JPH0130366B2 - - Google Patents

Info

Publication number
JPH0130366B2
JPH0130366B2 JP18800781A JP18800781A JPH0130366B2 JP H0130366 B2 JPH0130366 B2 JP H0130366B2 JP 18800781 A JP18800781 A JP 18800781A JP 18800781 A JP18800781 A JP 18800781A JP H0130366 B2 JPH0130366 B2 JP H0130366B2
Authority
JP
Japan
Prior art keywords
phase
voltage
ground fault
ground
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18800781A
Other languages
Japanese (ja)
Other versions
JPS5889020A (en
Inventor
Yukio Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18800781A priority Critical patent/JPS5889020A/en
Publication of JPS5889020A publication Critical patent/JPS5889020A/en
Publication of JPH0130366B2 publication Critical patent/JPH0130366B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、再閉路成功地絡事故時の短時間停
電事故を防止する短時間停電防止装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a short-term power outage prevention device that prevents a short-term power outage in the event of a successful reclosing ground fault.

従来、一般に非接地三相三線式配電線路におけ
る地絡事故保護をするのに、例えば第1図に示す
方式でなされている。第1図で、1は三相交流電
源、2はこの三相交流電源1に接続される三相配
電線、3は零相電圧を検出するための計器用変圧
器、4は零相電圧によつて動作する地絡継電器、
5は開閉器、6は前記三相配電線2が有する対地
静電容量、7は前記三相配電線2中にあると仮定
したギヤツプ状の地絡事故点である。
Conventionally, the method shown in FIG. 1, for example, has been generally used to protect against ground faults in ungrounded three-phase three-wire power distribution lines. In Figure 1, 1 is a three-phase AC power supply, 2 is a three-phase distribution line connected to this three-phase AC power supply 1, 3 is a voltage transformer for detecting zero-phase voltage, and 4 is a voltage transformer for detecting zero-phase voltage. ground fault relay,
5 is a switch, 6 is the ground capacitance of the three-phase distribution line 2, and 7 is a gap-shaped ground fault point assumed to be in the three-phase distribution line 2.

次に動作について説明する。第1図の構成にお
いて、開閉器5が閉路状態のときの三相交流のベ
クトル図は第2図に示される如くであり、図中
ea,eb,ecは前記三相交流電源1の電源電圧で、
電源電圧ピーク値をEとし、a相を基準にとる
と、次のように表すことができる。
Next, the operation will be explained. In the configuration shown in FIG. 1, the vector diagram of the three-phase AC when the switch 5 is in the closed state is as shown in FIG.
e a , e b , e c are the power supply voltages of the three-phase AC power supply 1,
If the power supply voltage peak value is E and the a phase is taken as a reference, it can be expressed as follows.

ea=Esinωt eb=Esin(ωt−2/3π) ecEsin(ωt−4/3π) 線路に地絡事故がなく、線路の対地静電容量6
が各相ともC0で平衡しているときには、零相電
圧は発生せず、上記の電源電圧ea,eb,ecが平衡
した三相電圧として三相配電線2に課電される。
e a = Esinωt e b = Esin (ωt-2/3π) e c Esin (ωt-4/3π) There is no ground fault on the line, and the ground capacitance of the line is 6
When all phases are balanced at C 0 , no zero-phase voltage is generated, and the above power supply voltages e a , e b , and e c are applied to the three-phase distribution line 2 as balanced three-phase voltages.

ここで、例えば第1図に示すように、a相のギ
ヤツプ状の地絡事故点7が放電し、抵抗値Rg
地絡すると、次のような零相電圧V0が発生する。
Here, for example, as shown in FIG. 1, when the a-phase gap-shaped ground fault point 7 discharges and causes a ground fault with a resistance value R g , the following zero-sequence voltage V 0 is generated.

V0=−V0・sin(ωt−θ) ただし、 この条件を第2図のベクトル図で考えると、地
絡事故により発生した零相電圧V0によつて中性
点の接地電圧は点OからO′に移動し、地絡後の
各相の対地電圧はVa,Vb,Vcで表わされる。こ
の場合、線路の対地静電容量6や地絡抵抗が変わ
ると、点O′は円線図8上を動く。
V 0 =−V 0・sin(ωt−θ) However, Considering this condition using the vector diagram in Figure 2, the ground voltage at the neutral point moves from point O to O' due to the zero-sequence voltage V 0 generated by the ground fault, and the ground voltage of each phase after the ground fault moves from point O to O'. The voltage to ground is expressed as V a , V b , and V c . In this case, when the ground capacitance 6 and ground fault resistance of the line change, point O' moves on the circle diagram 8.

