JPH01302385A - Projection type display - Google Patents

Projection type display

Info

Publication number
JPH01302385A
JPH01302385A JP63133259A JP13325988A JPH01302385A JP H01302385 A JPH01302385 A JP H01302385A JP 63133259 A JP63133259 A JP 63133259A JP 13325988 A JP13325988 A JP 13325988A JP H01302385 A JPH01302385 A JP H01302385A
Authority
JP
Japan
Prior art keywords
light
red
blue
emitted
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63133259A
Other languages
Japanese (ja)
Other versions
JPH068985B2 (en
Inventor
Yoshihiro Masumoto
吉弘 枡本
Yoshito Miyatake
義人 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63133259A priority Critical patent/JPH068985B2/en
Publication of JPH01302385A publication Critical patent/JPH01302385A/en
Publication of JPH068985B2 publication Critical patent/JPH068985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Projection Apparatus (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To prevent the lowering of a light utilizing efficiency and the lowering of uniformities of a color and a brightness in a projected image when an effective band is made into a narrow band by sufficiently widening the effective band to red, green and blue lights of a light synthesizing means in comparison with the band of each color light made incident efficiently synthesizing lights emitted from respective light valves. CONSTITUTION:The spectral characteristic of a prism type dichroic mirror to compose a light synthesizing means 46 is set optimum, the polarizing directions of the lights emitted from light valves 43-45 are properly selected, and the cut-off wavelengths of respective multilayer films 51-54 of the light synthesizing means 46 are sufficiently separated from the bands of the lights emitted from respective light valves 43-45 of the red, green and blue. Consequently, respective color lights can be efficiently synthesized into one, and the deterioration of the picture quality of the projected image can be reduced. Thus, a projection type display can be obtained in which the uniformities of the brightness and color of the projected image are satisfactory and, moreover, a light output is large.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はライトバルブに形成される光学像を照明光で照
射するとともに投写レンズによりスクリーン上に投写す
る投写型表示装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a projection display device that irradiates an optical image formed on a light valve with illumination light and projects it onto a screen using a projection lens.

従来の技術 大画面の映像表示を行うために、比較的小さなライトバ
ルブに光学的特性の変化として映像信号に応じた光学像
を形成し、この光学像を照明光で照射するとともに投写
レンズによりスクリーン上に拡大投写する方法が従来か
らよく知られている。
Conventional technology In order to display images on a large screen, an optical image is formed in a relatively small light valve according to the image signal as changes in optical characteristics, and this optical image is irradiated with illumination light and projected onto a screen using a projection lens. A method of enlarging and projecting an image upward has been well known.

この種の投写型表示装置は、投写画像の解像度がライト
バルブの解像度でほぼ決り、光源を強くすれば光出力が
大きくなるので、高解像度のライトバルブを用いればそ
の表示面積が小さくても高解像度で光出力の大きい投写
型表示装置を実現することができる。また、最近では、
ライトバルブとして液晶パネルを用いる方法が注目され
ている(例えば、5ID86ダイジエスト第375ペー
ジ)。
In this type of projection display device, the resolution of the projected image is almost determined by the resolution of the light valve, and the stronger the light source, the greater the light output. A projection display device with high resolution and high light output can be realized. Also, recently,
A method of using a liquid crystal panel as a light valve is attracting attention (for example, 5ID86 Digest, page 375).

このような投写型表示装置の従来の構成の一例を第6図
に示す。
An example of a conventional configuration of such a projection display device is shown in FIG.

ランプ1は赤、緑、青の色成分を含む光を放射し、ラン
プ1から放射される光は集光レンズ2と凹面鏡3とによ
り平行に近い光に変換され、熱線吸収フィルタ4を透過
した後、色分解手段5に入射する。色分解手段5は平板
型の赤反射ダイjロイツクミラー6と2分割された平板
型の青反射ダイクロイックミラー7.8とを90度交差
させて配置したものである。
The lamp 1 emits light containing red, green, and blue color components, and the light emitted from the lamp 1 is converted into nearly parallel light by a condenser lens 2 and a concave mirror 3, and transmitted through a heat ray absorption filter 4. Thereafter, the light enters the color separation means 5. The color separation means 5 is composed of a flat plate type red reflective dichroic mirror 6 and a flat plate type blue reflective dichroic mirror 7.8 which are divided into two parts and are arranged to cross each other at 90 degrees.

色分解手段5を出た赤の光は平面ミラー9.10を介し
て、緑の光はそのまま直進して、青の光は平面ミラー1
).12を介して、それぞれ対応する液晶パネル13.
14.15に入射する。液晶パネル13.14.15に
はそれぞれの映像信号に応じて透過率の変化として光学
像が形成される。液晶パネル13.14.15がらの出
力光は光合成手段16により1つに合成されて実質的に
緑の液晶パネル14の位置にカラー画像が形成される。
The red light coming out of the color separation means 5 passes through the plane mirror 9, 10, the green light goes straight, and the blue light passes through the plane mirror 1.
). 12, the respective corresponding liquid crystal panels 13.
14.Injected on 15th. Optical images are formed on the liquid crystal panels 13, 14, and 15 as changes in transmittance according to the respective video signals. The output lights from the liquid crystal panels 13, 14, and 15 are combined into one by the light combining means 16 to form a color image substantially at the position of the green liquid crystal panel 14.

