JPH01302203A - Infrared transmittable optical material - Google Patents

Infrared transmittable optical material

Info

Publication number
JPH01302203A
JPH01302203A JP63132366A JP13236688A JPH01302203A JP H01302203 A JPH01302203 A JP H01302203A JP 63132366 A JP63132366 A JP 63132366A JP 13236688 A JP13236688 A JP 13236688A JP H01302203 A JPH01302203 A JP H01302203A
Authority
JP
Japan
Prior art keywords
carbon film
infrared
carbon
hydrogen
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63132366A
Other languages
Japanese (ja)
Inventor
Tomio Kazahaya
風早 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP63132366A priority Critical patent/JPH01302203A/en
Publication of JPH01302203A publication Critical patent/JPH01302203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the IR transmittable material having high mechanical strength and excellent durability by forming a carbon film contg. a specific element to one face of a base material consisting of the IR transmittable material. CONSTITUTION:The carbon film 2 contg. hydrogen or group VII element is formed on at least one face of the base material 1 consisting or the IR transmittable material and is so formed that the concn. of the hydrogen or the group VII element is decreased continuously from the base material side to the front surface side. A diamond-like carbon film or plasma-polymerized carbon film is used as the carbon film 2. Since the concn. of the hydrogen or the group VII element is high on the base material side in such a manner, the carbon hardness is low and the internal stress is small. The adhesive property is thus enhanced. Conversely, the concn. is low on the front surface side and, therefore, the hardness is high and the internal stress is large. The mechanical strength is consequently high and the durability is improved. This material is thus used effectively for IR optical apparatus.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、赤外線透過性光学材に関し、赤外線光学機器
、例えば赤外線吸収測定器、赤外線検出素子、赤外線レ
ーザ等の窓材として利用することができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an infrared-transmissive optical material, which can be used as a window material for infrared optical instruments, such as infrared absorption measuring instruments, infrared detection elements, and infrared lasers. can.

[従来の技術] 近年、赤外線を利用した赤外線光学機器は、通信、制御
、測定などの広い分野で使用されている。
[Background Art] In recent years, infrared optical devices that utilize infrared rays have been used in a wide range of fields such as communication, control, and measurement.

そして、この種の赤外線光学機器にはセンサ部分に赤外
線を導くための、赤外線を透過する窓材が設けられてい
る.従来、この赤外線透過性光学窓材の材料として、一
般にSi  O!、Zn Se、Ge,SI、ポリエチ
レン等が使用され、特に赤外線領域の広範囲にわたって
透過性が優れた材料として、KBr 、Na C IS
Na F,Li  F。
This type of infrared optical equipment is equipped with a window material that transmits infrared rays to guide the infrared rays to the sensor part. Conventionally, SiO! is generally used as the material for this infrared transmitting optical window material. , Zn Se, Ge, SI, polyethylene, etc. are used, and KBr, Na CIS, etc. are used as materials with excellent transparency over a wide range of infrared regions.
NaF, LiF.

Ca Fz 、KC l, K!、Cs Br 、Cs
  T等のハロゲン化アルカリが使用されている。
Ca Fz, KC l, K! , Cs Br , Cs
Alkali halides such as T are used.

[発明が解決しようとする課題] 上述したKBr 、Na C I、Na F,Li  
F。
[Problem to be solved by the invention] The above-mentioned KBr, Na C I, Na F, Li
F.

Ca Fz 、KC l.、K I、CsBr,Csl
等のハロゲン化アルカリより成る赤外線透過性光学窓材
は、赤外線の透過性には優れているが、機械的強度が充
分ではなく、また潮解性を有するので、耐環境性及び耐
久性に劣るという欠点があった。
Ca Fz, KC l. , K I, CsBr, Csl
Infrared-transmitting optical window materials made of alkali halides such as halogenated alkali have excellent infrared transmittance, but they do not have sufficient mechanical strength and are deliquescent, so they have poor environmental resistance and durability. There were drawbacks.

このような、問題点を解決するために、従来の赤外線透
過性基材の表面に硬質カーボン、即ちダイヤモンド又は
ダイヤモンド状カーボンの膜を形成した赤外線透過性光
学窓材が提案されている。しかし、このような窓材によ
れば、赤外線透過性基材と硬質カーボン膜との密着性が
悪く、耐久性の点では依然として問題が残り、実用に充
分耐え得る窓材ではなかった。
In order to solve these problems, an infrared transparent optical window material has been proposed in which a film of hard carbon, ie, diamond or diamond-like carbon, is formed on the surface of a conventional infrared transparent base material. However, with such a window material, the adhesion between the infrared transmitting base material and the hard carbon film was poor, and problems still remained in terms of durability, and the window material was not sufficiently durable for practical use.

