JPH01301729A - Expanded heat insulating material - Google Patents

Expanded heat insulating material

Info

Publication number
JPH01301729A
JPH01301729A JP63131862A JP13186288A JPH01301729A JP H01301729 A JPH01301729 A JP H01301729A JP 63131862 A JP63131862 A JP 63131862A JP 13186288 A JP13186288 A JP 13186288A JP H01301729 A JPH01301729 A JP H01301729A
Authority
JP
Japan
Prior art keywords
dibromodifluoromethane
heat insulating
insulating material
foam
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63131862A
Other languages
Japanese (ja)
Inventor
Hideo Nakamoto
中元 英夫
Jinko Kataoka
片岡 仁孝
Kazuto Uekado
一登 上門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63131862A priority Critical patent/JPH01301729A/en
Publication of JPH01301729A publication Critical patent/JPH01301729A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2027Heterocyclic amines; Salts thereof containing one heterocyclic ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4027Mixtures of compounds of group C08G18/54 with other macromolecular compounds

Abstract

PURPOSE:To obtain the title insulating material useful for refrigerators, etc., having low thermal conductivity of gas and excellent heat insulating properties, comprising a resin composition consisting of specific components, foam stabilizer, a specific catalytic component and dibromodifluoromethane as a blowing agent. CONSTITUTION:The aimed expanded heat insulating material comprising (A) a resin composition consisting of an organic polyisocyanate, liquid phenol of benzyl ether type as a polyol component and polyether polyol containing o- tolylenediamine as an initiator, (B) a foam stabilizer, (C) at least dimethylpiperazine and dibutyl dilaurate as a catalytic component and (D) dibromodifluoromethane as a blowing agent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍庫等の断熱材に利用するフェノ
ールウレタンフオーム等の発泡断熱材に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a foamed heat insulating material such as phenol urethane foam used as a heat insulating material for refrigerators, freezers, etc.

従来の技術 近年、省エネルギーの観点より発泡断熱材の熱伝導率を
低減し、断熱性を向上させることが強く望寸れている。
BACKGROUND OF THE INVENTION In recent years, from the viewpoint of energy conservation, there has been a strong desire to reduce the thermal conductivity of foamed heat insulating materials and improve their heat insulating properties.

従来、優れた断熱性能を有するフ2へ一/ エノールウレタンフオームにおいては、発泡剤である弗
素含有ハロゲン炭化水素系発泡剤に対して、原料のベン
ジルエーテル型液状フェノール系樹脂組成物の相溶性を
改善し、原料の均一分散による発泡体の気泡均一化を図
ると共に含水量低下による発泡体の炭酸ガス発生侶の低
減に取組み、断熱性能を向」ニさせてきた。例えば、特
開昭62−241914号公報に示されるように、発泡
剤との相溶性を改善するため、特定のエステル類を配合
して得られるベンジルエーテル型液状フェノール系樹脂
組成物を見出し、この原料を使用することが提案されて
いる。一般にフオームの熱伝導率を改善するには、樹脂
固体熱伝導伝熱、輻射伝熱1気体熱伝導伝熱に対し対策
をとることが必要である。各伝熱因子の寄与率は、樹脂
固体熱伝導が約15係、輻射か約15%を占め、残りの
約70%が気体熱伝導によるものである。前記公報は、
相溶イit向上による気泡の均一化、微細化を狙いとし
たものであり、輻射伝熱の低減を中心に発明されたこと
が特徴である。
Conventionally, in enol urethane foams with excellent heat insulation performance, the compatibility of the benzyl ether type liquid phenolic resin composition as a raw material with the fluorine-containing halogen hydrocarbon blowing agent has been investigated. We have improved the heat insulation performance by uniformly dispersing the raw materials to make the cells of the foam more uniform, and by reducing the amount of carbon dioxide produced by the foam by lowering the water content. For example, as shown in JP-A No. 62-241914, a benzyl ether type liquid phenolic resin composition obtained by blending specific esters was discovered in order to improve the compatibility with a blowing agent. It is proposed to use raw materials. Generally, in order to improve the thermal conductivity of a foam, it is necessary to take measures against resin solid heat conduction heat transfer, radiation heat transfer, and gas heat conduction heat transfer. Regarding the contribution rate of each heat transfer factor, resin solid heat conduction accounts for about 15%, radiation accounts for about 15%, and the remaining about 70% is due to gas heat conduction. The said publication is
It aims at making bubbles more uniform and finer by improving compatibility, and is characterized by being invented with a focus on reducing radiant heat transfer.

