vol%、隔壁の平均気孔径は26
μm、直径142mmX長さ150mmであった。流入
側貫通孔容積と流出側貫通孔容積の比率はl:1とした
。実施例1と同様にパティキュレートの捕集と圧力損失
を測定し第3図、第4図において比較した。
Comparative Example 1 A honeycomb filter was manufactured using cordierite in the same manner as in Example 1 by filling a honeycomb structure with a sealing material. In this honeycomb structure, the thickness of the partition walls is 0.4 mm,
The cross-sectional shape of the through hole is a square of 1.5 x 1.5 mm, the open porosity is 61.9 vol%, and the average pore diameter of the partition wall is 26
μm, diameter 142 mm x length 150 mm. The ratio of the inflow side through hole volume to the outflow side through hole volume was 1:1. Particulate collection and pressure loss were measured in the same manner as in Example 1, and compared in FIGS. 3 and 4.

第3図から明らかなように、捕集効率は最初65%であ
り、再生回数を増すごとに捕集効率は上昇する傾向があ
り、100回の再生時には95%と上昇変動した。
As is clear from FIG. 3, the collection efficiency was initially 65%, and as the number of regenerations increased, the collection efficiency tended to increase, and rose to 95% after 100 regenerations.

また、第4図から明らかなように初期圧力損失は25 
mmHgであるが、再生回数を増すごとに初期圧力損失
は上昇する傾向となり、100回の再生ではlO5mm
Hgとなり、フィルターの再生ごとに処理することので
きる排ガス量も徐々に低下した。すなわち、ハニカム状
フィルターの隔壁の気孔が徐々に目詰まりを生じ、再生
加熱処理を行なっても従来の気孔と同様にはならないこ
とがわかった。
Also, as is clear from Figure 4, the initial pressure loss is 25
mmHg, but the initial pressure drop tends to increase as the number of regenerations increases, and after 100 regenerations, the initial pressure drop is 1O5mm.
Hg, and the amount of exhaust gas that could be treated each time the filter was regenerated gradually decreased. That is, it was found that the pores in the partition walls of the honeycomb filter gradually became clogged and did not become the same as the conventional pores even after the regeneration heat treatment.