一般に配電線路での地絡事故時の保護を行うに
は、この零相電圧がある設定レベルを越えると動
作する地絡継電器4の信号により開閉器5を開路
する方式を採用しており、地絡事故の後、ある設
定動作時限、例えば20サイクル程度をもつて開閉
器5を開き、線路を無電圧状態とする。この動作
時限は、瞬間的な地絡事故による不必要動作を防
止するためのものである。
Generally, in order to protect against ground faults on power distribution lines, a method is adopted in which the switch 5 is opened by a signal from the ground fault relay 4, which is activated when the zero-sequence voltage exceeds a certain set level. After a short circuit accident, the switch 5 is opened after a certain set operating time, for example, about 20 cycles, and the line is placed in a voltage-free state. This operation time limit is intended to prevent unnecessary operations due to instantaneous ground faults.

一方、配電線路の地絡事故は永久的な地絡事故
は少なく、上記停電後数秒〜数分間に自動的に開
閉器5を閉路させる再閉路送電動作において、何
ら支障なく送電できることが大部分を占める。こ
れは、地絡事故点がギヤツプ状の特性を示し、上
記の短時間の停電により、放電したギヤツプの絶
縁回復が行われるためである。
On the other hand, ground faults in power distribution lines rarely occur permanently, and in most cases, power can be transmitted without any problems in the re-closing power transmission operation in which the switch 5 is automatically closed several seconds to several minutes after a power outage. occupy This is because the ground fault point exhibits gap-like characteristics, and the short-term power outage causes insulation recovery of the discharged gap.

しかしながら、従来の地絡事故保護では、永久
的な地絡事故でない再閉路送電可能事故により、
度々数秒〜数分程度の短時間停電をもたらし、こ
れらは予告できない停電であるため需要家に多大
の損害を与えることがあつた。また一度再閉路成
功事故があることは線路に何らの欠陥があること
を意味し、その後このような再閉路成功事故が頻
発し、事故点の発見も非常に困難な事故であるた
め、社会的に大きな問題ともなることがあつた。
However, with conventional ground fault protection, due to a reclosing fault that is not a permanent ground fault,
This often resulted in short-term power outages lasting from several seconds to several minutes, and because these power outages could not be predicted in advance, they often caused great damage to customers. In addition, once a successful reclosing accident occurs, it means that there is some kind of defect in the track, and since such successful reclosing accidents occur frequently after that, and it is extremely difficult to locate the accident point, it is a social issue. This sometimes became a big problem.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、地絡事故時に地
絡相を検出し、地絡相を接地用のスイツチにより
短時間接地することにより短時間停電を防止でき
る装置を提供することを目的としている。以下こ
の発明の一実施例を図について説明する。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.In the event of a ground fault accident, the ground fault phase is detected and the ground fault phase is grounded for a short time using a grounding switch. The purpose is to provide a device that can prevent power outages. An embodiment of the present invention will be described below with reference to the drawings.

第3図は第1図に示した系統にこの発明による
短時間停電防止装置9を三相配電線2に設置した
実施例である。10は地絡事故が生じたとき数m
sの時間内に地絡事故相を検出する地絡相検出装
置、11a,11b,11cは地絡した事故相だ
けを高速度で接地する三相各相に星形に接続され
たスイツチ、12は前記地絡相検出装置10から
の信号をもとにスイツチ11a,11b,11c
を動作させる信号を送るケーブル、13は第4図
に示されるような電圧−電流特性を有する、例え
ば酸化亜鉛素子のような非直線抵抗体で、スイツ
チ11の中性点とアース間に接続される。14は
これに並列につながる接地解除のためのスイツチ
で、スイツチ11b,11cのいずれかの動作後
商用周波で約10サイクル後に開路するものであ
る。ここで、スイツチ11a,11b,11cお
よび14は動作後適当な時間にリセツトされる。
FIG. 3 shows an embodiment in which a short-time power outage prevention device 9 according to the present invention is installed on a three-phase distribution line 2 in the system shown in FIG. 10 is several meters when a ground fault occurs
11a, 11b, 11c are switches connected in a star shape to each of the three phases to ground only the grounded fault phase at high speed; 12 are switches 11a, 11b, 11c based on the signal from the ground fault phase detection device 10.
The cable 13 that sends the signal to operate the switch is a non-linear resistor, such as a zinc oxide element, which has voltage-current characteristics as shown in FIG. 4, and is connected between the neutral point of the switch 11 and ground. Ru. Reference numeral 14 denotes a ground release switch connected in parallel to this, which opens approximately 10 cycles at commercial frequency after operation of either switch 11b or 11c. Here, switches 11a, 11b, 11c and 14 are reset at an appropriate time after operation.