このカラー画像はテレセンドリンクの投写レンズ17に
よりスクリーン(図示せず)上に拡大投写される。光合
成手段16は4つの直角プリズム18.19.20.2
1を接合したプリズム型のグイクロイックミラーであり
、接合面22.23に赤反射多層膜が、接合面24.2
5に青反射多層膜が蒸着されている。
This color image is enlarged and projected onto a screen (not shown) by a telescopic projection lens 17. The light synthesis means 16 includes four right angle prisms 18.19.20.2
It is a prism type gicchroic mirror in which 1 is bonded to the bonding surface 22.23, and a red reflective multilayer film is bonded to the bonding surface 24.2.
5, a blue reflective multilayer film is deposited.

第6図に示した投写型表示装置は、投写レンズが1本で
あるので画面サイズまたは投写レンズI7からスクリー
ンまでの距離を容易に変えられるという特徴がある。
The projection type display device shown in FIG. 6 has a feature that the screen size or the distance from the projection lens I7 to the screen can be easily changed because it has one projection lens.

発明が解決しようとする課題 第6図に示した構成において、光合成手段16の多層膜
22.23.24.25の分光特性は、反射率が高レベ
ルにある反射帯域と透過率が高レベルにある透過帯域と
を持つ。上記両帯域間で反射率及び透過率が50%とな
る波長をカットオフ波長と表現する。ただし、上記多層
膜の内部損失はほとんどないと見なしてよい。
Problems to be Solved by the Invention In the configuration shown in FIG. 6, the spectral characteristics of the multilayer film 22, 23, 24, 25 of the photosynthesis means 16 have a reflection band at a high level of reflectance and a high level of transmittance. It has a certain transmission band. The wavelength at which the reflectance and transmittance are 50% between the above two bands is expressed as the cutoff wavelength. However, it may be considered that the multilayer film has almost no internal loss.

上記カットオフ波長付近の数十〇I1)の波長範囲にお
いては、反射率及び透過率が連続的に増加又は減少して
いるので、赤″及び青のライトバルブ13.15から出
射する光が入射してもその一部は効率よく反射されずに
透過してしまう。同様に、緑のライトバルブ14から出
射する光の一部も効率よく透過せずに反射されてしまう
。よって、光合成手段16において各色光を効率よく合
成する有効帯域は、それぞれ多層膜22.231.24
.25のカットオフ波長で決まる帯域より狭帯域となる
。この時、カットオフ波長付近の光は有効に利用されて
おらず、光合成手段I6の光利用効率が低くなるという
問題がある。
In the wavelength range of several tens of I1) near the above-mentioned cutoff wavelength, the reflectance and transmittance continuously increase or decrease, so that the light emitted from the red'' and blue light valves 13.15 is incident. Similarly, a portion of the light emitted from the green light valve 14 is also reflected without being efficiently transmitted. The effective bands for efficiently synthesizing each color light are multilayer films 22, 231, and 24, respectively.
.. The band is narrower than the band determined by the cutoff wavelength of 25. At this time, there is a problem that the light near the cutoff wavelength is not used effectively, and the light usage efficiency of the photosynthesizing means I6 becomes low.

また、ランプlにおいて発光体が完全な点光源ではなく
有限の大きさを持っているため、集光レンズ2からの出
射光は拡がりながら進行し、多層膜22.23.24.
25へ入射する光はある範囲の入射角を持つ。一般に、
多層膜はカットオフ波長が入射角に応してシフトする性
質があるために、光合成手段の各色光に対する帯域がよ
り狭帯域となり、投写画像の明るさ及び色の均一性が低
下するという問題がある。
In addition, since the light emitting body in the lamp l is not a complete point light source but has a finite size, the light emitted from the condenser lens 2 travels while spreading, and the multilayer film 22, 23, 24...
The light incident on 25 has a range of angles of incidence. in general,
Since the multilayer film has the property that the cutoff wavelength shifts depending on the angle of incidence, the band for each color light of the light synthesis means becomes narrower, which causes the problem that the brightness and color uniformity of the projected image decreases. be.