実施例2〜8、比較例2〜5 ハニカム構造体の開放気孔率を77.9%とした他は、
実施例Iと同様の場合(実施例2)、ハニカム構造体の
開放気孔率を44.4vol%とした他は実施例1と同
様の場合(比較例2)、充填物として平均繊維径5.!
5um、平均アスペクト比70の炭化ケイ素繊維を用い
、充填率を26vol%とした他は実施例1と同様の場
合(実施例3)、平均繊維径28μmの炭化ケイ素繊維
(より線:平均繊維径5.5μm平均アスペクト比70
単繊維をよったもの)を用い、充填率を27vol%と
した他は実施例1と同様の場合で実施例4)、炭化ケイ
素繊維の平均繊維径120μmの炭化ケイ素繊維(より
線;平均繊維径5.5%m平均アスペクト比70単繊維
をよったもの)を充填率28vol%で充填し、開放気
孔率を61.9%とした他は実施例1と同様の場合(比
較例3)、炭化ケイ素ウィスカーの充填率を35vol
%とした他は実施例1と同様の場合(実施例5)、炭化
ケイ素ウィスカーの充填率を5 vol%とし、開放気
孔率を61.9%とした他は実施例1と同様の場合(比
較例4)、充填物として、平均m維径8.5μm、平均
アスペクト比60のチラノ繊維、または平均繊維径3.
0μm、平均アスペクト比60のへ2□03繊維を充填
した他は実施例1と同様の場合(実施例6.7)、流入
側貫通孔と流出側貫通孔との容積比率を1.6:1とし
た他は実施例1と同様の場合(実施例8)、流入側貫通
孔と流出側貫通孔との容積比率を3:1とし、炭化ケイ
素繊維の充填率を25vol%とした他は比較例4と同
様の場合(比較例5)によって得られたハニカム状フィ
ルターを、それぞれ実施例1と同様にパティキュレート
の捕集効率と圧力損失を調べて次表に示す。
Examples 2 to 8, Comparative Examples 2 to 5 Other than setting the open porosity of the honeycomb structure to 77.9%,
In the same case as in Example I (Example 2), in the same case as in Example 1 except that the open porosity of the honeycomb structure was 44.4 vol% (Comparative Example 2), the average fiber diameter was 5. !
In the same case as in Example 1 (Example 3) except that silicon carbide fibers with a thickness of 5 um and an average aspect ratio of 70 were used and the filling rate was 26 vol%, silicon carbide fibers with an average fiber diameter of 28 μm (stranded wire: average fiber diameter) were used. 5.5μm average aspect ratio 70
In Example 4), silicon carbide fibers with an average fiber diameter of 120 μm (stranded wire; average fiber) were used, except that the filling rate was 27 vol%. The same case as Example 1 (Comparative Example 3) except that the fibers were filled with fibers with a diameter of 5.5% and an average aspect ratio of 70 at a filling rate of 28 vol% and the open porosity was 61.9%. , the filling rate of silicon carbide whiskers is 35 vol.
% (Example 5), and the same case as Example 1 except that the silicon carbide whisker filling rate was 5 vol% and the open porosity was 61.9% (Example 5). Comparative Example 4) As a filler, Tyranno fibers with an average m-fiber diameter of 8.5 μm and an average aspect ratio of 60, or tyranno fibers with an average fiber diameter of 3.5 μm were used.
In the same case as in Example 1 (Example 6.7) except that 2□03 fibers were filled into the holes with a diameter of 0 μm and an average aspect ratio of 60, the volume ratio of the inflow side through hole and the outflow side through hole was set to 1.6: 1, except that the case was the same as Example 1 (Example 8), except that the volume ratio of the inflow side through hole and the outflow side through hole was 3:1, and the filling rate of silicon carbide fiber was 25 vol%. Honeycomb-shaped filters obtained in the same case as Comparative Example 4 (Comparative Example 5) were examined for particulate collection efficiency and pressure loss in the same manner as in Example 1, and are shown in the following table.

表からも明らかなように、本発明のハニカム状フィルタ
ーは、圧力損失が小さく高い捕集効率を長期に亙って維
持していることがわかる。
As is clear from the table, it can be seen that the honeycomb filter of the present invention has low pressure loss and maintains high collection efficiency over a long period of time.

[発明の効果] 以上詳述したように、本発明のハニカム状フィルターは
、気体流入側貫通孔にセラミック繊維またはウィスカー
が充填されているので、排ガス等の気体に含まれる微粒
子を効率よく捕集・除去し、しかも、フィルターの再生
のための燃焼処理に伴う不燃性微粒子の隔壁への付着・
蓄積を防ぐことができ、フィルターを長期間に亙り使用
しても、圧力損失が上昇せずに高い捕集効率を維持する
ことができる。
[Effects of the Invention] As detailed above, in the honeycomb filter of the present invention, the through holes on the gas inflow side are filled with ceramic fibers or whiskers, so that fine particles contained in gases such as exhaust gas can be efficiently collected.・Removes the adhesion of non-flammable particulates to partition walls due to combustion treatment for filter regeneration.
Accumulation can be prevented, and even if the filter is used for a long period of time, high collection efficiency can be maintained without increasing pressure loss.

