JPH01302098A - Multi-tube type heat exchanger - Google Patents

Multi-tube type heat exchanger

Info

Publication number
JPH01302098A
JPH01302098A JP13366688A JP13366688A JPH01302098A JP H01302098 A JPH01302098 A JP H01302098A JP 13366688 A JP13366688 A JP 13366688A JP 13366688 A JP13366688 A JP 13366688A JP H01302098 A JPH01302098 A JP H01302098A
Authority
JP
Japan
Prior art keywords
heat exchange
exchange medium
tube
medium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13366688A
Other languages
Japanese (ja)
Inventor
Naoaki Izumitani
泉谷 直昭
Yasushi Ueda
上田 泰史
Masanori Kawazoe
政宣 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP13366688A priority Critical patent/JPH01302098A/en
Publication of JPH01302098A publication Critical patent/JPH01302098A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To uniformly feed heat exchanging medium to the outer periphery of a each fine tube in a laminar flow state, and to improve heat exchanging efficiency by interposing a partition wall for guiding the medium input from an inlet to a connection hole for connecting it to the inside and outside of a cylinder. CONSTITUTION:A plurality of cylindrical partition walls 6 for feeding heat exchanging medium input from an inlet 11 into a casing 1 in a laminar flow along the longitudinal direction of fine tubes 3 to guide it to a connection hole 21 are interposed. The medium fed from an inlet 13 is fed to an extraction port 14 through the tubes 3, and the medium fed from the inlet 11 into the casing 1 is guided by the walls 6, and fed to an outlet 12 in a laminar flow state. The medium guided by the walls 6 is not deflected in the laminar flow state, the medium is preferably brought into contact with the tubes 3 to improve heat transfer efficiency at the outer peripheries of the tubes 3, thereby preferably heat exchanging to the medium fed in the tubes 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多数本の細管を備えた所謂シェル型の多管式
熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a so-called shell-type multi-tube heat exchanger equipped with a large number of thin tubes.

(従来の技術) 従来この種多管式熱交換器として、本出願人が先に提案
した特願昭61−274285号(昭和61年11月1
8日提出)に開示したように、又、第3図に示すように
、熱交換媒体の取入口(11)と取出口(12)とを備
えたケーシング(1)の内部に、合成樹脂から成る多数
本の長尺な細管(3)を、複数の支持板(A)を介して
束状にまとめた状態で配設すると共に、前記各細管(3
)の長さ方向両側部を、その両端開口部を開放させた状
態で、それぞれ樹脂製の第1及び第2集束体(B)(C
)により集束させ、該各集束体(B)(C)で前記各細
管(3)の開口側を、前記ケーシング(1)の内部と画
成する一方、前記各細管(3)の開口側と対向する部位
に、それぞれ被熱交換媒体の導入口(13)と抽出口(
14)とを形成している。
(Prior Art) Conventionally, this type of multi-tube heat exchanger has been proposed by the applicant in Japanese Patent Application No. 1983-274285 (November 1, 1986).
Also, as shown in Figure 3, a casing (1) equipped with an inlet (11) and an outlet (12) for the heat exchange medium is made of synthetic resin. A large number of long thin tubes (3) consisting of
), with both end openings open, and the first and second bundles made of resin (B) (C
), and the focusing bodies (B) and (C) define the opening side of each of the thin tubes (3) as the inside of the casing (1), while the opening side of each of the thin tubes (3) The heat exchange medium inlet (13) and extraction port (
14).

又、前記各支持板(A)は、その複数個が前記ケーシン
グ(1)の内径とほぼ同一径とされて、該ケーシング(
1)の内部に密接され、残りの複数個は前記ケーシング
(1)の内径よりも小径とされて、該ケーシング(1)
との間に所定の隙間を設けて、これらケーシング(1)
の内壁と支持板(A)との間に前記熱交換媒体の流通路
を形成するようにしている。
Further, a plurality of the support plates (A) have approximately the same diameter as the inner diameter of the casing (1).
1), and the remaining plurality of pieces have a diameter smaller than the inner diameter of the casing (1).
These casings (1) with a predetermined gap between them.
A flow path for the heat exchange medium is formed between the inner wall of the support plate (A) and the support plate (A).

そして、前記導入口(13)から前記ケーシング(1)
の内部に導入された被熱交換媒体は、同図の点線矢印で
示したように、前記各細管(3)の内部を経て前記抽出
口(14)へと流通され、また前記取入口(11)から
ケーシング(1)内に取入れられた熱交換媒体は、同図
の実線矢印で示したように、前記各細管(3)の外周囲
を流通しながら前記取出口(12)から外部へと移流さ
れ、°このとき前記熱交換媒体と被熱交換媒体との間で
熱交換が行われるのである。
Then, from the introduction port (13) to the casing (1)
As shown by the dotted arrows in the figure, the heat exchange medium introduced into the inside of the tubes (3) flows to the extraction port (14), and also flows through the intake port (11). ) into the casing (1), the heat exchange medium flows around the outer periphery of each of the capillary tubes (3) and exits from the outlet (12) as shown by the solid arrow in the figure. At this time, heat exchange is performed between the heat exchange medium and the medium to be heat exchanged.