本発明はかかる点に鑑みてなされたもので、光合成手段
の光利用効率を向上させ、それによって光出力が大きく
、明るさ及び色の均一性の良好な投写型表示装置を提供
することを目的としている。
The present invention has been made in view of the above points, and an object of the present invention is to improve the light utilization efficiency of a photosynthesis means, thereby providing a projection type display device with a large light output and good brightness and color uniformity. It is said that

課題を解決するための手段 上記課題を解決するため、本発明の投写型表示装置は、
映像信号に応じて光学像が形成され空間的に変調された
直線偏光の光が出射する赤、緑、青のライトバルブと、
対応する各色光を前記赤、緑、青のライトバルブに照射
する照明手段と、赤反射及び青反射多層膜をX字状に交
差させたプリズム型のグイクロイックミラーであって前
記各ライトバルブから出射する光を1つに合成する光合
成手段と、前記光合成手段から出射する光を受け前記ラ
イトバルブの光学像をスクリーン上に投写する投写レン
ズとを備え、前記録のライトバルブから出射する光は前
記光合成手段を直進して前記投写レンズに入射し、前記
赤反射多層膜はS偏光のカットオフ波長が540nm以
上560nm以下であり、前記青反射多層膜はS偏光の
カットオフ波長が510nm以上540nm以下であり
、前記録のライトバルブから出射する光はP偏光で前記
赤反射及び青反射多層膜に入射し、前記赤及び青のライ
トパルプから出射する光はS偏光で前記赤反射及び青反
射多層膜に入射するようにしたものである。なお、照明
手段の光源にはメタルハライドランプを用いたほうが好
ましい。
Means for Solving the Problems In order to solve the above problems, the projection display device of the present invention includes:
Red, green, and blue light valves that form optical images in response to video signals and emit spatially modulated linearly polarized light;
an illumination means for irradiating each of the red, green, and blue light valves with corresponding colored lights; and a prism-type guichroic mirror in which red reflective and blue reflective multilayer films are crossed in an X-shape, the light valves each comprising: a light combining means for combining light emitted from the light valve into one, and a projection lens for receiving the light emitted from the light combining means and projecting an optical image of the light valve onto a screen, the light emitting from the light valve recorded previously. passes straight through the light combining means and enters the projection lens, the red reflective multilayer film has a cutoff wavelength of S-polarized light of 540 nm or more and 560 nm or less, and the blue reflective multilayer film has a cutoff wavelength of S-polarized light of 510 nm or more. 540 nm or less, the light emitted from the light valve of the previous recording is P-polarized light and enters the red reflective and blue reflective multilayer films, and the light emitted from the red and blue light pulps is S-polarized light and enters the red reflective and blue reflective multilayer films. The light is made incident on a reflective multilayer film. Note that it is preferable to use a metal halide lamp as the light source of the illumination means.

作用 上記構成によれば、光合成手段の赤、緑、青の光に対す
る有効帯域が入射する各色光の帯域に比べ十分広いので
、各ライトバルブから出射する光が効率良く合成される
。更に、カットオフ波長が各多層膜への光の入射角に依
存してシフトし光合成手段の有効帯域が狭帯域となって
も、シフトしない場合の有効帯域が入射色光の帯域に比
べ広帯域となっているので光利用効率の低下及び投写画
像における色及び明るさの均一性の低下を改善できる。
Effect: According to the above configuration, the effective bands of the light combining means for red, green, and blue lights are sufficiently wider than the bands of each incident color light, so that the lights emitted from each light valve are efficiently combined. Furthermore, even if the cutoff wavelength shifts depending on the angle of incidence of light on each multilayer film and the effective band of the photosynthesizing means becomes narrow, the effective band when it does not shift becomes broader than the band of incident colored light. Therefore, it is possible to improve the reduction in light utilization efficiency and the reduction in uniformity of color and brightness in the projected image.

また、上記効果により光源としてキセノンランプやハロ
ゲンランプに比べて発光体長の長いメタルハライドラン
プを用いても、色及び明るさの均一性の高い投写画像が
得られる。
Further, due to the above effect, even if a metal halide lamp, which has a longer light emitting body than a xenon lamp or a halogen lamp, is used as a light source, a projected image with high uniformity in color and brightness can be obtained.

実施例 本発明による投写型表示装置の一実施例について添付図
面を参照しながら説明する。
Embodiment An embodiment of a projection type display device according to the present invention will be described with reference to the accompanying drawings.

第1図は本発明の一実施例における光学系の構成を示し
たもので、30は光源、38は色分解手段、39.40
.4工、42は平面ミラー、43.44.45はライト
バルブ、46は光合成手段、47は投写レンズである。
FIG. 1 shows the configuration of an optical system in an embodiment of the present invention, in which 30 is a light source, 38 is color separation means, 39.40
.. 4, 42 is a plane mirror, 43, 44, 45 are light valves, 46 is a light combining means, and 47 is a projection lens.

光R30及び色分解手段38及び平面ミラー39.40
.41.42が照明手段を構成している。なお、第1図
に示した構成は光源30のランプ31を除けば第6図に
示した従来例の構成と同一の構成である。
Light R30 and color separation means 38 and plane mirror 39.40
.. 41 and 42 constitute the illumination means. The configuration shown in FIG. 1 is the same as that of the conventional example shown in FIG. 6, except for the lamp 31 of the light source 30.