また、本発明のハニカム状フィルターは、セラミック繊
維やウィスカーが充填されているので、高温焼却炉や高
温反応炉等において使用される高温付着性のある粒子を
含んだガスを濾過するフィルターとしても有用である。
In addition, since the honeycomb filter of the present invention is filled with ceramic fibers and whiskers, it is also useful as a filter for filtering gas containing high-temperature adhesive particles used in high-temperature incinerators, high-temperature reactors, etc. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のハニカム状フィルターを示す縦断面
模式図である。第2図は、実施例、比較例において使用
した排ガス処理装置を示す模式図である。第3図及び第
4図は、実施例1と比較例1で測定した捕集効率と初期
圧力損失を示す図である。第5図は、一般的なハニカム
状フィルターを説明するための正面図であり、第6図は
、気体の流入、流出状態を示す模式図である。 l−ハニカム状フィルター、2.3−封止材第3図 再支回(も 第4図 第1図 第5図 第6図
FIG. 1 is a schematic vertical cross-sectional view showing a honeycomb filter of the present invention. FIG. 2 is a schematic diagram showing an exhaust gas treatment device used in Examples and Comparative Examples. 3 and 4 are diagrams showing the collection efficiency and initial pressure loss measured in Example 1 and Comparative Example 1. FIG. 5 is a front view for explaining a general honeycomb filter, and FIG. 6 is a schematic diagram showing gas inflow and outflow states. l - Honeycomb filter, 2.3 - Sealing material

Claims (1)

【特許請求の範囲】 1、多孔質セラミック材より成るハニカム構造体の所定
の貫通孔の端部を封止して成るハニカム状フィルターで
あって、気体流入側の端部が開口している貫通孔内に、
セラミック繊維またはウィスカーを充填したことを特徴
とするハニカム状フィルター。 2、前記ハニカム構造体の開放気孔率が55〜80vo
l%である請求項1記載のハニカム状フィルター。 3、前記セラミック繊維またはウィスカーの平均繊維径
が80μm以下である請求項1または2記載のハニカム
状フィルター。 4、前記セラミック繊維またはウィスカーが貫通孔の容
積に対し、少なくとも10vol%を占めてなる請求項
1〜3のいずれか1に記載のハニカム状フィルター。 5、前記セラミック繊維またはウィスカーが、SiC、
Si_3N_4、TiB_2、ZrB_2、B_4C、
BN、Al_2O_3、ZrO_2、チラノ繊維、Ti
O_2、MgOから選ばれるいずれか少なくとも1種を
主成分として構成される請求項1〜4のいずれか1に記
載のハニカム状フィルター。 6、気体流入側の端部が開口している貫通孔と、気体流
出側の端部が開口している貫通孔との容積比率が、1.
1〜2:1の割合である請求項1〜5のいずれか1に記
載のハニカム状フィルター。
[Scope of Claims] 1. A honeycomb filter formed by sealing the ends of predetermined through holes of a honeycomb structure made of a porous ceramic material, the through holes having open ends on the gas inflow side. Inside the hole,
A honeycomb filter characterized by being filled with ceramic fibers or whiskers. 2. The open porosity of the honeycomb structure is 55 to 80 vo.
2. The honeycomb filter according to claim 1, wherein the content is 1%. 3. The honeycomb filter according to claim 1 or 2, wherein the average fiber diameter of the ceramic fibers or whiskers is 80 μm or less. 4. The honeycomb filter according to any one of claims 1 to 3, wherein the ceramic fibers or whiskers account for at least 10 vol% of the volume of the through holes. 5. The ceramic fiber or whisker is SiC,
Si_3N_4, TiB_2, ZrB_2, B_4C,
BN, Al_2O_3, ZrO_2, Tyranno fiber, Ti
The honeycomb-shaped filter according to any one of claims 1 to 4, comprising as a main component at least one selected from O_2 and MgO. 6. The volume ratio of the through hole with an open end on the gas inflow side and the through hole with an open end on the gas outflow side is 1.
The honeycomb-shaped filter according to any one of claims 1 to 5, wherein the ratio is 1 to 2:1.
JP63131446A 1988-05-31 1988-05-31 Honeycomb filter Expired - Lifetime JP2675071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131446A JP2675071B2 (en) 1988-05-31 1988-05-31 Honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131446A JP2675071B2 (en) 1988-05-31 1988-05-31 Honeycomb filter

Publications (2)