本発明は、機械的強度、耐久性等に優れた赤外線透過性
光学材を提供することを目的とする。
An object of the present invention is to provide an infrared transmitting optical material having excellent mechanical strength, durability, and the like.

[課題を解決するための手段1 本発明に係る赤外線透過性光学材は、赤外線透過性物質
より成る基材の少なくとも一方の面に水素及び/又は第
■族元素を含有するカーボン膜を形成し、水素及び/又
は第■族元素(フッ素、塩素、臭素等)の濃度を基材側
から表面側に連続的に又は段階的に減少させたことを特
徴とする。
[Means for Solving the Problems 1] The infrared-transparent optical material according to the present invention comprises forming a carbon film containing hydrogen and/or a group (I) element on at least one surface of a base material made of an infrared-transparent substance. , the concentration of hydrogen and/or Group Ⅰ elements (fluorine, chlorine, bromine, etc.) is reduced continuously or stepwise from the base material side to the surface side.

第■族元素として、一種類又は任意の複数の種類の元素
が含まれていても良い0、なお、水素及び第■族元素を
含有する場合、一方の水素(又は第■族元素)の濃度を
均一にして他方の第■族元素(又は水素)の濃度だけを
連続的に又は段階的に減少させる場合も含む。
One or more arbitrary types of elements may be included as the Group ■ element.0 If hydrogen and Group ■ elements are contained, the concentration of one of the hydrogens (or the Group ■ element) It also includes a case where only the concentration of the other group Ⅰ element (or hydrogen) is reduced continuously or stepwise while making the other group Ⅰ element (or hydrogen) uniform.

そして、この赤外線透過性光学材において、カーボン膜
をダイヤモンド状カーボン膜(ダイヤモンド構造を含む
カーボン膜)及び/又はプラズマ重合カーボン膜とする
In this infrared-transparent optical material, the carbon film is a diamond-like carbon film (a carbon film containing a diamond structure) and/or a plasma-polymerized carbon film.

基材として用いる赤外線透過性物質としては、例えば−
船釣なSi Ox 、Zn Se 、 Ge 、 Si
、ポリエチレン等の他、特に赤外線領域の広範囲にわた
って透過性が優れた物質として、KBr。
Examples of the infrared transparent substance used as the base material include -
Boat fishing Si Ox, Zn Se, Ge, Si
, polyethylene, etc., as well as KBr, which has excellent transmittance over a wide range of infrared regions.

Na C1、Na FSLi  F、Ca F、 、K
CI。
Na C1, Na FSLi F, Ca F, , K
C.I.

K l5Cs Br 、Cs  I、A!!S es 
、KR3〜5、KR3−6等を挙げることができる。
K l5Cs Br , Cs I, A! ! S es
, KR3-5, KR3-6, and the like.

カーボン膜を形成するための炭素源としては、例えばメ
タン、エタン、プロパン、ブタン、ペンタン、ヘキサン
等のアルカン類、エチレン、プロピレン、ブテン、ペン
テン、ブタジェン等のアルケン類、アセチレン等のアル
キン類、ベンゼン、トルエン、キシレン、インデン、ナ
フタレン、フェナントレン等の芳香族炭化水素類、シク
ロプルパン、シクロヘキセン等のシクロパラフィン類、
シクロペンテン、シクロヘキセン等のシクロオレフィン
類、アセトン、ベンゾフェノン等のケトン類などを挙げ
ることができる。また、この他に一酸化炭素、二酸化炭
素、メチルアルコール等の含酸素炭素化合物、メチルア
ミン、エチルアミン、アニリン等の含窒素炭素化合物な
ども使用することができる。これらの炭素源は、一種類
を単独で用いても良く、又は2種類以上を併用しても良
い。
Examples of carbon sources for forming the carbon film include alkanes such as methane, ethane, propane, butane, pentane, and hexane, alkenes such as ethylene, propylene, butene, pentene, and butadiene, alkynes such as acetylene, and benzene. , aromatic hydrocarbons such as toluene, xylene, indene, naphthalene, and phenanthrene; cycloparaffins such as cyclopurpane and cyclohexene;
Examples include cycloolefins such as cyclopentene and cyclohexene, and ketones such as acetone and benzophenone. In addition, oxygen-containing carbon compounds such as carbon monoxide, carbon dioxide, and methyl alcohol, and nitrogen-containing carbon compounds such as methylamine, ethylamine, and aniline can also be used. These carbon sources may be used alone or in combination of two or more.