ただし、光合成手段46の赤反射多層膜51.52の特
性、青反射多層膜53.54の特性はそれぞれ同一であ
る。理想的に光源30から出射する光束が光軸37に完
全に平行であった場合、多層膜51.52.53.54
へ入射する光の入射角は45度となる。
However, the characteristics of the red reflective multilayer films 51 and 52 and the characteristics of the blue reflective multilayer films 53 and 54 of the light combining means 46 are the same. Ideally, if the light beam emitted from the light source 30 is completely parallel to the optical axis 37, the multilayer film 51, 52, 53, 54
The angle of incidence of light entering the is 45 degrees.

光源30はランプ31と、集光レンズ32と、凹面鏡3
3と、熱線吸収フィルタ34とから構成され、ランプ3
1はメタルハライドランプを用い、赤、緑、青の3原色
の色成分を含む光を放射する。ランプ31から放射され
る光は集光レンズ32と凹面鏡33とにより平行に近い
光に変換される。厳密には、ランプ31の発光体35の
中心36から出る光線が集光レンズ32から光軸37と
平行に出射するようにしである。
The light source 30 includes a lamp 31, a condensing lens 32, and a concave mirror 3.
3 and a heat ray absorption filter 34.
1 uses a metal halide lamp and emits light containing the three primary color components of red, green, and blue. Light emitted from the lamp 31 is converted into nearly parallel light by a condenser lens 32 and a concave mirror 33. Strictly speaking, the light rays emitted from the center 36 of the light emitter 35 of the lamp 31 are emitted from the condenser lens 32 in parallel to the optical axis 37.

集光レンズ32から出た光は熱線吸収フィルタ34によ
り赤外線が除去される。
Infrared rays of the light emitted from the condensing lens 32 are removed by a heat ray absorption filter 34.

光源30の出力光は色分解手段38に入射し、90度に
交差した赤反射グイクロイックミラー48及び青反射ダ
イクロイックミラー49.50により、赤、緑、青の光
に分解される。分解された各色光の分光エネルギー分布
はランプ31から出射する光束の分光エネルギー分布と
、赤反射及び青反射ダイクロイックミラー48.49.
50の分光特性により決定される。色分解手段38を出
た赤の光は平面ミラー39.40を介して、緑の光は直
進して、青の光は平面ミラー41.42を介して、それ
ぞれ対応するライトパルプ43.44.45に入射する
The output light from the light source 30 enters the color separation means 38, and is separated into red, green, and blue light by a red reflective dichroic mirror 48 and a blue reflective dichroic mirror 49, 50 which intersect at 90 degrees. The spectral energy distribution of each separated color light is the spectral energy distribution of the luminous flux emitted from the lamp 31, and the red reflection and blue reflection dichroic mirrors 48, 49.
It is determined by the spectral characteristics of 50. Red light exiting the color separation means 38 passes through plane mirrors 39, 40, green lights go straight, and blue lights pass through plane mirrors 41, 42, respectively, to the corresponding light pulps 43, 44, . 45.

ライトバルブ43.44.45からの出力光は光合成手
段46により1つに合成されて、実質的にライトパルプ
44の位置社カラー画像が合成される。このカラー画像
は投写レンズ47によりスクリーン(図示せず)上に拡
大投写される。
The output lights from the light valves 43, 44, and 45 are combined into one by a light combining means 46 to essentially create a color image of the light pulp 44. This color image is enlarged and projected onto a screen (not shown) by a projection lens 47.

ライトパルプ43.44.45は透過型の液晶パネルで
あって、入射側と出射側に偏光板を存し、映像信号に応
じて透過率の変化として光学像を形成する。赤及び青の
ライトパルプ43.45の出射側偏光板の偏光軸は紙面
に対して垂直に、緑のライトバルブ44の出射側偏光板
の偏光軸は紙面に対して平行に設定している。よって、
各ライトパルプの出射光は直線偏光であり、多層膜51
.52.53.54に対して、赤及び青のライトパルプ
43.45から出射する光はS偏光で入射し、緑のライ
トバルブ44から出射する光はP偏光で入射する。各ラ
イトバルブの入射側偏光板の偏光軸は、液晶パネルの特
性に応じてそれぞれ任意の方向がとられる。第2図に緑
のライトバルブ44から出射する光の分光エネルギー分
布の一例を、第3図に赤及び青のライトバルブ43.4
5から出射する光の分光エネルギー分布の一例をそれぞ
れ示す。これらの構成によると、ライトバルブ43.4
4.45から出射し光合成手段46に入射する各色光の
帯域は、赤の光が580nmから700nm 、緑の光
が500nmから580nm、青の光が400nmから
500nmの範囲となる。
The Light Pulp 43, 44, and 45 are transmissive liquid crystal panels that have polarizing plates on the incident side and the output side, and form an optical image as a change in transmittance according to a video signal. The polarizing axes of the polarizing plates on the output side of the red and blue light pulps 43 and 45 are set perpendicular to the plane of the paper, and the polarizing axes of the polarizing plates on the output side of the green light valve 44 are set parallel to the plane of the paper. Therefore,
The emitted light of each light pulp is linearly polarized light, and the multilayer film 51
.. 52, 53, and 54, the light emitted from the red and blue light pulps 43.45 enters as S-polarized light, and the light emitted from the green light valve 44 enters as P-polarized light. The polarization axis of the incident-side polarizing plate of each light valve is set in an arbitrary direction depending on the characteristics of the liquid crystal panel. Figure 2 shows an example of the spectral energy distribution of light emitted from the green light valve 44, and Figure 3 shows the red and blue light valves 43.4.
An example of the spectral energy distribution of light emitted from 5 is shown. According to these configurations, the light valve 43.4
The bands of each color light emitted from 4.45 and incident on the light combining means 46 are from 580 nm to 700 nm for red light, from 500 nm to 580 nm for green light, and from 400 nm to 500 nm for blue light.