(発明が解決しようとする課題) ところが、以上の多管式熱交換器では、前記取入口(1
1)から前記ケーシング(1)内に取入れらて、前記取
出口(12)へと移流される熱交換媒体が、前記各細管
(3)の外周囲を均一に流れにくり、又、移流途中にお
いて偏流(イ)が発生することから、主として前記各°
細管(3)の外周側で接する熱交換媒体と、該各線管(
3)との間の熱伝達率が低くなり、充分な熱交換を行う
ことができないのであった。
(Problem to be Solved by the Invention) However, in the above shell-and-tube heat exchanger, the intake port (1
The heat exchange medium taken into the casing (1) from 1) and advected to the outlet (12) flows uniformly around the outer periphery of each capillary tube (3), and during advection Since drifting (a) occurs at
The heat exchange medium in contact with the outer circumferential side of the thin tube (3) and each of the wire tubes (
3), the heat transfer coefficient between the two was low, and sufficient heat exchange could not be performed.

特に前記各細管(3)を合成樹脂で形成する場合には、
金属製のものに比べて該各線管(3)自体の熱伝導度が
極端に低いことから、上記問題は一層顕著となる。通常
、かかる樹脂製のものでは、前記各細管(3)の肉厚を
薄くしたり、又、樹脂素材にカーボン等を混入して該各
線管(3)自体の熱伝導度を向上させたりして、前記各
細管(3)の肉厚内の熱抵抗を低減する工夫がなされる
のであるが、これら細管(3)の材料的な改良を行って
も、上記したように細管(3)の外周での熱交換媒体と
の間の熱伝達率が低いことから本質的な改善には至らな
いのである。
In particular, when each of the thin tubes (3) is made of synthetic resin,
Since the thermal conductivity of each wire tube (3) itself is extremely low compared to those made of metal, the above problem becomes even more remarkable. Usually, in such resin-made products, the wall thickness of each thin tube (3) is made thinner, or carbon or the like is mixed into the resin material to improve the thermal conductivity of each wire tube (3) itself. Therefore, efforts have been made to reduce the thermal resistance within the wall thickness of each of the thin tubes (3), but even if these thin tubes (3) are improved in terms of their material, the thin tubes (3) as described above are Since the heat transfer coefficient between the outer periphery and the heat exchange medium is low, no substantial improvement can be achieved.

以上のことをもう少し詳しく考察してみることとする。Let's consider the above in a little more detail.

第4図に示すように、細管(3)での熱伝達について考
察すると、その総括熱伝達率(にI)は次式で表される
As shown in FIG. 4, when considering the heat transfer in the thin tube (3), the overall heat transfer coefficient (I) is expressed by the following equation.

1/KI= l/hl+ 1/ (Rho) + 1/
 (λ/1)ここに、hl;管内側熱伝達率(熱貫流率
)ho;管外側熱伝達率(熱貫流率) R:管内外の伝熱面積比 λ;樹脂細管の熱伝導度 t;肉厚 上式より、総括熱伝達率(にI)を向上させるには、右
辺各項の分母を大きくすればよいが、上述した肉厚(1
)の薄肉化や、カーボン混入による熱伝導度(λ)の向
上では、第3項のみの改善シことどまり、しかも、この
第3項は、細管(3)の素材たる元の樹脂の熱伝導度(
λ)が低いことから全体に与える影響も少ないため、総
括熱伝達率(Kl)の実質的な改善は期待できないので
ある。尚、肉厚(1)の薄肉化で面積比(R)を無限に
1に近づけることができると考えられるが、細管(3)
の耐圧性確保の面等から、その増加は極わずかに抑えら
れ、第2項の分母つまり管外側熱伝達率(hO)との積
(Rho)が実質的に改善されるわけでない。又、上式
において、細管(3)の内部を流れる被熱交換媒体は栓
流状態と考えられるから、右辺第1項の分母(hl)は
もともと大きい。
1/KI= l/hl+ 1/ (Rho) + 1/
(λ/1) where, hl; heat transfer coefficient inside the tube (heat transmission coefficient) ho; heat transfer coefficient outside the tube (heat transmission coefficient) R: ratio of heat transfer areas inside and outside the tube λ; thermal conductivity of the resin capillary t ;Wall Thickness From the above equation, in order to improve the overall heat transfer coefficient (I), it is sufficient to increase the denominator of each term on the right side.
) and improving thermal conductivity (λ) by incorporating carbon, only the third term can be improved. Every time(
Since λ) is low, there is little effect on the overall heat transfer coefficient, so no substantial improvement in the overall heat transfer coefficient (Kl) can be expected. It is thought that the area ratio (R) can be made infinitely close to 1 by reducing the wall thickness (1), but the thin tube (3)
In order to ensure pressure resistance, the increase is suppressed to a very small extent, and the denominator of the second term, that is, the product (Rho) with the tube outside heat transfer coefficient (hO), is not substantially improved. Furthermore, in the above equation, since the medium to be heat exchanged flowing inside the thin tube (3) is considered to be in a plug flow state, the denominator (hl) of the first term on the right side is originally large.