これらの中でも特に好ましいのは、メタン、エタン、プ
ロパン等のパラフィン系炭化水素、アセトン、ベンゾフ
ェノン等のケトン類及び−酸化炭素、メチルアルコール
等の含酸素炭素化合物である。
Particularly preferred among these are paraffin hydrocarbons such as methane, ethane and propane, ketones such as acetone and benzophenone, and oxygen-containing carbon compounds such as carbon oxide and methyl alcohol.

第■族元素源としては、C1x 、Ft 、B rz、
HCI等の一種のみ又はこれらの中の二種以上を使用す
ることができる。
Group ■ element sources include C1x, Ft, B rz,
Only one type of HCI or the like or two or more types thereof can be used.

又は、炭素源と第■族元素源とが同一化合物中に含まれ
た、例えばCClx F−x 、 CH,C1a−x 
 、  CH’ll  B  ra−x  、 CHX
  F4−X  、 CFX  Bra−++ 、CC
Iw  B ra−K  (x=0〜4)等を使用する
こともできる。
Or, the carbon source and the Group Ⅰ element source are contained in the same compound, for example, CClx F-x, CH, C1a-x
, CH'll Bra-x, CHX
F4-X, CFX Bra-++, CC
Iw Bra-K (x=0 to 4), etc. can also be used.

使用する原料の組成比(原子比)としては、水素/炭素
を1以上、第■族元素/炭素を1以上、好ましくは2以
上、(水素+第■族元素)/炭素を1以上、好ましくは
2以上とする。
The composition ratio (atomic ratio) of the raw materials used is hydrogen/carbon of 1 or more, group (III) element/carbon of 1 or more, preferably 2 or more, (hydrogen + group (III) element)/carbon of 1 or more, preferably shall be 2 or more.

また、原料ガスにキャリアガスを混合してもよい、この
キャリアガスは、炭素源ガスをプラズマ反応系に導入す
るキャリアとしての役割だけではなく、プラズマを安定
に発生させ、持続させる役割も果たす、このようなキャ
リアガスとしては、アルゴンガス、ネオンガス、ヘリウ
ムガス、キセノンガス、窒素ガスなどを用いることがで
きる。
In addition, a carrier gas may be mixed with the raw material gas, and this carrier gas not only plays the role of a carrier for introducing the carbon source gas into the plasma reaction system, but also plays the role of stably generating and sustaining plasma. As such a carrier gas, argon gas, neon gas, helium gas, xenon gas, nitrogen gas, etc. can be used.

これらは、一種類を単独で用いてもよく、又は二種類以
上を組み合わせてもよい。
These may be used alone or in combination of two or more.

上記キャリアガスの中でも、特に窒素ガス、アルゴンガ
スなどが好ましい。
Among the carrier gases mentioned above, nitrogen gas, argon gas, etc. are particularly preferred.

そして、反応ガスとして、前述の炭素Biス、水素ガス
及び/又は第■族元素源ガス等の混合ガスを使用し、高
周波プラズマCVD法、直流プラズマCVD法、イオン
ブレーティング法等により、ダイヤモンド状カーボン膜
又はプラズマ重合カーボン膜又は両者を赤外線透過性基
材の表面に形成する。
Then, using a mixed gas such as the above-mentioned carbon Bi gas, hydrogen gas, and/or Group Ⅰ element source gas as a reaction gas, diamond-shaped A carbon film, a plasma polymerized carbon film, or both are formed on the surface of an infrared transparent substrate.

なお、RFプラズマCVD法による場合、反応圧力、即
ち反応室内の圧力は、通常104〜10’Torr、好
ましくは10−’〜10” T 。
In addition, when using the RF plasma CVD method, the reaction pressure, that is, the pressure inside the reaction chamber, is usually 10 4 to 10' Torr, preferably 10 -' to 10'' T.

rrである。この反応圧力が、10−’Torrより低
い場合には、カーボン膜の生成速度が著しく遅くなるこ
とがある。一方、103よりも高い場合にはカーボン膜
が形成されないことがある。
It is rr. If this reaction pressure is lower than 10-'Torr, the rate of carbon film formation may be significantly slowed down. On the other hand, if it is higher than 103, the carbon film may not be formed.