次に動作について説明する。第3図において、
仮に地絡事故点7が地絡しなければ、地絡相検出
装置10は動作せず、スイツチ11a,11b,
11cは開路したままであるので、この発明によ
る短時間停電防止装置9がない場合と全く同様、
線路に影響を与えずに送電される。
Next, the operation will be explained. In Figure 3,
If there is no ground fault at the ground fault point 7, the ground fault phase detection device 10 will not operate and the switches 11a, 11b,
11c remains open, so the situation is exactly the same as in the case without the short-term power outage prevention device 9 according to the present invention.
Power is transmitted without affecting the lines.

一方、この状態で、ギヤツプ状の地絡事故点7
が再閉路成功地絡事故を起したときの時間的な動
作状況を第5図で説明する。
On the other hand, in this state, gap-shaped ground fault point 7
The temporal operating conditions when a successful reclosing ground fault occurs will be explained with reference to FIG.

第5図において、vaは地絡事故点があると考え
られるa相の対地電圧波形で、図のように電圧波
形が急激に小さくなる時刻t0で地絡事故が発生す
るものとする。地絡事故が発生すると、第2図の
ベクトル図で示したように零相電圧v0が発生し、
対地電圧の三相バランスがくずれる。地絡相検出
装置10は、これらの電圧をベクトル合成し、地
絡事故相を数msの短時間に判別するものである
が、第2図の例のように地絡抵抗値Rgが小さい
条件の事故では、事故相の対地電圧vaが他より著
しく小さくなるので、ベクトル合成の手段に頼る
ことなく地絡相を判別できる。地絡相を判別後、
接地用のスイツチの事故相のスイツチ11aを時
刻t1で閉じ事故相を接地する。事故相を接地する
と、a相の対地電圧vaは完全に零になる。
In FIG. 5, v a is the a-phase ground voltage waveform where the ground fault point is thought to be, and it is assumed that the ground fault occurs at time t 0 when the voltage waveform suddenly decreases as shown in the figure. When a ground fault occurs, a zero-sequence voltage v 0 occurs as shown in the vector diagram in Figure 2,
The three-phase balance of the ground voltage is disrupted. The ground fault phase detection device 10 vector-synthesizes these voltages and identifies the ground fault phase in a short period of several milliseconds, but as shown in the example in Fig. 2, the ground fault resistance value R g is small. In the case of a fault under this condition, the voltage to ground v a of the fault phase is significantly smaller than the others, so the ground fault phase can be determined without relying on vector synthesis means. After determining the ground fault phase,
The switch 11a for the fault phase of the grounding switch is closed at time t1 to ground the fault phase. When the faulty phase is grounded, the ground voltage v a of the a phase becomes completely zero.

上述の方法で、事故相が一旦接地されると、ギ
ヤツプ状の地絡事故点7を流れる地絡電流はなく
なり、地絡事故点7へ注入されるエネルギが消滅
するため、導通状態であつたギヤツプの絶縁回復
が始まる。これを第6図に示す。なお、第6図中
横軸は時間、縦軸は絶縁回復電圧を示し、実線に
はさまれた斜線領域はばらつきを示している。ま
た原点はギヤツプ状の地絡事故点7の電流遮断時
点に相当し、破線Bは地絡事故直前の放電電圧を
示す。事故点の特性に依存するが、第6図に示す
ように約100ms程度無電圧の状態が続けば再閉
路成功事故点の絶縁が回復し、場合によつては放
電開始電圧Bより高くなることがある。このため
事故相を短時間接地することにより、線路を元の
正常状態に戻すことが可能となる。
In the above method, once the fault phase is grounded, the ground fault current flowing through the gap-shaped ground fault point 7 disappears, and the energy injected into the ground fault point 7 disappears, so that it remains in a conductive state. Gap insulation recovery begins. This is shown in FIG. In FIG. 6, the horizontal axis shows time, the vertical axis shows insulation recovery voltage, and the shaded area between the solid lines shows variations. Further, the origin corresponds to the point at which the current is interrupted at the gap-shaped ground fault point 7, and the broken line B indicates the discharge voltage immediately before the ground fault fault. Although it depends on the characteristics of the fault point, as shown in Figure 6, if the no-voltage state continues for approximately 100ms, the insulation at the successful reclosing fault point will recover, and in some cases the voltage will be higher than the discharge starting voltage B. There is. Therefore, by grounding the faulty phase for a short time, it is possible to restore the line to its original normal state.