従って、結局、総括熱伝達率(Kl)を改善するには、
右辺第2項の改善、つまり、細管(3)の外周部での熱
伝達率(ho)の改善が要請されることとなるのである
Therefore, in order to improve the overall heat transfer coefficient (Kl),
There is a need to improve the second term on the right side, that is, to improve the heat transfer coefficient (ho) at the outer periphery of the thin tube (3).

しかして本発明の目的は、ケーシングの内部を取入口か
ら取出口へと移流される熱交換媒体に偏流などを発生さ
せることなく、該熱交換媒体を栓流状態で各細管の外周
囲に均一に流通させて、該各線管内を移流される被熱交
換媒体との間で良好に熱交換を行って、熱交換効率を高
めることができる多管式熱交換器を提供しようとするも
のである。
Therefore, it is an object of the present invention to uniformly distribute the heat exchange medium around the outer circumference of each capillary tube in a plug flow state without causing any uneven flow in the heat exchange medium transferred from the inlet to the outlet in the casing. The object of the present invention is to provide a shell-and-tube heat exchanger that can improve heat exchange efficiency by allowing the heat exchange medium to circulate through the wire tubes and efficiently exchanging heat with the heat exchange medium that is advected in each of the wire tubes. .

(課題を解決するための手段) そこで、外周部に熱交換媒体の取入口(11)を備えた
ケーシング(1)に、筒体(2)を内装して、この筒体
(2)に、該筒体(2)の内外を連通させる連通孔(2
1)を設け、この筒体(2)の内部を前記熱交換媒体の
取出口(12)に連通させると共に、前記筒体(2)の
周りに細管(3)を配設し、該細管(3)の両端部に、
前記被熱交換媒体の導入口(13)及び抽出口(14)
を設ける一方、前記細管(3)の長さ方向に沿って、前
記取入口(11)から取入れる熱交換媒体を前記細管(
3)に栓流状に流通させて前記流通孔(21)に誘導す
る仕切壁(6)を介装することとした。
(Means for Solving the Problems) Therefore, a cylindrical body (2) is installed inside a casing (1) having an intake port (11) for a heat exchange medium on the outer periphery, and this cylindrical body (2) A communication hole (2) that communicates between the inside and outside of the cylinder (2)
1), the inside of this cylindrical body (2) is communicated with the outlet (12) for the heat exchange medium, and a thin tube (3) is arranged around the cylindrical body (2). 3) At both ends of
Inlet (13) and extraction port (14) for the heat exchange medium
The heat exchange medium taken in from the intake port (11) is passed along the length of the capillary (3) through the capillary (3).
3) is interposed with a partition wall (6) that allows the flow to flow in a plug-like manner and guides it to the flow hole (21).

更に上記構成における細管(3)の端部に、導入口(1
3)から抽出口(14)に向かう被熱交換媒体を、前記
細管(3)の長さ方向に沿って複数回にわたり反転して
流通案内させる案内路(15)を形成して、前記細管(
3)の長さ方向に、被熱交換媒体の反転流路(30)を
形成する改良を行った。
Furthermore, an inlet (1) is provided at the end of the thin tube (3) in the above configuration.
A guide path (15) is formed to guide the heat exchange medium from the thin tube (3) toward the extraction port (14) by inverting the tube several times along the length of the thin tube (3).
3) An improvement was made in which an inverted flow path (30) for the heat exchange medium was formed in the length direction.

加えて、仕切壁(6)により、被熱交換媒体の反転流路
(30)に対応させて熱交換媒体を前記細管(3)の長
さ方向に沿って複数回にわたり反転して誘導する反転誘
導路(60)を画成する改良も行った。
In addition, the partition wall (6) allows the heat exchange medium to be reversed and guided multiple times along the length direction of the thin tube (3) in correspondence with the reversal flow path (30) for the heat exchange medium. Improvements were also made to define the taxiway (60).

又、仕切壁(6)による熱交換媒体の流通方向と、細管
(3)を流通する被熱交換媒体の流通方向とを対向状に
する改良も行った。
Furthermore, an improvement was made in which the flow direction of the heat exchange medium through the partition wall (6) and the flow direction of the heat exchange medium flowing through the thin tube (3) are made to be opposite to each other.

(作用) 導入口(13)から導入された被熱交換媒体は、各細管
(3)の内部を経て抽出口(14)へと流通され、又、
取入口(11)からケーシング(1)内に取入れられた
熱交換媒体は、仕切壁(6)で誘導されて、取出口(1
2)側に栓流状態で流通される。仕切壁(6)で誘導さ
れる熱交換媒体は栓流状態で偏流を発生したりすること
がなく、この熱交換媒体と前記各細管(3)との接触が
良好に行われ、該各軸管(3)の外周部での熱伝達率を
向上でき、前記各細管(3)の内部を流通される被熱交
換媒体との間で良好な熱交換が行われる。
(Function) The heat exchange medium introduced from the inlet (13) is distributed to the extraction port (14) through the inside of each capillary (3), and
The heat exchange medium taken into the casing (1) from the intake port (11) is guided by the partition wall (6) and then flows through the intake port (1).
2) It is distributed in a plug flow state to the side. The heat exchange medium guided by the partition wall (6) is in a plug flow state and does not cause uneven flow, and good contact between the heat exchange medium and each of the capillary tubes (3) is achieved, and each axis The heat transfer coefficient at the outer periphery of the tube (3) can be improved, and good heat exchange can be performed with the medium to be heat exchanged flowing through the inside of each of the thin tubes (3).

