JPH01301926A - Extraction system for dissolved resources in seawater - Google Patents

Extraction system for dissolved resources in seawater

Info

Publication number
JPH01301926A
JPH01301926A JP62300094A JP30009487A JPH01301926A JP H01301926 A JPH01301926 A JP H01301926A JP 62300094 A JP62300094 A JP 62300094A JP 30009487 A JP30009487 A JP 30009487A JP H01301926 A JPH01301926 A JP H01301926A
Authority
JP
Japan
Prior art keywords
seawater
compressed air
storage tank
resources
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62300094A
Other languages
Japanese (ja)
Inventor
Masao Hayashi
正夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP62300094A priority Critical patent/JPH01301926A/en
Publication of JPH01301926A publication Critical patent/JPH01301926A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To extract dissolved resources economically by forming an absorber of dissolved resources at a inflow and outflow route for seawater in an air compressive storage tank for driving gear turbine. CONSTITUTION:An inflow and outflow tube 6 for the seawater 4 being connected to an air compressive storage tank 2 for a gas turbine power generation plate 1, constant level of compressed air is supplied to the plant 1 by means of the pressure of the seawater. For example, an adsorbent of dissolved resources such as a manganese oxide aegagropila-shaped material 8 which looks like a chestnut case which adsorbes lithium is accommodated to a certain height on the bottom of the storage tank 2. Thereby, with almost no demand for the electric power, dissolved resources can be extracted economically.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧縮空気貯蔵ガスタービン発電プラントを利用
した採取コストの低い海水中の溶存資源採取装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for extracting dissolved resources in seawater that uses a compressed air storage gas turbine power plant and has a low extraction cost.

(従来技術とその問題点) 地中における埋蔵量の少ないウラン、リチウムなど所謂
希少資源を海中から採取しようとする試みが提案され、
例えばその手段として対象とする希少資源の吸着装置を
備えた船体状の多層浮遊体を海中におき、これに海水を
通して採取する方法、或いはポンプカラムによる方法が
ある。しかし海水の溶存資源は微少であることから、原
理的に大量の海水を流通させなければならないため大量
の電力を必要とする。このため現在の段階では経済的に
採算がとれず実用化が阻まれている状態である。
(Prior art and its problems) Attempts have been proposed to extract so-called rare resources from the sea, such as uranium and lithium, which have limited reserves underground.
For example, there is a method in which a multi-layer floating body in the shape of a ship equipped with an adsorption device for the target rare resource is placed in the sea, and seawater is passed through the floating body to collect the rare resource, or a method using a pump column is available. However, since the dissolved resources of seawater are minute, in principle a large amount of seawater must be distributed, which requires a large amount of electricity. Therefore, at the current stage, it is not economically viable and practical application is being prevented.

(発明の目的) 本発明は海水流入のために大量の電力を必要とすること
など経済的に採取しうる手段を提供して採算化を図りう
るようにしたものである。次に図面を用いて本発明の詳
細な説明する。
(Objective of the Invention) The present invention provides an economical means of harvesting seawater, which requires a large amount of electricity for inflowing seawater, thereby making it profitable. Next, the present invention will be explained in detail using the drawings.

(問題点を解決するための本発明の手段)本発明者は先
に昼間に比べて廉価な夜間電力を使用して経済的なピー
ク発電を行う圧縮空気貯蔵ガスタービンによる発電方法
を提案した。
(Means of the Invention for Solving the Problems) The present inventor has previously proposed a power generation method using a compressed air storage gas turbine that performs economical peak power generation using nighttime electricity, which is cheaper than daytime electricity.