次に第5図の時刻t2で、スイツチ14を開路す
る。スイツチ14を開路すると、自動的に事故相
に非直線抵抗体13が接続されることになる。こ
の非直線抵抗体13の特性は第4図に示され、線
路対地容量6によるが、約10μA〜100A程度の電
流Irに対し、制限電圧Vrは三相電源電圧のピーク
値E程度に選ぶ。このように選ぶと、スイツチ1
4の開路後に発生する異常電圧の発生を防止で
き、線路電圧のピーク値E以上の電圧が加わらな
くなり、異常電圧に起因する事故点の再放電を防
止できる。
Next, at time t2 in FIG. 5, the switch 14 is opened. When the switch 14 is opened, the non-linear resistor 13 is automatically connected to the fault phase. The characteristics of this nonlinear resistor 13 are shown in FIG. 4, and depending on the line-to-ground capacity 6, for a current I r of about 10 μA to 100 A, the limiting voltage V r is about the peak value E of the three-phase power supply voltage. choose. If you select like this, switch 1
4 can be prevented from occurring after the circuit is opened, a voltage higher than the peak value E of the line voltage will not be applied, and re-discharge at the fault point caused by the abnormal voltage can be prevented.

この点は、この発明の特有の効果であるので、
さらに詳しく説明する。
This point is a unique effect of this invention, so
I will explain in more detail.

ここで、非直線抵抗体13がない場合を考える
と、スイツチ14を流れていた電流は、零相電流
から理解できるようにほぼπ/2〔rad〕進んだ
電流であり、スイツチ14の開放時に、前記した
零相電圧v0のピーク電圧V0が線路に直流電圧成
分として残る。このため、対地電圧は時刻t2以後
に元の交流成分が脈動成分となつた直流電圧とな
り、最大時には元の正常時の丁度2倍の高い異常
電圧が加わることになる。この現象は三相非接地
配電線で引き起される間欠アーク地絡の原因とな
ることが従来から知られている。この関係を第5
図に示すと、一点鎖線のv′aとなる。
Here, if we consider the case where there is no nonlinear resistor 13, the current flowing through the switch 14 is a current that has advanced by approximately π/2 [rad], as can be understood from the zero-sequence current, and when the switch 14 is opened, , the peak voltage V 0 of the zero-sequence voltage V 0 described above remains on the line as a DC voltage component. Therefore, after time t2 , the ground voltage becomes a DC voltage in which the original AC component becomes a pulsating component, and at its maximum, an abnormal voltage that is exactly twice as high as the original normal voltage is applied. It has been known that this phenomenon causes intermittent arcing ground faults caused in three-phase ungrounded distribution lines. This relationship is the fifth
In the figure, it is v′ a shown by a dashed-dotted line.

しかしながら、この発明のように、スイツチ1
4の開路とともに、非直線抵抗体13が事故相に
接続されると、第5図の時刻t2以後の実線で示す
ように非直線抵抗体13の動作により異常電圧分
が、第4図の関係により元の対地電圧のピーク値
Eに抑制される。このため、スイツチ14の開路
時に発生する異常電圧によつて、事故点が再放電
地絡することが防止できる。
However, as in this invention, the switch 1
4 is opened and the non-linear resistor 13 is connected to the fault phase. As shown by the solid line after time t2 in FIG. 5, the operation of the non-linear resistor 13 causes the abnormal voltage to become Due to the relationship, the voltage to ground is suppressed to the original peak value E. Therefore, it is possible to prevent the fault point from being redischarged and grounded due to the abnormal voltage generated when the switch 14 is opened.

この場合、スイツチ11a,11b,11cお
よび14のリセツト状態への復帰を変電所継電器
が動作する前の時刻t3に行うと、非直線抵抗体1
3に流れる電流により変電所継電器が動作しない
ようにできる。またこの場合、スイツチ11a,
11b,11cが先に開路状態になることはもち
ろんのことである。
In this case, if the switches 11a, 11b, 11c, and 14 are returned to the reset state at time t3 before the substation relay operates, the nonlinear resistor 1
The current flowing through 3 can prevent the substation relay from operating. Moreover, in this case, the switch 11a,
Of course, the circuits 11b and 11c become open first.