光合成手段46は、赤反射及び青反射多層膜51.52
.53.54のS偏光のカットオフ波長が緑の波長帯域
で非常に近接していることを特徴とするプリズム型グイ
クロイックミラーで構成されている。
The light synthesizing means 46 includes red reflective and blue reflective multilayer films 51 and 52.
.. It is composed of a prism-type gicchroic mirror characterized in that the cutoff wavelengths of S-polarized light of 53 and 54 are very close to each other in the green wavelength band.

一般にプリズム型のグイクロイックミラーにおいて、プ
リズムを構成する材質、多層膜の材質及び構成を適当に
選択すれば、赤反射多層膜のP偏光入射のカットオフ波
長がS偏光入射のカットオフ波長から長波長側に約80
nmずれる。同様に青反射多層膜のP偏光入射のカット
オフ波長がS偏光入射のカットオフ波長から短波長側に
約70nmずれる。
In general, in a prism-type gicroic mirror, if the material constituting the prism and the material and structure of the multilayer film are appropriately selected, the cutoff wavelength of the P-polarized light incident on the red reflective multilayer film can be changed from the cutoff wavelength of the S-polarized light incident. Approximately 80 on the long wavelength side
It shifts by nm. Similarly, the cutoff wavelength of the P-polarized light incident on the blue reflective multilayer film is shifted from the cutoff wavelength of the S-polarized light incident to the shorter wavelength side by about 70 nm.

第4図に光合成手段46の赤反射多層膜51.52の分
光反射率特性を示す。実線がP偏光入射の特性を、破線
がS偏光入射の特性である。カットオフ波長はS偏光入
射が540nm、 P偏光入射が620nmである。同
様に第5図に青反射多層膜53.54の分光反射率特性
を示す。カットオフ波長はS偏光入射が530nm 、
 P偏光入射が460nmである。ここで、100%か
ら反射率を引いた値を透過率と考えてよく、入射角はど
ちらも45度である。
FIG. 4 shows the spectral reflectance characteristics of the red reflective multilayer films 51 and 52 of the photosynthesis means 46. The solid line represents the characteristic when P-polarized light is incident, and the broken line represents the characteristic when S-polarized light is incident. The cutoff wavelength is 540 nm for S-polarized light incidence and 620 nm for P-polarized light incidence. Similarly, FIG. 5 shows the spectral reflectance characteristics of the blue reflective multilayer films 53 and 54. The cutoff wavelength is 530 nm for S-polarized light incident.
P-polarized light incidence is 460 nm. Here, the value obtained by subtracting the reflectance from 100% may be considered to be the transmittance, and the incident angle is 45 degrees in both cases.

以上の構成から、光合成手段46はカットオフ波長を用
いて表現すると、S偏光入射の赤の光について540n
mから700nmの波長範囲の光を反射させ、P偏光入
射の緑の光について460r+mから62Or+mの波
長範囲の光を透過させ、S偏光入射の青の光について4
00nmから530nmの波長範囲の光を反射させる。
From the above configuration, the light combining means 46 is expressed using a cutoff wavelength of 540 nm for S-polarized incident red light.
Reflects light in the wavelength range from m to 700 nm, transmits light in the wavelength range from 460r+m to 62Or+m for green light with P-polarized incidence, and transmits light in the wavelength range of 460r+m to 62Or+m with respect to S-polarized incident blue light.
Reflects light in the wavelength range of 00 nm to 530 nm.

従って、光合成手段46の有効帯域は入射する各色光の
帯域に比べて十分広く、各色光を効率良く合成すること
ができ、高い光利用効率が得られる。
Therefore, the effective band of the light combining means 46 is sufficiently wider than the band of each incident color light, and each color light can be efficiently combined, resulting in high light utilization efficiency.