Publication Number Publication Date
JPH01304022A true JPH01304022A (en) 1989-12-07
JP2675071B2 JP2675071B2 (en) 1997-11-12

Family

ID=15058145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131446A Expired - Lifetime JP2675071B2 (en) 1988-05-31 1988-05-31 Honeycomb filter

Country Status (1)

Country Link
JP (1) JP2675071B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006769A1 (en) * 1990-10-17 1992-04-30 Nixdorf Richard D Filter and means for regeneration thereof
US5194078A (en) * 1990-02-23 1993-03-16 Matsushita Electric Industrial Co., Ltd. Exhaust filter element and exhaust gas-treating apparatus
US5487771A (en) * 1993-06-04 1996-01-30 Millipore Corporation High-efficiency metal membrane element, filter, and process for making
EP0745759A2 (en) * 1995-05-30 1996-12-04 Sumitomo Electric Industries, Inc. Particulate trap for diesel engine
US5709722A (en) * 1995-05-30 1998-01-20 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
US6570119B2 (en) 2001-08-30 2003-05-27 Corning Incorporated Method of making extrusion die with varying pin size
US6696132B2 (en) 2001-08-30 2004-02-24 Corning Incorporated Honeycomb with varying channel size and die for manufacturing
JP2006007148A (en) * 2004-06-29 2006-01-12 National Institute Of Advanced Industrial & Technology Exhaust gas cleaning filter and particulate matter capturing method
JP2007244950A (en) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd Particulate filter type exhaust gas cleaning catalyst and particulate filter
US7718143B2 (en) 2003-01-10 2010-05-18 Toyota Jidosha Kabushiki Kaisha Filter catalyst for purifying exhaust gases
WO2010113585A1 (en) 2009-03-31 2010-10-07 日本碍子株式会社 Honeycomb filter and method of manufacturing same
WO2010113586A1 (en) 2009-03-31 2010-10-07 日本碍子株式会社 Honeycomb filter and method of manufacturing same
WO2011125773A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125768A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125772A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125766A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125770A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125767A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125771A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter and method for manufacturing honeycomb filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136232A1 (en) 2007-04-27 2008-11-13 Ngk Insulators, Ltd. Honeycomb filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209877A (en) * 1981-06-16 1982-12-23 Nippon Denso Co Porous ceramic body
JPS5999019A (en) * 1982-11-26 1984-06-07 Mitsubishi Motors Corp Exhaust-gas purifying apparatus for diesel engine
JPS6131370A (en) * 1984-07-24 1986-02-13 株式会社デンソー Porous ceramic structure
JPS62197716U (en) * 1986-06-09 1987-12-16

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209877A (en) * 1981-06-16 1982-12-23 Nippon Denso Co Porous ceramic body
JPS5999019A (en) * 1982-11-26 1984-06-07 Mitsubishi Motors Corp Exhaust-gas purifying apparatus for diesel engine
JPS6131370A (en) * 1984-07-24 1986-02-13 株式会社デンソー Porous ceramic structure
JPS62197716U (en) * 1986-06-09 1987-12-16