又、各細管(3)の端部に、導入口(13)から抽出口
(14)に向けて流通される被熱交換媒体を、前記各細
管(3)の長さ方向に沿って複数回にわたり反転して流
通案内させる案内路(15)を形成し、被熱交換媒体の
反転流路(30)形成する場合には、ケーシング(1)
の全長を長くすることなく、被熱交換媒体の流通路を長
くすることができ、該被熱交換媒体と、前記仕切壁(8
)で誘導される熱交換媒体との接触面積が増大できて、
更に良好な熱交換が行える。
Further, the heat exchange medium flowing from the inlet (13) toward the extraction port (14) is applied to the end of each capillary (3) multiple times along the length of each capillary (3). When forming a guide path (15) for circulating and guiding the heat exchange medium by inverting the casing (1) to form a reversing flow path (30) for the heat exchange medium, the casing (1)
The flow path for the heat exchange medium can be lengthened without increasing the overall length of the partition wall (8).
) can increase the contact area with the heat exchange medium induced by
Even better heat exchange can be performed.

更に、仕切!l! (8)により、被熱交換媒体の反転
流路(30)に対応させて熱交換媒体の反転誘導路(6
0)を画成する場合には、該反転誘導路(60)に誘導
される熱交換媒体の栓流流路長が長く確保できると共に
その流速を早くでき、該反転誘導路(60)と対応する
前記反転流路(30)に流通される被熱交換媒体との間
で一層良好な熱交換が行える。
Furthermore, partition! l! (8), the reversal guide path (6) of the heat exchange medium is made to correspond to the reversal flow path (30) of the heat exchange medium.
0), it is possible to ensure a long plug flow path length for the heat exchange medium guided to the reversal guideway (60), and increase the flow velocity, so that it corresponds to the reversal guideway (60). Even better heat exchange can be performed with the heat exchange medium flowing through the reversing flow path (30).

その上、仕切壁(6)による熱交換媒体の流通方向と、
各細管(3)を流通する被熱交換媒体の流通方向とを互
いに対向させて、被熱交換媒体と熱交換媒体とをそれぞ
れ対向状に流通させる場合には、これら熱交換媒体と被
熱交換媒体とを更に一層良好に熱交換させることができ
る。
Furthermore, the flow direction of the heat exchange medium through the partition wall (6);
When the flow direction of the heat exchange medium flowing through each thin tube (3) is made to be opposite to each other and the heat exchange medium and the heat exchange medium are made to flow in opposite directions, the heat exchange medium and the heat exchange medium are It is possible to perform even better heat exchange with the medium.

(実施例) 第1図に示した多管式熱交換器は、ケーシング(1)を
、長さ方向両端を開口した断面円形状をなす筒状体(I
A)と、該筒状体(IA)の各開口側にそれぞれ気密状
に取付ける第1及び第2蓋体(IB)(IC)とから構
成して、前記筒状体(IA)の外周部位で長さ方向−側
に熱交換媒体の取入口(11)を、また長さ方向他側に
取出口(12)をそれぞれ設けると共に、前記第1蓋体
(IB)に被熱交換媒体の導入口(13)を、かつ第2
蓋体(IC)に抽出口(14)をそれぞれ設けている。
(Example) The shell-and-tube heat exchanger shown in FIG.
A), and first and second lids (IB) and (IC) each airtightly attached to each opening side of the cylindrical body (IA), and the outer circumferential portion of the cylindrical body (IA) An intake port (11) for the heat exchange medium is provided on the negative side in the length direction, and an outlet port (12) is provided on the other side in the length direction, and the medium to be heat exchanged is introduced into the first lid body (IB). mouth (13), and the second
Each lid (IC) is provided with an extraction port (14).

又、前記ケーシング(1)の内方中心部位には、長尺と
された筒体(2)を配設し、この筒体(2)の長さ方向
−側で前記第1蓋体(IB)側に、前記筒体(2)の内
外部を連通させる複数の連通孔(21)を形成して、該
連通孔(21)を前記取出口(12)に連通させると共
に、前記筒体(2)の外周部位に、合成樹脂から成る多
数本の長尺な細管(3)を配設する。
Further, an elongated cylinder (2) is disposed at the inner center of the casing (1), and the first lid (IB) is disposed on the negative side in the length direction of the cylinder (2). ) side, a plurality of communication holes (21) are formed to communicate the inside and outside of the cylinder (2), and the communication holes (21) are connected to the outlet (12), and the cylinder ( A large number of long thin tubes (3) made of synthetic resin are arranged on the outer periphery of 2).

前記細管(3)の樹脂素材としては、例えば次のものが
使用される。又、その外径は0.2〜3−■程度である
For example, the following resin materials are used for the thin tube (3). Further, its outer diameter is about 0.2 to 3-cm.