この方法は第1図に示すガスタービン発電プラント(1
)の空気圧縮機(1a)を例えば発電機(1b)を電動
機として夜間電力により駆動し、これにより作られた圧
縮空気を地中或いは海中に設けた貯蔵タンク(2)内に
一旦貯蔵する。そして昼間の電力需要のピーク時この貯
蔵圧縮空気Aを燃料と共、に燃焼器(1d)に供給して
、ガスタービン(1c)を駆動して発電しようとするも
のである。なお(1e)は冷却器である。
This method is used in a gas turbine power plant (1
) The air compressor (1a) is driven by nighttime electricity using, for example, a generator (1b) as an electric motor, and the compressed air produced thereby is temporarily stored in a storage tank (2) installed underground or under the sea. Then, during the daytime peak of power demand, this stored compressed air A is supplied together with fuel to the combustor (1d) to drive the gas turbine (1c) to generate electricity. Note that (1e) is a cooler.

ところでこの場合燃焼器(1d)へ供給される圧縮空気
は一定圧であることが必要である。そこでピーク発電用
ガスタービン発電プラントが一般に都市部に近接し、し
かも燃料輸送の便の確保などから湾岸に設けられるのを
利用して、海水(4)によって貯蔵圧縮空気圧を一定化
する方法がとられている。この方法は例えば作られた圧
縮空気圧に対抗しうる水圧が得られる深さの地中に第1
図のように貯蔵タンク(2)を設けて、ここに空気送給
管(5)により作られた圧縮空気を一旦貯蔵すると共に
、海水の流出入管(6)を設けて、弁(7)の切替えに
よる圧縮空気の貯蔵と発電による圧縮空気量の増減を補
う量の海水を貯蔵タンク(2)内に自然流出入させて圧
縮空気圧を一定にする方法である。
By the way, in this case, the compressed air supplied to the combustor (1d) needs to be at a constant pressure. Therefore, a method that takes advantage of the fact that gas turbine power generation plants for peak power generation are generally located near urban areas and is located on the coast of a bay to secure fuel transportation facilities, is to use seawater (4) to stabilize the stored compressed air pressure. It is being This method uses, for example, a first step underground at a depth where water pressure that can counteract the compressed air pressure created is obtained.
As shown in the figure, a storage tank (2) is provided to temporarily store the compressed air produced by the air supply pipe (5), and an inflow and outflow pipe (6) for seawater is provided to control the valve (7). This is a method of keeping the compressed air pressure constant by naturally flowing in and out of the storage tank (2) an amount of seawater that compensates for the increase and decrease in the amount of compressed air due to storage of compressed air and power generation due to switching.

本発明はこの海水による圧縮空気圧の一定化作用から着
想してなされたものである。即ち上記の方法においては
発電による圧縮空気量の減少により貯蔵タンク(2)内
への海水(4)の自然流入が行われ、夜間における貯蔵
圧縮空気量の増大により貯蔵タンク(2)から海へ自然
流出が行われる。しかも流出入する海水(4)は大量で
ある。
The present invention was conceived from this effect of seawater to stabilize compressed air pressure. That is, in the above method, seawater (4) naturally flows into the storage tank (2) due to a decrease in the amount of compressed air due to power generation, and seawater (4) naturally flows into the storage tank (2) due to an increase in the amount of stored compressed air at night. Natural runoff takes place. Moreover, a large amount of seawater (4) flows in and out.

従って海水の流出入路中に溶存希少資源の吸着装置を設
けることにより、従来のように海水の移動のために大量
の電力を必要とすることな(希少資源を採取できる。次
に本発明を第2図、第3図。
Therefore, by providing an adsorption device for dissolved rare resources in the inflow and outflow channels of seawater, it is possible to extract rare resources without requiring a large amount of electricity to move seawater as in the past. Figures 2 and 3.

第4図に示す実施例によって具体的に説明する。This will be explained in detail using the embodiment shown in FIG.