なお、上記の説明では、ある一相のギヤツプ状
の地絡事故点7について述べたが、その事故発生
確率は少ないが、第7図のようにギヤツプ状の地
絡事故点7が7a,7bの2箇所となり、多少の
時間差をもつて地絡事故に至ることがある。この
場合、スイツチ11と直列に抵抗、静電容量、イ
ンダクタンス、非直線抵抗のようなインピーダン
ス要素Zを直列に挿入すれば、2箇所地絡事故時
に、線路に流れる短絡電流を小さな値に制限でき
る。この場合も短時間停電防止装置9の1箇所地
絡時の短時間停電防止機能は何ら変化しない。
In the above explanation, the gap-shaped ground fault point 7 of one phase was described, but although the probability of occurrence of such an accident is low, the gap-shaped ground fault points 7 are 7a and 7b as shown in Fig. 7. There are two locations, and a ground fault may occur with a slight time difference. In this case, by inserting an impedance element Z such as a resistor, capacitance, inductance, or non-linear resistance in series with the switch 11, the short-circuit current flowing through the line can be limited to a small value in the event of a two-point ground fault. . In this case as well, the short-term power outage prevention function of the short-term power outage prevention device 9 in the event of a ground fault at one location remains unchanged.

以上のようにこの発明によれば、非接地三相三
線式配電線路において、地絡事故時に地絡相を短
時間接地させることによりギヤツプ状の地絡事故
の絶縁を回復させることができると同時に、上記
短時間接地解除時に事故相に非直線抵抗体を接続
する回路とすることにより接地解除後に配電線に
発生する異常電圧の発生防止を行つたので、再閉
路成功事故による短時間の停電事故を確実になく
すことができる。またこれにより停電にともなう
需要家の被害を永久事故時だけの最少限の停電に
とどめられる利点がある。
As described above, according to the present invention, in an ungrounded three-phase three-wire power distribution line, by grounding the ground fault phase for a short time in the event of a ground fault, it is possible to recover the insulation caused by a gap-shaped ground fault, and at the same time By using a circuit that connects a non-linear resistor to the faulty phase during the short-term grounding, we have prevented the occurrence of abnormal voltage in the distribution line after the grounding has been released, thereby preventing a short-term power outage caused by a successful re-closing accident. can be definitely eliminated. Additionally, this has the advantage that damage to customers due to power outages can be kept to a minimum, only in the event of a permanent accident.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の配電線路の地絡事故保護方式を
示す図、第2図は地絡事故時の電圧ベクトルを示
す図、第3図はこの発明による短時間停電防止装
置の一実施例を系統に適用した場合の構成を示す
図、第4図は非直線抵抗体の電圧−電流特性を示
す図、第5図は第3図に示した短時間停電防止装
置の動作時間を示す図、第6図は再閉路成功ギヤ
ツプ状の地絡事故の絶縁回復特性を示す図、第7
図はこの発明の短時間停電防止装置の他の実施例
を示す接続図である。 図中、1は三相交流電源、2は三相配電線、3
は計器用変圧器、4は地絡継電器、5は開閉器、
6は対地静電容量、7は地絡事故点、9は短時間
停電防止装置、10は地絡相検出装置、11,1
4はスイツチ、12はケーブル、13は非直線抵
抗体、Zはインピーダンス要素である。なお、図
中の同一符号は同一または相当部分を示す。
Fig. 1 is a diagram showing a conventional ground fault protection method for power distribution lines, Fig. 2 is a diagram showing voltage vectors at the time of a ground fault, and Fig. 3 is an embodiment of a short-term power outage prevention device according to the present invention. A diagram showing the configuration when applied to a power system, FIG. 4 is a diagram showing the voltage-current characteristics of a nonlinear resistor, and FIG. 5 is a diagram showing the operating time of the short-time power outage prevention device shown in FIG. 3. Figure 6 is a diagram showing the insulation recovery characteristics of a gap-shaped ground fault with successful reclosing.
The figure is a connection diagram showing another embodiment of the short-time power outage prevention device of the present invention. In the diagram, 1 is a three-phase AC power supply, 2 is a three-phase distribution line, and 3
is an instrument transformer, 4 is a ground fault relay, 5 is a switch,
6 is the ground capacitance, 7 is the ground fault point, 9 is the short-term power outage prevention device, 10 is the ground fault phase detection device, 11,1
4 is a switch, 12 is a cable, 13 is a nonlinear resistor, and Z is an impedance element. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 非接地三相三線式配電線路の地絡事故相を検
出する地絡相検出装置、前記三相各相に星形に接
続される接地用のスイツチ、前記星形接続の中性
点とアース間に接続される非直線抵抗体、この非
直線抵抗体に並列に接続される接地解除用のスイ
ツチから成り、前記地絡相検出装置により地絡相
を検出後、直ちに当該事故相を前記接地用のスイ
ツチにより接地し、所定時間後前記接地解除用の
スイツチを開いて前記非直線抵抗体を事故相に接
続し、かつ変電所地絡継電器動作前に前記接地用
のスイツチと接地解除用のスイツチをリセツトす
る構成としたことを特徴とする短時間停電防止装
置。 2 接地用のスイツチの各相分は直列接続された
インピーダンス要素を備えたことを特徴とする特
許請求の範囲第1項記載の短時間停電防止装置。 3 非直線抵抗体の電圧−電流特性を、三相対地
電圧ピーク値の電圧のとき、10μA〜100Aの電流
範囲に設定したことを特徴とする特許請求の範囲
第1項または第2項記載の短時間停電防止装置。
[Scope of Claims] 1. A ground fault phase detection device for detecting a ground fault phase of an ungrounded three-phase three-wire power distribution line, a grounding switch connected to each of the three phases in a star shape, and the star-shaped connection. It consists of a non-linear resistor connected between the neutral point and the ground, and a grounding release switch connected in parallel to this non-linear resistor. The faulty phase is grounded by the grounding switch, and after a predetermined time, the grounding release switch is opened to connect the non-linear resistor to the faulty phase, and before the substation ground fault relay operates, the grounding switch is grounded. A short-time power outage prevention device characterized by having a configuration that resets a switch and a ground release switch. 2. The short-time power outage prevention device according to claim 1, wherein each phase of the grounding switch is provided with an impedance element connected in series. 3. The voltage-current characteristic of the non-linear resistor is set to a current range of 10 μA to 100 A when the voltage is at the peak value of the three-to-earth voltage. Short-term power outage prevention device.
JP18800781A 1981-11-24 1981-11-24 Short time power interruption preventing device Granted JPS5889020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18800781A JPS5889020A (en) 1981-11-24 1981-11-24 Short time power interruption preventing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18800781A JPS5889020A (en) 1981-11-24 1981-11-24 Short time power interruption preventing device