■FEP:テトラフルオロエチレン/ヘキサフルオロプ
ロピレン共重合体 ■PFA;テトラフルオロエチレン/パーフルオロアル
キルビニルエーテル共M合体 ■ETFE :テトラフルオロエチレン/エチレン共重
合体 ■PVdF;フッ化ビニリデン重合体 又、前記細管(3)の樹脂素材中には、カーボンなどを
混入させて、前記細管(3)自体の熱伝導度も高めるよ
うにしている。
■FEP: Tetrafluoroethylene/hexafluoropropylene copolymer ■PFA: Tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer ■ETFE: Tetrafluoroethylene/ethylene copolymer ■PVdF: Vinylidene fluoride polymer or the above-mentioned capillary Carbon or the like is mixed into the resin material (3) to increase the thermal conductivity of the thin tube (3) itself.

更に、前記各細管(3)は、その長さ方向両側部を、そ
の両端開口部が開放されるごとく、それぞれ樹脂製の第
1及び第2集束体(4)(5)により円形束状に集束さ
せ、これら各集束体(4)(5)を前記ケーシング(1
)の内部にシールリング(R)を介して気密状に挿嵌さ
せることにより、前記各細管(3)の両端開口部が開放
される前記第1及び第2蓋体(IB)(IC)の内部を
、前記筒状体(IA)の内部と画成すると共に、前記第
2集束体(5)により前記筒体(2)の長さ方向一端側
で前記連通孔(21)の形成側とは反対側を閉鎖し、前
記ケーシング(1)の取入口(11)から取入れられた
熱交換媒体が、前記筒体(2)の内部に短絡して導入さ
れるのを阻止し、前記熱交換媒体を前記取入口(11)
から前記連通孔(21)側へと流通させるごとくなす一
方、前記筒体(2)の長さ方向他端側を、前記第1蓋体
(IB)の外方へと突出させて、この突出部位で前記取
出口(12)を形成する。
Furthermore, each of the thin tubes (3) is formed into a circular bundle by means of first and second bundles (4) and (5) made of resin, respectively, so that both ends of the thin tubes (3) are open at both ends. and each of these bundles (4) and (5) is attached to the casing (1).
) The first and second lids (IB) and (IC) are airtightly inserted into the interior of the cap through a seal ring (R) to open both end openings of each of the thin tubes (3). The inside is defined as the inside of the cylindrical body (IA), and the second focusing body (5) defines one lengthwise end side of the cylindrical body (2) with the side where the communicating hole (21) is formed. closes the opposite side to prevent the heat exchange medium taken in from the intake port (11) of the casing (1) from being short-circuited and introduced into the inside of the cylinder (2), and The medium is inserted into the intake port (11)
The other end of the cylindrical body (2) in the length direction is made to protrude outward from the first lid body (IB), and this protrusion The outlet (12) is formed at the portion.

そして、前記ケーシング(1)の内部に、前記取入口(
11)から取入れられた熱交換媒体を、前記各細管(3
)の長さ方向に沿って栓流状に流通させ、前記連通孔(
21)へと誘導する円筒形状をなす複数の仕切壁(6)
を介装させる。
Then, the intake port (
The heat exchange medium introduced from 11) is transferred to each capillary tube (3).
) to flow like a plug flow along the length direction of the communication hole (
21) A plurality of cylindrical partition walls (6) leading to
Interpose.

前記仕切壁(6)は、例えば、水を通さない樹脂入り不
織布や、樹脂シート等を用いて構成するものであり、第
2図にも示すように、集束された細管(3)の最外周を
覆う第1仕切壁(6a)を備えると共に、後述する被熱
交換媒体の反転流路(30)に対応させて熱交換媒体の
反転誘導路(60)を形成すべく、同心円中間に、小径
円筒状の第2仕切壁(6b)及び第3仕切!!!(6c
)を備える。これら第1〜第3仕切壁(ea〜6C)を
介装すれば、1往復半の反転誘導路(60)が形成され
ることになるが、構造の簡素化を図るべく、第1仕切壁
(6a)のみを介装すれば、取入口(11)から連通孔
(21)への車路の栓流誘導路が形成されることになる
The partition wall (6) is constructed using, for example, a resin-filled nonwoven fabric that does not allow water to pass through, a resin sheet, etc., and as shown in FIG. In order to form a reversal guide path (60) for the heat exchange medium in correspondence with a reversal flow path (30) for the heat exchange medium to be described later, a small diameter wall is provided in the middle of the concentric circles. Cylindrical second partition wall (6b) and third partition! ! ! (6c
). If these first to third partition walls (ea to 6C) are interposed, a reversing guideway (60) for one and a half reciprocations will be formed, but in order to simplify the structure, the first partition wall If only (6a) is installed, a plug flow guide path for the roadway from the intake port (11) to the communication hole (21) will be formed.