(実施例1) 第2図は本発明の一実施例図であって第1図と同一符号
部分は同等部分を示す。図において(1)はガスタービ
ン発電プラントであって、第1図に示した同様空気圧縮
機(1a)、発電機(lb)、ガスタービン(1c)燃
焼器(1d)などからなる。(2)は貯蔵タンク、(3
)は燃焼器、(4)は海水、(5)は空気送給管であっ
て、その地上端は弁(7)を介して空気圧縮機(1a)
とガスタービンの燃焼器(3)に接続され、地中端は貯
蔵タンク(2)内に開口する。(6)は地上端が海(4
)中に開口し、地中端が貯蔵タンク(2)の底部に開口
する。海水の流出入管であって、以上で圧縮空気貯蔵ガ
スタービン発電プラントが形成される。本発明は上記圧
縮空気貯蔵ガスタービン発電プラントの貯蔵タンク(2
)の底部に適当な高さに亘って溶存資源の吸着材、例え
ばリチウムを吸着するマンガン系の酸化物であって周知
のように栗の〔いが〕のようなマリモ状をなす水流中で
安定な(重い)物体(8)を収容すると共に、貯蔵タン
ク(2)内に地中端が開口し、地上端が図示しない吸出
源に接続されるエアリフト管(9)を設けたものである
(Embodiment 1) FIG. 2 is a diagram showing an embodiment of the present invention, and parts with the same reference numerals as those in FIG. 1 indicate equivalent parts. In the figure, (1) is a gas turbine power generation plant, which consists of an air compressor (1a), a generator (lb), a gas turbine (1c), a combustor (1d), etc., similar to those shown in FIG. (2) is a storage tank, (3
) is a combustor, (4) is seawater, and (5) is an air supply pipe, the ground end of which is connected to an air compressor (1a) via a valve (7).
and the gas turbine combustor (3), and the underground end opens into the storage tank (2). In (6), the ground end is the sea (4
) and the underground end opens into the bottom of the storage tank (2). The seawater inflow and outflow pipes form a compressed air storage gas turbine power generation plant. The present invention provides a storage tank (2) of the compressed air storage gas turbine power generation plant.
) is a manganese-based oxide that adsorbs dissolved resources, such as lithium, over a suitable height at the bottom of the water stream. It accommodates a stable (heavy) object (8) and is equipped with an airlift pipe (9) whose underground end opens into the storage tank (2) and whose above-ground end is connected to a suction source (not shown). .

そしてピーク発電のための圧縮空気の使用による貯蔵タ
ンク(2)内の圧縮空気量の減少により流入する海水を
吸着材(8)に接触させて吸着させ、貯蔵タンク(2)
内の圧縮空気がなくなったとき夜間電力による圧縮空気
の貯蔵を行って貯蔵タンク(2)内の海水(4)の排出
を行う動作を繰り返して、吸着材(8)への希少資源の
吸着を行う。そして吸着が飽和したときガスタービン発
電プラントを停止してエアリフト管(9)により貯蔵タ
ンク(2)内の吸着材(8)を地上に回収して分離装置
により希少資源を採取したのち吸着材(8)を貯蔵タン
ク(2)内に入れて再び採取を行うようにしたものであ
る。
Then, due to the decrease in the amount of compressed air in the storage tank (2) due to the use of compressed air for peak power generation, the inflowing seawater is brought into contact with the adsorbent (8) and adsorbed, and the seawater is absorbed into the storage tank (2).
When the compressed air in the storage tank (2) runs out, the compressed air is stored using nighttime electricity and the seawater (4) in the storage tank (2) is discharged. This process is repeated, and the scarce resources are adsorbed onto the adsorbent (8). conduct. When the adsorption is saturated, the gas turbine power generation plant is stopped, the adsorbent (8) in the storage tank (2) is recovered to the ground using the air lift pipe (9), and the rare resources are collected using the separator. 8) is put into the storage tank (2) and collected again.