更に、赤外線透過性物質より成る基材の加熱温度は、通
常室温〜600°C1好ましくは室温〜400°Cであ
る。この温度が室温よりも低い場合には、カーボン膜が
形成されないことがある。
Further, the heating temperature of the base material made of an infrared transparent substance is usually room temperature to 600°C, preferably room temperature to 400°C. If this temperature is lower than room temperature, a carbon film may not be formed.

このダイヤモンド状カーボン膜の形成又はプラズマ重合
カーボン膜の形成は、合成条件(反応圧力等)を変える
ことにより制御することができる。
The formation of this diamond-like carbon film or plasma-polymerized carbon film can be controlled by changing the synthesis conditions (reaction pressure, etc.).

例えば反応圧力を小さくする之、合成される膜中の水素
及び/又は第■族元素の濃度が低くなり、ダイヤモンド
状カーボン膜となり易く、逆に反応圧力を大きくすると
、合成される膜中の水素及び/又は第■族元素の濃度が
高くなり、プラズマ重合カーボン膜となり易い。
For example, if the reaction pressure is lowered, the concentration of hydrogen and/or group Ⅰ elements in the film to be synthesized will be lowered, making it easier to form a diamond-like carbon film.On the other hand, if the reaction pressure is increased, the concentration of hydrogen and/or Group Ⅰ elements in the film to be synthesized will be lower, and on the other hand, if the reaction pressure is increased, the concentration of hydrogen and/or Group III elements in the film to be synthesized will be lower. And/or the concentration of group (Ⅰ) elements becomes high, making it easy to form a plasma-polymerized carbon film.

そして、このカーボン膜形成の際、反応装置内の反応圧
力、ガス組成、温度、投入電力等を制mすることにより
、カーボン膜中の水素及び/又は第■族元素の濃度を変
化させることが可能である。
When forming this carbon film, it is possible to change the concentration of hydrogen and/or Group Ⅰ elements in the carbon film by controlling the reaction pressure, gas composition, temperature, input power, etc. in the reactor. It is possible.

例えば、第1図に示すように、カーボン膜2形成の際、
装置内の例えば反応圧力を連続的に減少させることによ
り、膜2中の水素及び/又は第■族元素の濃度が基材l
側から表面側に連続的に減少したカーボン膜2が得られ
る。また、第2図に示すように、カーボン膜2形成の際
、装置内の反応圧力を例えば3段階に減少させることに
より、水素及び/又は第■族元素の濃度が基材1側から
表面側に段階的に減少した層2A、2B及び2Cより成
るカーボン膜2が得られる。
For example, as shown in FIG. 1, when forming the carbon film 2,
For example, by continuously decreasing the reaction pressure in the device, the concentration of hydrogen and/or group
A carbon film 2 is obtained which decreases continuously from the side to the surface. In addition, as shown in FIG. 2, when forming the carbon film 2, by reducing the reaction pressure in the apparatus in three steps, for example, the concentration of hydrogen and/or group A carbon film 2 is obtained consisting of layers 2A, 2B and 2C which are gradually reduced.

[作用〕 本発明に係る赤外線透過性光学材において、カーボン膜
中の水素及び/又は第■族元素の濃度が大きくなるとカ
ーボン膜の硬度が低くなって内部応力も小さくなり、逆
にカーボン層中の水素及び/又は第■族元素の濃度が小
さくなると膜の硬度が高くなって内部応力も大きくなる
。そこで、膜中に水素及び第■族元素を含有させ、基材
側から表面側に連続的に又は段階的に減少させることに
より、基材と接する部分の応力を小さくして基材との密
着性を高めることができると共に、表面側部分の硬度を
高くして耐久性と耐環境性を向上させることができる。
[Function] In the infrared-transmissive optical material according to the present invention, when the concentration of hydrogen and/or Group Ⅰ elements in the carbon film increases, the hardness of the carbon film decreases and the internal stress decreases; When the concentration of hydrogen and/or group Ⅰ elements becomes smaller, the hardness of the film becomes higher and the internal stress becomes larger. Therefore, by incorporating hydrogen and Group Ⅰ elements into the film and reducing them continuously or stepwise from the base material side to the surface side, the stress in the part that contacts the base material is reduced and the adhesion to the base material is improved. It is possible to improve durability and environmental resistance by increasing the hardness of the surface side portion.