また、多層膜5152.53.54は、光の入射角が4
5度から±5度変化した時カットオフ波長が±25nm
程度シフトする。その結果、光合成手段46の各色光に
対する有効帯域が狭くなる場合が発生するが、シフトし
ない場合の有効帯域が入射する各色光の帯域に比べて十
分広いので、光利用効率の低下や投写画像の明るさ及び
色の均一性の低下は非常に少ない。以上のことは、光源
30にメタルハライドランプのように発光体長の長いラ
ンプを用いた場合に顕著に発生し、上記効果により投写
画像の画質劣化が低減でき、光利用効率の向上がはかれ
る。更に、メタルハライドランプは、キセノンランプや
ハロゲンランプに比較して長寿命であり効率も高いので
都合がよい。
In addition, the multilayer film 5152, 53, 54 has a light incident angle of 4
When changing from 5 degrees to ±5 degrees, the cutoff wavelength is ±25 nm.
shift in degree. As a result, the effective band for each color light of the light combining means 46 may be narrowed, but since the effective band without shifting is sufficiently wide compared to the band of each incident color light, the light utilization efficiency may be reduced or the projected image may be There is very little reduction in brightness and color uniformity. The above problem occurs significantly when a lamp with a long light emitting body length, such as a metal halide lamp, is used as the light source 30, and the above effects can reduce the deterioration of the image quality of the projected image and improve the light utilization efficiency. Furthermore, metal halide lamps are advantageous because they have a longer lifespan and higher efficiency than xenon lamps and halogen lamps.

次に、本発明の他の一実施例について説明する。Next, another embodiment of the present invention will be described.

第1図に示す構成においては、光源30と色分解手段3
8と平面ミラー39.40.41.42を用いて照明手
段を構成したが、赤、緑、青のライトバルブ43.44
.45に三原色の色光を照射する構成であればどのよう
な構成であってもよい。例えば、光源を複数用いること
も可能である。また、三原色の色光を得る手段として、
ダイクロインクフィルタ等のカラーフィルタを用いるこ
とも可能である。照明手段をどのような構成にしても、
緑のライトバルブ44の出射光は光合成手段46を直進
して、赤及び青のライトバルブ43.45の出射光は光
合成手段46において折り曲げられて、投写レンズ47
に各色光が入射する構成にすれば、第1図に示した構成
と同様の効果を得ることができる。
In the configuration shown in FIG.
8 and a plane mirror 39, 40, 41, 42 were used to construct the illumination means, and red, green, and blue light valves 43, 44
.. Any structure may be used as long as it irradiates light of three primary colors onto the light source 45. For example, it is also possible to use multiple light sources. In addition, as a means of obtaining colored light of the three primary colors,
It is also possible to use a color filter such as a dichroic ink filter. Regardless of the configuration of the lighting means,
The light emitted from the green light valve 44 goes straight through the light combining means 46 , and the light emitted from the red and blue light valves 43 , 45 is bent by the light combining means 46 and passes through the projection lens 47 .
If the structure is such that each color light is incident on the light source, the same effect as the structure shown in FIG. 1 can be obtained.

発明の効果 以上述べたごとく本発明によれば、光合成手段を構成す
るプリズム型のグイクロイックミラーの分光特性を最適
に設定し、ライトバルブから出射する光の偏光方向を適
当に選択し、光合成手段の各多層膜のカットオフ波長が
、赤、緑、青の各ライトバルブから出射する光の帯域よ
り十分離れるようにしているので、各色光を効率良く1
つに合成することができ、投写画像の画質の劣化を低減
させることが可能となる。それにより投写画像の明るさ
及び色の均一性が良好でしかも光出力の大きい投写型表
示装置を提供することができ、非常に大きな効果がある
Effects of the Invention As described above, according to the present invention, the spectral characteristics of the prism-type gicroic mirror constituting the photosynthesis means are set optimally, the polarization direction of the light emitted from the light valve is appropriately selected, and the photosynthesis is performed. Since the cutoff wavelength of each multilayer film of the means is set sufficiently apart from the band of light emitted from each of the red, green, and blue light valves, each color light is efficiently divided into one.
Therefore, it is possible to reduce the deterioration of the image quality of the projected image. As a result, it is possible to provide a projection type display device with good brightness and color uniformity of projected images and high light output, which has a very large effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における投写型表示装置の構
成を示す略構成図、第2図は緑のライトバルブから出射
する光の分光エネルギー分布の一例を示すグラフ、第3
図は赤及び青のライトバルブから出射する光の分光エネ
ルギー分布の一例を示すグラフ、第4図は第1図に示し
た光合成手段の赤反射多層膜の分光特性を示すグラフ、
第5図は第1図に示した光合成手段の青反射多層膜の分
光特性を示すグラフ、第6図は従来の投写型表示装置の
構成を示す略構成図である。 30・・・・・・光源、38・・・・・・色分解手段、
39.40.41.42・・・・・・折り返しミラー、
43.44.45・・・・・・ライトバルブ、46・・
・・・・光合成手段、47・・・・・・投写レンズ。 代理人の氏名 弁理士 中尾敏男 はか1名区   芸
H井碕゛七− 七 H衝e′斗− 区 豐    嶌−併巳 東曹瞥巳
FIG. 1 is a schematic configuration diagram showing the configuration of a projection display device according to an embodiment of the present invention, FIG. 2 is a graph showing an example of the spectral energy distribution of light emitted from a green light valve, and FIG.
The figure is a graph showing an example of the spectral energy distribution of light emitted from the red and blue light valves, FIG. 4 is a graph showing the spectral characteristics of the red reflective multilayer film of the photosynthesis means shown in FIG. 1,
FIG. 5 is a graph showing the spectral characteristics of the blue reflective multilayer film of the photosynthesis means shown in FIG. 1, and FIG. 6 is a schematic diagram showing the structure of a conventional projection display device. 30... Light source, 38... Color separation means,
39.40.41.42... folding mirror,
43.44.45...Light bulb, 46...
...Photosynthesis means, 47...Projection lens. Name of agent: Patent attorney Toshio Nakao