(実施例2) 第3図の例は採取資源の溶存量の多い新鮮な海水を採取
できるように湾岸から離れた沖合の海中に貯蔵タンクを
設け、また貯蔵タンクに直接海水の流出入口を設けて、
前記海水の流出入管(6)の必要をなくしたものである
。第3図において(2)は貯蔵タンクであって、海底に
設置した台(10)によって支持された圧縮空気圧に耐
える合成樹脂製造貯蔵袋(11)と、台座(10)によ
って支持された補強用ステンレス保護壁(12)とによ
り作られ、貯蔵袋00には保護壁(12)を貫通する海
水の流出入口(12a)が設けられている。(5)は貯
蔵袋(11)内の上部に開口するように設けた空気送給
管、(9)は貯蔵袋(11)の底部付近に開口するエア
リフト管、(8)は貯蔵袋(11)内に収容した吸着材
であって、(実施例1)と同様の作用により溶存資源の
採取を行うようにしたものである。
(Example 2) In the example shown in Figure 3, a storage tank is installed in the sea offshore away from the bay so that fresh seawater with a large amount of dissolved resources can be collected, and a seawater inlet is provided directly into the storage tank. hand,
This eliminates the need for the seawater inflow and outflow pipe (6). In Fig. 3, (2) is a storage tank, which includes a storage bag (11) made of synthetic resin that can withstand compressed air pressure, supported by a stand (10) installed on the seabed, and a reinforcing bag (11) supported by the stand (10). The storage bag 00 is made of a stainless steel protective wall (12), and is provided with a seawater inlet (12a) that penetrates the protective wall (12). (5) is an air supply pipe that opens at the top of the storage bag (11), (9) is an air lift pipe that opens near the bottom of the storage bag (11), and (8) is an air supply pipe that opens at the top of the storage bag (11). This is an adsorbent housed in a container ( ), which collects dissolved resources using the same action as in (Example 1).

(実施例3) 第4図の例は途中に設けたポンプ(13)によって圧縮
空気Aと海水(4)を貯蔵袋(11)内に送りこむ送給
管(14)と、貯蔵圧縮空気Aを燃焼器(1d)に送り
こむための送給管(15)を設けて貯蔵袋(11)内に
溶存資源の多い新鮮な海水が供給されるようにしたもの
である。
(Embodiment 3) The example shown in Fig. 4 includes a supply pipe (14) that sends compressed air A and seawater (4) into a storage bag (11) by a pump (13) installed midway, and a supply pipe (14) that sends compressed air A and seawater (4) into a storage bag (11). A feed pipe (15) is provided to feed the combustor (1d), so that fresh seawater rich in dissolved resources is supplied into the storage bag (11).

(実施例4) 第5図は空気の圧縮行程において必要とされる機器例え
ば第1図の冷却器(1e)などを海水の流出入管(6)
の途中に設け、高温化されている圧縮空気と低温の海水
との間において熱交換を行わせてガスタービンの熱効率
の向上を図ると共に、海水の加温により吸着材(8)に
よる採取効率の向上を図るようにしたものである。
(Example 4) Figure 5 shows equipment required in the air compression process, such as the cooler (1e) in Figure 1, connected to the seawater inlet/outlet pipe (6).
It is installed in the middle of the gas turbine to improve the thermal efficiency of the gas turbine by exchanging heat between the high-temperature compressed air and low-temperature seawater, and also increases the collection efficiency by the adsorbent (8) by heating the seawater. This is an attempt to improve the performance.