「実施例〕 ス」1劃」− 第2図に示すように、KBrより成る直径40mm、厚
さ4mmの基材lを使用し、高周波プラズマCVD法に
より、炭素源としてメタンガスを203CC11、水素
ガスを20secm抗し、高周波電力を120W、基材
温度を100°Cとして、最初圧力0.70Torrの
条件下で厚さ300人のカーボン層2Aを形成し、次に
圧力0.30 T orrの条件下で厚さ300人のカ
ーボン層2Bを形成し、最後に圧力0.10 T or
rの条件下で厚さ900人のカーボン層2Cを形成する
ことにより、水素の濃度が基材1側から表面側に段階的
に減少した、膜厚1500人のカーボンW42をKBr
基材1の両面に形成して、本実施例に係る赤外線透過性
光学材を得た。
"Example" - As shown in Figure 2, a base material made of KBr with a diameter of 40 mm and a thickness of 4 mm was used, and methane gas was added as a carbon source to 203CC11 and hydrogen gas as a carbon source. A carbon layer 2A with a thickness of 300 mm was first formed at a pressure of 0.70 Torr, and then at a pressure of 0.30 Torr. Form a carbon layer 2B with a thickness of 300 mm at the bottom, and finally apply a pressure of 0.10 Torr.
By forming a carbon layer 2C with a thickness of 900 densities under the conditions of
It was formed on both sides of the base material 1 to obtain an infrared transmitting optical material according to this example.

このカーボン膜2を構成する各N2A〜2Cについて、
水素濃度及びヌープ硬度を測定した結果を下記表1に示
す、なお、これらの測定は、Si基板上にこれらの層2
A〜2Cを上記実施例と同じ条件で形成することにより
行った。また、水素濃度は、赤外吸収スペクトルに基づ
いて算出したものである。
Regarding each of N2A to 2C constituting this carbon film 2,
The results of measuring the hydrogen concentration and Knoop hardness are shown in Table 1 below.
A to 2C were formed under the same conditions as in the above example. Further, the hydrogen concentration was calculated based on an infrared absorption spectrum.

表1 第2図に示すように、KBrより成る直径40mm、厚
さ4■の基材1を使用し、高周波プラズマCVD法によ
り、炭素源としてメタンガスを20secm、水素ガス
を20scc+e及び第■族元素源としてCF、ガスを
lQsccm流し、高周波電力を120W、基材温度を
150″Cとして、最初圧力0.70 T orrの条
件下で厚さ500人のカーボン層2Aを形成し、次に圧
力Q、3Q T orrの条件下で厚さ500人のカー
ボン1li2Bを形成し、最後に圧力0.10Torr
の条件下で厚さ1000人のカーボンN2Cを形成する
ことにより、水素の濃度が基材l側から表面側に段階的
に減少した、膜厚2000人のカーボンII!42をK
Bri材1の両面に形成して、本実施例に係る赤外線透
過性光学材を得た。
Table 1 As shown in Fig. 2, a base material 1 made of KBr with a diameter of 40 mm and a thickness of 4 cm was used, and by high-frequency plasma CVD method, methane gas was added as a carbon source at 20 sec, hydrogen gas was added at 20 scc+e, and a group Using CF as a source, gas flowing at lQsccm, high frequency power of 120W, and substrate temperature of 150''C, a carbon layer 2A with a thickness of 500 mm was first formed under the condition of a pressure of 0.70 Torr, and then a pressure of Q , form carbon 1li2B with a thickness of 500 under the condition of 3Q Torr, and finally the pressure is 0.10 Torr.
By forming carbon N2C with a thickness of 1,000 people under the conditions of , the concentration of hydrogen decreased stepwise from the base material side to the surface side, and the film thickness of carbon II! 42 to K
It was formed on both sides of the Bri material 1 to obtain an infrared transmitting optical material according to this example.

このカーボン膜2を構成する各層2A〜2Cについて、
水素濃度、フッ素濃度及びヌープ硬度を測定した結果を
下記表2に示す、なお、これらの測定は、Si基根上に
これらのN2A〜2Cを上記実施例と同じ条件で形成す
ることにより行った。
Regarding each layer 2A to 2C constituting this carbon film 2,
The results of measuring hydrogen concentration, fluorine concentration, and Knoop hardness are shown in Table 2 below. These measurements were performed by forming these N2A to 2C on a Si base under the same conditions as in the above example.