Claims (2)

【特許請求の範囲】[Claims] (1)映像信号に応じて光学像が形成され空間的に変調
された直線偏光の光が出射する赤、緑、青のライトバル
ブと、対応する各色光を前記赤、緑、青のライトバルブ
に照射する照明手段と、赤反射及び青反射多層膜をX字
状に交差させたプリズム型のダイクロイックミラーであ
って前記各ライトバルブから出射する光を1つに合成す
る光合成手段と、前記光合成手段から出射する光を受け
前記ライトバルブの光学像をスクリーン上に投写する投
写レンズとを備え、前記緑のライトバルブから出射する
光は前記光合成手段を直進して前記投写レンズに入射し
、前記赤反射多層膜はS偏光のカットオフ波長が540
nm以上560nm以下であり、前記青反射多層膜はS
偏光のカットオフ波長が510nm以上540nm以下
であり、前記緑のライトバルブから出射する光はP偏光
で前記赤反射及び青反射多層膜に入射し、前記赤及び青
のライトバルブから出射する光はS偏光で前記赤反射及
び青反射多層膜に入射するようにした投写型表示装置。
(1) Red, green, and blue light valves from which an optical image is formed according to a video signal and spatially modulated linearly polarized light is emitted; an illumination means for irradiating the light to the light source; a light synthesis means that is a prism-type dichroic mirror in which red reflective and blue reflective multilayer films are crossed in an X-shape and that combines the lights emitted from each of the light valves into one; a projection lens that receives light emitted from the means and projects an optical image of the light valve onto a screen; the light emitted from the green light valve passes straight through the light combining means and enters the projection lens; The red reflective multilayer film has a cutoff wavelength of 540 for S-polarized light.
nm or more and 560 nm or less, and the blue reflective multilayer film is S
The cutoff wavelength of polarized light is 510 nm or more and 540 nm or less, the light emitted from the green light valve is P-polarized and enters the red reflective and blue reflective multilayer films, and the light emitted from the red and blue light valves is P-polarized light. A projection type display device in which S-polarized light is incident on the red reflective and blue reflective multilayer films.
(2)光源にメタルハライドランプを用いた請求項(1
)記載の投写型表示装置。
(2) Claim (1) in which a metal halide lamp is used as the light source
) projection type display device.
JP63133259A 1988-05-31 1988-05-31 Projection display device Expired - Lifetime JPH068985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133259A JPH068985B2 (en) 1988-05-31 1988-05-31 Projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133259A JPH068985B2 (en) 1988-05-31 1988-05-31 Projection display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7008160A Division JP2643893B2 (en) 1995-01-23 1995-01-23 Projection display device

Publications (2)

Publication Number Publication Date
JPH01302385A true JPH01302385A (en) 1989-12-06
JPH068985B2 JPH068985B2 (en) 1994-02-02

Family

ID=15100436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133259A Expired - Lifetime JPH068985B2 (en) 1988-05-31 1988-05-31 Projection display device

Country Status (1)