又、前記細管(3)の端部つまり各集束体(4)(5)
の端部に、大小円筒形の仕切体(41)(51)を配設
し、各蓋体(IB)(IC)の内部を、同心状のチャン
バー(a+b+e+d、e、f)に区画し、最外周一端
側のチャンバー(a)に前記導入口(13)を、又、最
内周他端側のチャンバー(f)に前記抽出口(14)を
各々接続し、かつ、その他の隣り合う各チャンバー同士
(b+ c)(d、e)を連通孔(45)を介して互い
に連通させることにより、前記導入口(11)から導入
する被熱交換媒体を、2回にわたって反転させて前記抽
出口(14)へと流通案内させる案内路(15)を形成
し、前記細管(3)の内部であって該軸間(3)の長さ
方向に、1往復半にわたる被熱交換媒体の反転流路(3
0)を形成する。こうして、ケーシング(1)の長さを
長くすることなく、被熱交換媒体の熱交換媒体に対する
熱交換面積を拡大することができる。
Also, the end of the thin tube (3), that is, each bundle (4) (5)
Large and small cylindrical partition bodies (41) (51) are arranged at the ends of the lid body (IB) (IC), and the inside of each lid body (IB) (IC) is divided into concentric chambers (a+b+e+d, e, f). The introduction port (13) is connected to the chamber (a) on one end of the outermost periphery, and the extraction port (14) is connected to the chamber (f) on the other end of the innermost periphery, and each of the other adjacent By making the chambers (b+c) (d, e) communicate with each other through the communication holes (45), the heat exchange medium introduced from the introduction port (11) is reversed twice and transferred to the extraction port. A guide path (15) is formed to guide the flow of the heat exchange medium to (14), and a reversal flow of the heat exchange medium over one and a half round trips is formed inside the thin tube (3) in the length direction of the shaft (3). Road (3
0) is formed. In this way, the heat exchange area of the heat exchange medium to the heat exchange medium can be expanded without increasing the length of the casing (1).

又、この場合、前記案内路(15)で形成される反転流
路(30)の各車路(31,32,33)と、前記第1
〜第3仕切壁(E3a〜8b)で形成される反転誘導路
(60)の各車路(61゜82.63)とは互いに同心
状に対応させて設けており、しかも、これら反転流路(
30)を流れる被熱交換媒体と、反転誘導路(60)を
流れる熱交換媒体とは互いに対抗状に流れるようにして
いる。
Further, in this case, each of the lanes (31, 32, 33) of the reversing flow path (30) formed by the guide path (15) and the first
- Each lane (61°82.63) of the reversing guideway (60) formed by the third partition wall (E3a to 8b) is provided concentrically with each other, and these reversing flow paths (
The heat exchange medium flowing through the reversing guideway (60) and the heat exchange medium flowing through the reversing guideway (60) are arranged to flow in opposition to each other.

以上の構成において、取入口(11)から筒状体(IA
)内に取入れられた熱交換媒体は、第1図中実線矢印で
示すように、各仕切壁(8a〜6c)で反転されながら
反転誘導路(60)に沿い栓流状態で取出口(12)側
に誘導され、−方、導入口(13)から導入された被熱
交換媒体は、同図中点線矢印で示すように、案内路(1
5)により、熱交換媒体と対向状に反転されながら各細
管(3)内の反転流路(30)を通過して抽出口(14
)へと流通案内されるのであって、前記各細管(3)の
外周側での熱伝達率の向上と、被熱交換媒体と熱交換媒
体との相互間の熱交換面積の増大により、装置全体を小
形にできながら熱交換効率が著しく高められるのである
In the above configuration, from the intake port (11) to the cylindrical body (IA
), the heat exchange medium taken in is reversed by each partition wall (8a to 6c) and flows along the reversal guide path (60) in a plug flow state to the outlet (12), as shown by the solid line arrow in FIG. ) side, and the heat exchange medium introduced from the inlet (13) on the - side is guided to the guide path (1) as shown by the dotted arrow in the figure.
5), the extraction port (14
), and by improving the heat transfer coefficient on the outer peripheral side of each thin tube (3) and increasing the heat exchange area between the heat exchange medium and the heat exchange medium, the device The heat exchange efficiency can be significantly increased while the overall size can be made smaller.

(発明の効果) 以上、本発明では、外周部に熱交換媒体の取入口(11
)を備えたケーシング(1)に、筒体(2)を内装して
、この筒体(2)に、該筒体(2)の内外を連通ずる連
通孔(21)を設け、この筒体(2)の内部を熱交換媒
体の取出口(12)に連通させると共に、前記筒体(2
)の周りに多数本の細管(3)を配設し、該細管(3)
の両端部に、被熱交換媒体の導入口(13)及び抽出口
(14)を設ける一方、前記細管(3)の長さ方向に沿
って、前記取入口(11)から取入れる熱交換媒体を前
記細管(3)に栓流状に流通させて前記流通孔(21)
に誘導する仕切壁(6)を設けたから、前記ケーシング
(1)内における熱交換媒体の流通時に偏流を発生させ
たりすることなく、この熱交換媒体と前記細管(3)と
を良好に接触でき、該細管(3)の外周部での熱伝達率
を向上することができ、該細管(3)の内部を流通され
る被熱交換媒体と前記熱交換媒体との間で良好な熱交換
が行えて、熱交換効率を高め得る。
(Effects of the Invention) As described above, in the present invention, the heat exchange medium intake (11
), a cylindrical body (2) is installed inside the casing (1), and a communication hole (21) is provided in the cylindrical body (2) to communicate the inside and outside of the cylindrical body (2). (2) is communicated with the heat exchange medium outlet (12), and the cylindrical body (2)
), a large number of thin tubes (3) are arranged around the thin tube (3).
An inlet (13) and an extraction port (14) for the heat exchange medium are provided at both ends of the tube, while a heat exchange medium is taken in from the intake port (11) along the length of the thin tube (3). is caused to flow through the thin tube (3) in a plug-like manner to form the flow hole (21).
Since the partition wall (6) is provided to guide the heat exchange medium into the casing (1), the heat exchange medium can be brought into good contact with the capillary tube (3) without causing a drift during the flow of the heat exchange medium in the casing (1). , the heat transfer coefficient at the outer circumference of the thin tube (3) can be improved, and good heat exchange can be achieved between the heat exchange medium and the heat exchange medium flowing through the inside of the thin tube (3). This can improve heat exchange efficiency.