また、水素濃度及びフッ素濃度は、赤外吸収スペクトル
に基づいて算出したものである。
Furthermore, the hydrogen concentration and fluorine concentration were calculated based on infrared absorption spectra.

表2 KBrより成る直径40mm、厚さ4mmの基材を使用
し、高周波プラズマCVD法により、炭素源としてメタ
ンガスを20secm、水素ガスを20scc■流し、
高周波電力を120W、基材温度を100°Cとして、
圧力0.70Torrの条件下で膜厚1500人のカー
ボン膜をKBrl材の両面に形成して、本比較例に係る
赤外線透過性光学材を得た。
Table 2 Using a base material made of KBr with a diameter of 40 mm and a thickness of 4 mm, 20 sec of methane gas and 20 scc of hydrogen gas were flowed as a carbon source by high-frequency plasma CVD method.
High frequency power is 120W, base material temperature is 100°C,
A carbon film having a thickness of 1500 mm was formed on both sides of the KBrl material under a pressure of 0.70 Torr to obtain an infrared transmitting optical material according to this comparative example.

1」■1i KBrより成る直径40mm、厚さ41111の基材を
使用し、高周波プラズマCVD法により、炭素源として
メタンガスを20secm、水素ガスを20secm流
し、高周波電力を120W、基材温度を100 ’Cと
して、圧力0.10 T orrの条件下で膜厚150
0人のカーボン膜をKBr基材の両面に形成して、本比
較例に係る赤外線透過性光学材を得た。
1''■1i Using a base material made of KBr with a diameter of 40 mm and a thickness of 41111 mm, methane gas was flowed for 20 sec as a carbon source, hydrogen gas was flowed for 20 sec as a carbon source, high frequency power was 120 W, and the base material temperature was 100' using the high frequency plasma CVD method. C, the film thickness is 150 at a pressure of 0.10 Torr.
An infrared-transmissive optical material according to this comparative example was obtained by forming carbon films on both sides of a KBr base material.

且JjLよ KBr より成る直径40mm、厚さ4■の基材を使用
し、高周波プラズマCVD法により、炭素源としてメタ
ンガスを20secm、水素ガスを20secm及び第
■族元素源としてCF、ガスを103CC−流し、高周
波電力を120W、基材温度を15o ’cとして、圧
力0.70 T orrの条、件下で膜厚2000人の
カーボン膜をKBr基材の両面に形成して、本比較例に
係る赤外線透過性光学材を得た。
Using a base material of JjL and KBr with a diameter of 40 mm and a thickness of 4 cm, 20 sec of methane gas as a carbon source, 20 sec of hydrogen gas as a source of group ① elements, and 103 CC- of gas as a source of group In this comparative example, a carbon film with a thickness of 2000 mm was formed on both sides of the KBr substrate under the following conditions: high frequency power of 120 W, substrate temperature of 15 o'c, and pressure of 0.70 Torr. Such an infrared-transparent optical material was obtained.

北且■土 KBrより成る直径40mm、厚さ4mmの基材を使用
し、高周波プラズマCVD法により、炭素源としてメタ
ンガスを203CCIm、水素ガスを20scca及び
第■族元素源としてCF、ガスを10seclI流し、
高周波電力を120W、基材温度を150°Cとして、
圧力0.10Torrの条件下で膜厚2000人のカー
ボン膜をKBr基材の両面に形成して、本比較例に係る
赤外線透過性光学材を得た。
Using a substrate with a diameter of 40 mm and a thickness of 4 mm made of KBr, 203 CCIm of methane gas as a carbon source, 20 scca of hydrogen gas, and 10 seclI of CF gas as a group element source were flowed using the high-frequency plasma CVD method. ,
High frequency power is 120W, base material temperature is 150°C,
A carbon film having a thickness of 2000 mm was formed on both sides of a KBr base material under a pressure of 0.10 Torr to obtain an infrared transmitting optical material according to this comparative example.