Country Link
JP (1) JPH068985B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518111A1 (en) * 1991-05-29 1992-12-16 Matsushita Electric Industrial Co., Ltd. Projection image display system
JPH07120749A (en) * 1993-09-03 1995-05-12 Nec Corp Liquid crystal projector device
US5973840A (en) * 1996-10-30 1999-10-26 Seiko Epson Corporation Projection display and illuminating optical system for it
US6089718A (en) * 1996-10-30 2000-07-18 Seiko Epson Corporation Projection display device
US6101040A (en) * 1997-03-28 2000-08-08 Seiko Epson Corporation Illumination optical system and projection-type display apparatus
US6152566A (en) * 1996-10-30 2000-11-28 Seiko Epson Corporation Projector for modulating polarized luminous flux
US6972809B2 (en) 2001-12-20 2005-12-06 Sharp Kabushiki Kaisha Path shifting optical device having polarization correcting section and optical display system including same
CN100413347C (en) * 1996-10-30 2008-08-20 精工爱普生株式会社 Projection display and illuminating optical system therefor
JP2010513946A (en) * 2006-12-13 2010-04-30 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Multiple primary LED projection system
WO2011037026A1 (en) 2009-09-28 2011-03-31 日本電気株式会社 Illumination device and projection display device using same
WO2011037014A1 (en) 2009-09-28 2011-03-31 日本電気株式会社 Color synthesis optical element, projection display device using same, and method for controlling display thereof
US11209579B2 (en) 2018-07-03 2021-12-28 Seiko Epson Corporation Cross dichroic prism, image display module, and image display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259919A (en) * 1985-09-10 1987-03-16 Seiko Epson Corp Projection type color display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259919A (en) * 1985-09-10 1987-03-16 Seiko Epson Corp Projection type color display device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518111A1 (en) * 1991-05-29 1992-12-16 Matsushita Electric Industrial Co., Ltd. Projection image display system
US5357370A (en) * 1991-05-29 1994-10-18 Matsushita Electric Industrial Co., Ltd. Polarizer and light valve image projector having the polarizer
JPH07120749A (en) * 1993-09-03 1995-05-12 Nec Corp Liquid crystal projector device
USRE38225E1 (en) * 1996-10-30 2003-08-19 Seiko Epson Corporation Projection display and illuminating optical system for it
US5973840A (en) * 1996-10-30 1999-10-26 Seiko Epson Corporation Projection display and illuminating optical system for it
CN100413347C (en) * 1996-10-30 2008-08-20 精工爱普生株式会社 Projection display and illuminating optical system therefor
US6152566A (en) * 1996-10-30 2000-11-28 Seiko Epson Corporation Projector for modulating polarized luminous flux
US6089718A (en) * 1996-10-30 2000-07-18 Seiko Epson Corporation Projection display device
US6204972B1 (en) 1997-03-28 2001-03-20 Seiko Epson Corporation Illumination optical system and projection-type display apparatus
US6101040A (en) * 1997-03-28 2000-08-08 Seiko Epson Corporation Illumination optical system and projection-type display apparatus
US6972809B2 (en) 2001-12-20 2005-12-06 Sharp Kabushiki Kaisha Path shifting optical device having polarization correcting section and optical display system including same
JP2010513946A (en) * 2006-12-13 2010-04-30 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Multiple primary LED projection system
WO2011037026A1 (en) 2009-09-28 2011-03-31 日本電気株式会社 Illumination device and projection display device using same
WO2011037014A1 (en) 2009-09-28 2011-03-31 日本電気株式会社 Color synthesis optical element, projection display device using same, and method for controlling display thereof
US9400419B2 (en) 2009-09-28 2016-07-26 Nec Corporation Illumination device and projection display device using same
US9429761B2 (en) 2009-09-28 2016-08-30 Nec Corporation Color synthesis optical element, projection-type display device using same, and method for controlling display thereof
US9819919B2 (en) 2009-09-28 2017-11-14 Nec Corporation Illumination device and projection display device using same
US11209579B2 (en) 2018-07-03 2021-12-28 Seiko Epson Corporation Cross dichroic prism, image display module, and image display device
US11733438B2 (en) 2018-07-03 2023-08-22 Seiko Epson Corporation Cross dichroic prism, image display module, and image display device

Also Published As

Publication number Publication date
JPH068985B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JP3747621B2 (en) Color projection display device
JP2738324B2 (en) Projection type liquid crystal display
JPH01302385A (en) Projection type display
JP2003075777A (en) Projection device
JP2006251556A (en) Projection display device
JPH08510335A (en) Immersion dichroic system for projection single lens video projector
JP2002169221A (en) Projector and polarization converter
JP3654798B2 (en) Image display device and lighting device
JPH0756167A (en) Polarization light source and projection type liquid crystal display device using the same
JPH11119151A (en) Light source device and projection device
JP3335885B2 (en) Polarized illumination device and projection type liquid crystal display device
JP3437035B2 (en) Single polarization conversion element and projection display device
EP1355500B1 (en) Single panel color projection display apparatus
JP2643893B2 (en) Projection display device
JP2007233121A (en) Illuminating apparatus and projector
JP2005284307A (en) Image display device
JPS63216025A (en) Projection type color display device
JP3637931B2 (en) Projector device
JP4631422B2 (en) projector
JPH03208013A (en) Polarized light illuminating system for liquid crystal video projector
JPH02245749A (en) Projection type display device
JP2005165137A (en) Illuminating optical system and image display device
JP2005258469A (en) Lighting unit
JP2007249136A (en) Illuminator and projector
JP2007193119A (en) Illumination apparatus and projector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 15