(発明の効果) 以上から明らかなように本発明は圧縮空気貯蔵ガスター
ビン発電プラントにおける圧縮空気圧の一定化用海水の
流出入を利用するものであるので、従来のように装置単
独で大量の海水を移動させるものに比べて、殆ど電力を
必要とすることなく海水中に溶存する資源を採取できる
。従って経済的であって採算化が可能となる。
(Effects of the Invention) As is clear from the above, the present invention utilizes the inflow and outflow of seawater to stabilize the compressed air pressure in a compressed air storage gas turbine power generation plant. Resources dissolved in seawater can be extracted with almost no electricity required compared to those that move seawater. Therefore, it is economical and can be made profitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧縮空気貯蔵ガスタービン発電プラントの説明
図、第2図、第3図、第4図、第5図は本発明の実施例
図である。
FIG. 1 is an explanatory diagram of a compressed air storage gas turbine power generation plant, and FIGS. 2, 3, 4, and 5 are diagrams of embodiments of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)ガスタービンプラントの空気圧縮機により作った
圧縮空気を圧縮空気圧と対抗しうる水圧の得られる深さ
に設けた地中または海中の貯蔵タンクに一旦貯蔵して発
電に使用すると共に、上記貯蔵タンク内における圧縮空
気量の増減を補うように海水を流出入させて一定圧の圧
縮空気がガスタービンに供給されるようにした圧縮空気
貯蔵ガスタービン発電プラントにおいて、前記海水の流
出入径路に溶存資源の吸着装置を設けたことを特徴とす
る海水中の溶存資源採取装置。
(1) The compressed air produced by the air compressor of a gas turbine plant is temporarily stored in an underground or underwater storage tank located at a depth where water pressure can compete with the compressed air pressure, and used for power generation. In a compressed air storage gas turbine power generation plant in which compressed air at a constant pressure is supplied to a gas turbine by flowing seawater in and out to compensate for changes in the amount of compressed air in a storage tank, A device for collecting dissolved resources in seawater, characterized by being equipped with a device for adsorbing dissolved resources.
(2)特許請求の範囲第1項において海水の流入部を沖
合に設けたことを特徴とする海水中の溶存資源採取装置
(2) An apparatus for extracting dissolved resources in seawater according to claim 1, characterized in that the seawater inlet is provided offshore.
(3)特許請求の範囲第1項において、空気圧縮行程に
必要とされる機器を海水の流入路中に設け、その後路に
吸着装置を設けたことを特徴とする海水中の溶存資源採
取装置。
(3) An apparatus for extracting dissolved resources in seawater according to claim 1, characterized in that equipment required for the air compression process is provided in a seawater inflow path, and an adsorption device is provided in that path. .
JP62300094A 1987-11-30 1987-11-30 Extraction system for dissolved resources in seawater Pending JPH01301926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300094A JPH01301926A (en) 1987-11-30 1987-11-30 Extraction system for dissolved resources in seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300094A JPH01301926A (en) 1987-11-30 1987-11-30 Extraction system for dissolved resources in seawater

Publications (1)

Publication Number Publication Date
JPH01301926A true JPH01301926A (en) 1989-12-06

Family

ID=17880640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300094A Pending JPH01301926A (en) 1987-11-30 1987-11-30 Extraction system for dissolved resources in seawater

Country Status (1)

Country Link
JP (1) JPH01301926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103790708A (en) * 2014-01-16 2014-05-14 华北电力大学 Ocean compressed air energy storing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103790708A (en) * 2014-01-16 2014-05-14 华北电力大学 Ocean compressed air energy storing system

Similar Documents

Publication Publication Date Title
US10184465B2 (en) Green communities
US4873828A (en) Energy storage for off peak electricity
US7178337B2 (en) Power plant system for utilizing the heat energy of geothermal reservoirs
US3754147A (en) Method and system for conversion of water and development of power
CN101248268B (en) Power generator and power generation method
RU2545263C2 (en) Arrangement of integrated generator for generation of energy from renewable alternative sources without hazardous emissions, which protects and saves environment
US4776171A (en) Self-contained renewable energy system
JP2018514746A (en) Heat storage device, power plant having the same, and operation method of heat storage device
JP6232530B2 (en) Improvement and utilization of "buoyancy power generation method"
KR101056856B1 (en) Superheated steam generator, power line and connecting robot
JP2003072675A (en) Hydrogen recovery system provided with hydrogen manufacturing plant
CN204569496U (en) The seawater desalination system that wave energy-solar association drives
CN113511307B (en) Ocean renewable energy self-propelled wireless charging platform
US20140191511A1 (en) System for Generating Electricity
CN107120226A (en) A kind of wave energy trap setting
WO2011023175A2 (en) Wave-power generator
JP2001059472A (en) Energy producing device
JPH01301926A (en) Extraction system for dissolved resources in seawater
CN208544401U (en) Large-scale Mobile floating structures system on a kind of ocean
CN110073157B (en) System and method for sustainable energy production
CN101633395A (en) Methane collection ship
KR20170011606A (en) Floating hybrid power plant
CN219888029U (en) Deep sea comprehensive energy utilization system
US20240067320A1 (en) Method of operating an internal combustion engine of a watercraft
US20230392581A1 (en) Systems and methods for smoothing and storage of intermittent renewable power