Publications (2)

Publication Number Publication Date
JPS5889020A JPS5889020A (en) 1983-05-27
JPH0130366B2 true JPH0130366B2 (en) 1989-06-19

Family

ID=16216006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18800781A Granted JPS5889020A (en) 1981-11-24 1981-11-24 Short time power interruption preventing device

Country Status (1)

Country Link
JP (1) JPS5889020A (en)

Also Published As

Publication number Publication date
JPS5889020A (en) 1983-05-27

Similar Documents

Publication Publication Date Title
CA2079468C (en) Arcing fault detector
EP1279213B1 (en) Sensitive ground fault detection system for use in compensated electric power distribution networks
US8300369B2 (en) System and method for polyphase ground-fault circuit-interrupters
US5245498A (en) Downed conductor automatic detecting device
US5103365A (en) Downed conductor automatic detecting device
JPS6084919A (en) Protecting relay
JPS63107412A (en) Tripper of breaker
JPH05501043A (en) Loss of neutral or ground protection circuit
CA1185651A (en) Ground isolation monitoring apparatus having a protective circuit
US3838314A (en) Detector for reverse and open phase in a three phase circuit
US3581152A (en) Round protection and detecting for high voltage dc transmission system
CN110031716B (en) Distributed fault detection method for power distribution system with resonant grounding
FI117258B (en) Ground-fault protection of the electricity network
CN109038513B (en) A kind of intelligent processing method of the broken string ground connection for failure phase transfer earthing or grounding means
Codling et al. Adaptive relaying. A new direction in power system protection
JPH0130366B2 (en)
JP3137029B2 (en) Element failure detection device in grid interconnection equipment
JP3028093B2 (en) System fault current detector
JP3259556B2 (en) Accident point location device
AU628270B1 (en) Downed conductor automatic detecting device
SU1065951A1 (en) Device for single-phase ground leakage protection of a.c. isolated neutral system
SU1078526A1 (en) Method for directional pulse protection against one-phase earth leakage in systems with compensated and isolated neutral
JPH06237522A (en) Protective device of series capacitor
JPH0438118A (en) Variation width detector
KR930008837B1 (en) Sectionalizer control