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194078A (en) * 1990-02-23 1993-03-16 Matsushita Electric Industrial Co., Ltd. Exhaust filter element and exhaust gas-treating apparatus
WO1992006769A1 (en) * 1990-10-17 1992-04-30 Nixdorf Richard D Filter and means for regeneration thereof
AU642327B2 (en) * 1990-10-17 1993-10-14 Richard D. Nixdorf Filter and means for regeneration thereof
US5487771A (en) * 1993-06-04 1996-01-30 Millipore Corporation High-efficiency metal membrane element, filter, and process for making
USRE36249E (en) * 1993-06-04 1999-07-13 Millipore Investment Holdings, Inc. High-efficiency metal membrane element, filter, and process for making
EP0745759A2 (en) * 1995-05-30 1996-12-04 Sumitomo Electric Industries, Inc. Particulate trap for diesel engine
EP0745759A3 (en) * 1995-05-30 1997-03-05 Sumitomo Electric Industries Particulate trap for diesel engine
US5709722A (en) * 1995-05-30 1998-01-20 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
US5863311A (en) * 1995-05-30 1999-01-26 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
US6570119B2 (en) 2001-08-30 2003-05-27 Corning Incorporated Method of making extrusion die with varying pin size
US6696132B2 (en) 2001-08-30 2004-02-24 Corning Incorporated Honeycomb with varying channel size and die for manufacturing
US6843822B2 (en) 2001-08-30 2005-01-18 Corning Incorporated Filter with varying cell channels
US7718143B2 (en) 2003-01-10 2010-05-18 Toyota Jidosha Kabushiki Kaisha Filter catalyst for purifying exhaust gases
JP2006007148A (en) * 2004-06-29 2006-01-12 National Institute Of Advanced Industrial & Technology Exhaust gas cleaning filter and particulate matter capturing method
JP4649587B2 (en) * 2004-06-29 2011-03-09 独立行政法人産業技術総合研究所 Exhaust gas purification filter and collection method of particulate matter
JP2007244950A (en) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd Particulate filter type exhaust gas cleaning catalyst and particulate filter
WO2010113585A1 (en) 2009-03-31 2010-10-07 日本碍子株式会社 Honeycomb filter and method of manufacturing same
WO2010113586A1 (en) 2009-03-31 2010-10-07 日本碍子株式会社 Honeycomb filter and method of manufacturing same
WO2011125766A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125768A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125772A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125773A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125770A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125767A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
WO2011125771A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter and method for manufacturing honeycomb filter
US8293183B2 (en) 2010-03-31 2012-10-23 Ngk Insulators, Ltd. Honeycomb filter
US8420020B2 (en) 2010-03-31 2013-04-16 Ngk Insulators, Ltd. Honeycomb filter and method for manufacturing honeycomb filter
US8496883B2 (en) 2010-03-31 2013-07-30 Ngk Insulators, Ltd. Honeycomb filter
EP3566763A1 (en) 2010-03-31 2019-11-13 NGK Insulators, Ltd. Honeycomb filter

Also Published As

Publication number Publication date
JP2675071B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JPH01304022A (en) Honeycobm-shape filter
US7572311B2 (en) Highly porous mullite particulate filter substrate
JP4592695B2 (en) Honeycomb structure and exhaust gas purification device
JP4509029B2 (en) Honeycomb structure
US7582270B2 (en) Multi-functional substantially fibrous mullite filtration substrates and devices
JP4437084B2 (en) Honeycomb structure
US7541006B2 (en) Honeycomb structured body
WO2006041174A1 (en) Ceramic honeycomb structure
WO2000001463A1 (en) Diesel exhaust gas filter
WO2007058007A1 (en) Honeycomb structure
WO2005014171A1 (en) Silicon carbide based catalyst material and method for preparation thereof
JPWO2008026675A1 (en) Ceramic honeycomb filter
JP2012102004A (en) Honeycomb structured body and exhaust gas purifying apparatus
JP4900820B2 (en) Ceramic honeycomb filter
JP2004167482A (en) Honeycomb filter for exhaust gas cleaning, and its production method
JP4218559B2 (en) Diesel exhaust gas purification device
JP2006334459A (en) Ceramic honeycomb filter
JP2022128501A (en) Ceramics madreporite and manufacturing method thereof, and filter for dust collection
JP2544659B2 (en) Particulate trap device
JP2005342606A (en) Filter, and apparatus and method for purifying exhaust gas from internal-combustion engine
JP6483468B2 (en) Honeycomb structure
JPH0214711A (en) Exhaust gas cleaning device
JP3899998B2 (en) Honeycomb structure, manufacturing method thereof, and diesel particulate filter
JPH06327921A (en) Aluminum nitride material honeycomb filter
JP2580721B2 (en) Filter for particulate collection

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

EXPY Cancellation because of completion of term