又、前記細管(3)の端部に、導入口(13)から抽出
口(14)に向けて流通される被熱交換媒体を、前記細
管(3)の長さ方向に沿って複数回にわたり反転して流
通案内させる案内路(15)を形成し、被熱交換媒体の
反転流路(30)を形成する場合は、装置を小形にでき
ながら被熱交換媒体の流通路を長くするこ七ができ、該
被熱交換媒体の熱交換媒体に対する接触面積が増大でき
て、更に良好な熱交換が行える。
Further, the heat exchange medium flowing from the inlet (13) toward the extraction port (14) is applied to the end of the thin tube (3) multiple times along the length of the thin tube (3). When forming a guide path (15) for inverted circulation guidance and forming a reversing flow path (30) for the heat exchange medium, it is possible to make the device compact and to lengthen the flow path for the heat exchange medium. The contact area of the heat exchange medium to the heat exchange medium can be increased, and even better heat exchange can be performed.

更に、仕切壁(6)により、被熱交換媒体の反転流路(
30)に対応させて熱交換媒体の反転誘導路(60)を
画成する場合は、該反転誘導路(60)に誘導される熱
交換媒体の栓流流路長が長く確保できると共にその流速
を早くでき、該反転誘導路(60)と対応する前記反転
流路(30)に流通される被熱交換媒体との間で一月良
好な熱交換が行え、熱交換効率を著しく高め得る。
Furthermore, the partition wall (6) provides a reversal flow path (
30), when defining the reversing guide path (60) for the heat exchange medium, a long plug flow path length for the heat exchange medium guided to the reversing guide path (60) can be ensured, and the flow rate can be increased. can be carried out quickly, good heat exchange can be performed for a month between the reversing guide path (60) and the heat exchange medium flowing through the corresponding reversing flow path (30), and the heat exchange efficiency can be significantly increased.

その上、前記仕切壁(6)による熱交換媒体の流通方向
と、前記各細管(3)を流通する被熱交換媒体の流通方
向とを互いに対向させて、これら被熱交換媒体と熱交換
媒体とをそれぞれ対向伏に流通させる場合は、熱交換媒
体と被熱交換媒体との熱交換が一層促進でき、熱交換効
率を更に一層高め得る。
Furthermore, the flow direction of the heat exchange medium through the partition wall (6) and the flow direction of the heat exchange medium flowing through each of the thin tubes (3) are made to be opposite to each other, so that the heat exchange medium and the heat exchange medium When the heat exchange medium and the medium to be heat exchanged are made to flow facing each other, the heat exchange between the heat exchange medium and the medium to be heat exchanged can be further promoted, and the heat exchange efficiency can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明多管式熱交換器の但噌断面図、第2図は
その■−■断面図、第3図は従来例の側断面図、第4図
は細管近傍の熱交換を説明する説明図である。 (1)・・・・ケーシング (2)・・・・筒体 (3)・・・・細管 (6)・・・・仕切壁 (11)・・・・取入口 (12)・・・・取出口 (13)・・・・導入口 (14)・・・・抽出口 (15)・・・・案内路 (21)・・・・流通孔 (30)・・・・反転流路 (60)・・・・反転誘導路
Figure 1 is a cross-sectional view of the shell-and-tube heat exchanger of the present invention, Figure 2 is a cross-sectional view of the multi-tube heat exchanger, Figure 3 is a side sectional view of the conventional example, and Figure 4 shows heat exchange near the thin tubes. It is an explanatory diagram to explain. (1)...Casing (2)...Cylinder (3)...Thin tube (6)...Partition wall (11)...Intake (12)... Outlet port (13)...Inlet port (14)...Extraction port (15)...Guide path (21)...Flow hole (30)...Reverse flow path (60) )...Reverse taxiway

Claims (1)