上記実施例1と2及び比較例1〜4に係る赤外線透過性
光学材について、密着性、赤外線吸収率及び耐環境性の
試験を行った。密着性試験は、スコッチテープ(商品名
)の剥離率を測定することにより行った。赤外線透過率
の測定は、赤外分光器を使用して行った。また、耐環境
性の試験は、温度40°C5湿度70%の雰囲気に10
日間放置した後、赤外線透過率の減少を測定することに
より行った。これらの測定結果を下記の表3に示す。
The infrared transmitting optical materials according to Examples 1 and 2 and Comparative Examples 1 to 4 were tested for adhesion, infrared absorption, and environmental resistance. The adhesion test was conducted by measuring the peeling rate of Scotch Tape (trade name). Measurement of infrared transmittance was performed using an infrared spectrometer. In addition, the environmental resistance test was conducted in an atmosphere with a temperature of 40°C and a humidity of 70%.
This was done by measuring the decrease in infrared transmittance after leaving the sample for a day. The results of these measurements are shown in Table 3 below.

この表3で赤外線吸収率の特性は、2900am−’付
近についてのものである。この表の総合評価で、Oは良
、△は並み、×は不良である。また、第3図に実施例1
、比較例1及び比較例2に係る赤外線透過性光学材の赤
外線透過率の測定結果を示す。
In Table 3, the infrared absorption rate characteristics are around 2900 am-'. In the overall evaluation in this table, O means good, Δ means average, and × means bad. In addition, Fig. 3 shows Example 1.
, shows the measurement results of the infrared transmittance of the infrared transmitting optical materials according to Comparative Example 1 and Comparative Example 2.

このグラフで曲線Aが実施例、曲線Bが比較例1、曲線
Cが比較例2のグラフである。また、同図に参考のため
KBr基材の赤外線透過率を測定した結果も曲線りとし
て併せて示す。
In this graph, curve A is a graph of the example, curve B is a graph of comparative example 1, and curve C is a graph of comparative example 2. The figure also shows the results of measuring the infrared transmittance of the KBr base material as a curve for reference.

表3 [発明の効果] 本発明により、機械的強度、耐環境性及び耐久性に優れ
た赤外線透過性光学材を得ることができる。
Table 3 [Effects of the Invention] According to the present invention, an infrared transmitting optical material having excellent mechanical strength, environmental resistance, and durability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の断面図、第2図は他の実施例の断面図
、第3図は実施例及び比較例の赤外線透過率を測定した
グラフである。 】・・・基材、2・・・カーボン膜。 出願人  出光石油化学株式会社
FIG. 1 is a cross-sectional view of an example, FIG. 2 is a cross-sectional view of another example, and FIG. 3 is a graph showing the measured infrared transmittance of the example and the comparative example. ]... Base material, 2... Carbon film. Applicant Idemitsu Petrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)赤外線透過性物質より成る基材の少なくとも一方
の面に水素及び/又は第VII族元素を含有するカーボン
膜を形成し、該水素及び/又は該第VII族元素の濃度を
基材側から表面側に連続的に又は段階的に減少させたこ
とを特徴とする赤外線透過性光学材。
(1) A carbon film containing hydrogen and/or a Group VII element is formed on at least one surface of a base material made of an infrared transparent substance, and the concentration of the hydrogen and/or Group VII element is adjusted to the base material side. An infrared transmitting optical material characterized in that the infrared rays transmittance decreases continuously or stepwise from the surface side.
(2)カーボン膜がダイヤモンド状カーボン膜及び/又
はプラズマ重合カーボン膜であることを特徴とする第1
請求項記載の赤外線透過性光学材。
(2) A first characterized in that the carbon film is a diamond-like carbon film and/or a plasma polymerized carbon film.
An infrared transmitting optical material according to the claims.
JP63132366A 1988-05-30 1988-05-30 Infrared transmittable optical material Pending JPH01302203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132366A JPH01302203A (en) 1988-05-30 1988-05-30 Infrared transmittable optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132366A JPH01302203A (en) 1988-05-30 1988-05-30 Infrared transmittable optical material

Publications (1)

Publication Number Publication Date
JPH01302203A true JPH01302203A (en) 1989-12-06

Family

ID=15079690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132366A Pending JPH01302203A (en) 1988-05-30 1988-05-30 Infrared transmittable optical material

Country Status (1)

Country Link
JP (1) JPH01302203A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859355A1 (en) * 1997-02-13 1998-08-19 Sanyo Electric Co. Ltd Thin film magnetic head
JP2006133421A (en) * 2004-11-04 2006-05-25 Seiko Epson Corp Optical element
JPWO2012160979A1 (en) * 2011-05-24 2014-07-31 独立行政法人産業技術総合研究所 Infrared transmitting film, method for manufacturing infrared transmitting film, optical component for infrared and infrared device
JP2014220538A (en) * 2014-08-27 2014-11-20 株式会社東芝 Semiconductor laser device
JP2015517686A (en) * 2012-05-18 2015-06-22 イエーノプティーク オプティカル システムズ ゲーエムベーハー Optical IR component with hybrid coating
US9407065B2 (en) 2011-08-03 2016-08-02 Kabushiki Kaisha Toshiba Semiconductor laser