【特許請求の範囲】 1)熱交換媒体により熱制御される被熱交換媒体を流通
させる多数本の細管(3)を備えた多管式熱交換器であ
って、外周部に前記熱交換媒体の取入口(11)を備え
たケーシング(1)に、筒体(2)を内装して、この筒
体(2)に、該筒体(2)の内外を連通させる連通孔(
21)を設け、この筒体(2)の内部を前記熱交換媒体
の取出口(12)に連通させると共に、前記筒体(2)
の周りに前記細管(3)を配設し、該細管(3)の両端
部に、前記被熱交換媒体の導入口(13)及び抽出口(
14)を設ける一方、前記細管(3)の長さ方向に沿っ
て、前記取入口(11)から取入れる熱交換媒体を前記
細管(3)に栓流状に流通させて前記流通孔(21)に
誘導する仕切壁(6)を介装していることを特徴とする
多管式熱交換器。 2)細管(3)の端部に、導入口(13)から抽出口(
14)に向かう被熱交換媒体を、前記細管(3)の長さ
方向に沿って複数回にわたり反転して流通案内させる案
内路(15)を形成して、前記細管(3)の長さ方向に
、被熱交換媒体の反転流路(30)を形成している請求
項1記載の多管式熱交換器。 3)仕切壁(6)が、被熱交換媒体の反転流路(30)
に対応させて熱交換媒体を前記細管(3)の長さ方向に
沿って複数回にわたり反転して誘導する反転誘導路(6
0)を画成している請求項2記載の多管式熱交換器。 4)仕切壁(6)による熱交換媒体の流通方向と、細管
(3)を流通する被熱交換媒体の流通方向とを対向状に
している請求項1又は請求項3記載の多管式熱交換器。
[Scope of Claims] 1) A shell-and-tube heat exchanger equipped with a large number of thin tubes (3) through which a heat exchange medium whose heat is controlled by a heat exchange medium flows, the heat exchange medium being disposed on the outer periphery of the heat exchanger. A cylindrical body (2) is installed inside a casing (1) equipped with an intake port (11), and this cylindrical body (2) has a communication hole (
21), the inside of the cylinder (2) is communicated with the heat exchange medium outlet (12), and the cylinder (2)
The thin tube (3) is arranged around the thin tube (3), and the heat exchange medium inlet (13) and extraction port (
14) is provided, and the heat exchange medium taken in from the intake port (11) is caused to flow through the capillary tube (3) in a plug flow along the length direction of the capillary tube (3). ) A multi-tubular heat exchanger characterized in that a partition wall (6) is inserted to guide the heat exchanger. 2) At the end of the thin tube (3), connect the inlet (13) to the extraction port (
14), a guide path (15) is formed to guide the heat exchange medium by turning the heat exchange medium several times along the length of the thin tube (3), and 2. The multi-tubular heat exchanger according to claim 1, further comprising a reversing flow path (30) for the medium to be heat exchanged. 3) The partition wall (6) serves as a reversal flow path (30) for the medium to be heat exchanged.
a reversal guide path (6
3. The shell-and-tube heat exchanger according to claim 2, wherein the tube-and-tube heat exchanger defines: 0). 4) The multi-tubular heat exchanger according to claim 1 or 3, wherein the flow direction of the heat exchange medium through the partition wall (6) and the flow direction of the heat exchange medium flowing through the thin tubes (3) are opposed to each other. exchanger.
JP13366688A 1988-05-30 1988-05-30 Multi-tube type heat exchanger Pending JPH01302098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13366688A JPH01302098A (en) 1988-05-30 1988-05-30 Multi-tube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13366688A JPH01302098A (en) 1988-05-30 1988-05-30 Multi-tube type heat exchanger

Publications (1)

Publication Number Publication Date
JPH01302098A true JPH01302098A (en) 1989-12-06

Family

ID=15110077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13366688A Pending JPH01302098A (en) 1988-05-30 1988-05-30 Multi-tube type heat exchanger

Country Status (1)

Country Link
JP (1) JPH01302098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422684C (en) * 2003-01-25 2008-10-01 徐宝安 Equipment of water box in condensator contaning many media for heat recovery as well as installation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929572B2 (en) * 1983-07-22 1984-07-21 川崎化成工業株式会社 New manufacturing method for carboxylic acid derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929572B2 (en) * 1983-07-22 1984-07-21 川崎化成工業株式会社 New manufacturing method for carboxylic acid derivatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422684C (en) * 2003-01-25 2008-10-01 徐宝安 Equipment of water box in condensator contaning many media for heat recovery as well as installation method

Similar Documents

Publication Publication Date Title
KR930004736A (en) heat transmitter
US4211277A (en) Heat exchanger having internal fittings
US4345644A (en) Oil cooler
US2657018A (en) Heat exchanger
US3854530A (en) Heat exchanger
JP2003106795A (en) Commutation device
JPS59111854A (en) Cooling roller having different cooling zone previously determined
JPS6285946A (en) Ink roller for printer
US4636310A (en) Transfer membrane apparatus
US4215743A (en) Coaxial heat exchanger device
JP5323858B2 (en) Spiral heat exchanger
JPH01302098A (en) Multi-tube type heat exchanger
JPS5816116B2 (en) Heat exchanger
JPH06180194A (en) Shell and tube heat-exchanger
JP2000227299A (en) Multitubular heat exchanger
CN116371322A (en) High mass transfer high heat exchange tubular microchannel reactor
JPS6212010B2 (en)
JPS6055173B2 (en) fluid mixing device
US4321964A (en) Recuperative heat exchanger of ceramic material
CN220003975U (en) Tubular microchannel reactor
JPH0660795B2 (en) Heat exchanger
JP3396078B2 (en) Blood heat exchanger
RU2739102C1 (en) Central housing in a spiral heat exchanger
JPS61110878A (en) Heat exchanger
CN218380593U (en) High-efficiency sanitary multilayer sleeve type heat exchanger