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859355A1 (en) * 1997-02-13 1998-08-19 Sanyo Electric Co. Ltd Thin film magnetic head
US5986857A (en) * 1997-02-13 1999-11-16 Sanyo Electric Co., Ltd. Thin film magnetic head including adhesion enhancing interlayers, and upper and lower gap insulative layers having different hydrogen contents and internal stress states
JP2006133421A (en) * 2004-11-04 2006-05-25 Seiko Epson Corp Optical element
JPWO2012160979A1 (en) * 2011-05-24 2014-07-31 独立行政法人産業技術総合研究所 Infrared transmitting film, method for manufacturing infrared transmitting film, optical component for infrared and infrared device
JP6016037B2 (en) * 2011-05-24 2016-10-26 国立研究開発法人産業技術総合研究所 Infrared transmitting film, method for manufacturing infrared transmitting film, optical component for infrared and infrared device
US9575216B2 (en) 2011-05-24 2017-02-21 National Institute Of Advanced Industrial Science And Technology Infrared-transmitting film, method for producing infrared-transmitting film, infrared optical component, and infrared device
US9407065B2 (en) 2011-08-03 2016-08-02 Kabushiki Kaisha Toshiba Semiconductor laser
JP2015517686A (en) * 2012-05-18 2015-06-22 イエーノプティーク オプティカル システムズ ゲーエムベーハー Optical IR component with hybrid coating
JP2014220538A (en) * 2014-08-27 2014-11-20 株式会社東芝 Semiconductor laser device

Similar Documents

Publication Publication Date Title
Tesner Kinetics of pyrolytic carbon formation
Harris et al. Effects of oxygen on diamond growth
Asmann et al. A review of diamond CVD utilizing halogenated precursors
Zedlitz et al. Properties of amorphous boron nitride thin films
JPH01302203A (en) Infrared transmittable optical material
Buuron et al. Fast deposition of amorphous carbon films by an expanding cascaded arc plasma jet
Reiser et al. Formation of vinylidenecarbene intermediates in multiple infrared photon elimination reactions
JPH03130363A (en) Plastic articles coated with diamond-like carbon film
Demichelis et al. Influence of silicon on the physical properties of diamond-like films
Godet et al. Growth and composition of dual-plasma polymer-like amorphous carbon films
John et al. IR attenuated total reflectance studies of dc biased growth of diamond films
Thornton et al. A HREELS study of the effect of Cu on the interaction of HCOOH with ZnO (0001)-O
Cecconi et al. X-ray photoelectron diffraction (XPD) study of the atomic structure of the ultrathin CdS phase deposited on Ag (111) by electrochemical atomic layer epitaxy (ECALE)
Leigh et al. An Investigation of the Pyrolyses of Cumene, t‐Butyl‐benzene and p‐Cymene, and the Relevant Bond Dissociation Energies
Shanabarger Isothermal-Desorption-Rate Measurements in the Vicinity of the Curie Temperature for H 2 Chemisorbed on Nickel Films
Dong et al. Infrared reflectance study of 3C-SiC epilayers grown on silicon substrates
Balestrino et al. Systematic investigation of plasma emission spectra during microwave diamond deposition from CH4 CO2 and C2H2 CO2 gas mixtures
JPS636579B2 (en)
Beal et al. Kinetic studies of the intercalation of 2H-NbSe2 with hydrazine by transmittance measurements
Valentini et al. Deposition of hydrogenated amorphous carbon films from CH4/Ar plasmas: Ar dilution effects
Bustarret et al. Optical Conductivity Studies in Heavily Boron‐Doped Diamond
Münzinger et al. Growth of homoepitaxial diamond films on superpolished substrates in a pulsed microwave plasma
Li et al. Diamond nucleation under high CH4 concentration and high filament temperature
Ley et al. Infrared spectroscopy of C–D vibrational modes on diamond (100) surfaces
Lee et al. Application of real-time spectroscopic ellipsometry for the development of low-temperature diamond film growth processes