3・・−。3...-.

発明が解決しようとする課題 しかし、前記に示した通り、輻射伝熱は、全体の約15
係程度であり、又、含有水分量をQ係にしても、炭酸ガ
ス低減量は微々たるものであるため、気泡の微細化や含
水量の低減ではさらにフェノールウレタンフオームの熱
伝導率を大幅に改善し、省エネルギーを推し進めること
は回器であることが予測できる。よって、断熱性能の優
れたフェノールウレタンフオームに対し、さらに著効の
ある熱伝導率改善手段を見出すことが課題であった。
Problems to be Solved by the Invention However, as shown above, radiation heat transfer accounts for about 15% of the total
Furthermore, even if the water content is set to Q, the reduction in carbon dioxide gas is insignificant, so the thermal conductivity of the phenol urethane foam can be significantly increased by making the bubbles finer and reducing the water content. It can be predicted that improvements will be made and energy conservation will be promoted. Therefore, it was a challenge to find a more effective means for improving thermal conductivity of phenol urethane foam, which has excellent heat insulation performance.

一般にフオームの熱伝導率を改善するには、樹脂固体熱
伝導伝熱、輻射伝熱、気体熱伝導伝熱に対し、それぞれ
対策をとることが必要である。各伝熱因子の寄与率は、
樹脂固体熱伝導が約15係。
Generally, in order to improve the thermal conductivity of a foam, it is necessary to take measures against resin solid heat conduction heat transfer, radiation heat transfer, and gas heat conduction heat transfer. The contribution rate of each heat transfer factor is
Resin solid heat conduction is approximately 15 units.

輻射が約15%を占め残りの約70%が気体熱伝導によ
るものである。上記従来例は、気泡微細化により主とし
て輻射伝熱を低減するものである。
Radiation accounts for approximately 15%, and the remaining approximately 70% is due to gas heat conduction. The above conventional example mainly reduces radiant heat transfer by making the cells finer.

本発明は、伝熱因子の約70係を占める気体熱伝導率に
着目し、断熱材の断熱性能を向上するものである。
The present invention focuses on gas thermal conductivity, which accounts for about 70 coefficients of the heat transfer factor, and improves the heat insulation performance of a heat insulating material.

課題を解決するだめの手段 本発明は、上記課題を解決するために気体熱伝導の低減
に着眼し、有機ポリイソシアネート、ポリオール成分と
してベンジルエーテル型液状フェノールとオルl−−1
−リレンジアミンを開始剤とするポリエーテルポリオー
ルとからなる樹脂組成物。
Means for Solving the Problems In order to solve the above problems, the present invention focuses on reducing gas heat conduction, and uses benzyl ether type liquid phenol and orl as organic polyisocyanate and polyol components.
- A resin composition comprising a polyether polyol using lylene diamine as an initiator.

整泡剤、触媒成分としてジメチルピペラジンとジブチン
ジラウレート、発泡剤としてジブロモジフルオロメタン
を用いて発泡してなる発泡断熱材を得るものである。
A foamed heat insulating material is obtained by foaming using dimethylpiperazine and dibutine dilaurate as a foam stabilizer and catalyst components, and dibromodifluoromethane as a foaming agent.

作   用 一般に気体熱伝導率は、分子量か大きくなるほど小さく
なる特徴がある。しかし、分子量の増大によって沸点が
高くなるため発泡が阻害され発泡剤として使いにくい欠
点を有していた。しかし、ジブロモジフルオロメタンは
、分子量がフロン11に比べ太きいにもかかわらず、臭
素化合物の特徴で沸点は高く々らずフロン11とほぼ同
等の25℃を示す。このようなジブロモジフルオロメタ
ンを5、、−2 発泡剤として適用する上記構成によって気体の熱伝導率
が小さくなり、フオームの断熱性能が改善できると共に
原料温度や治具温度を高温化することなく、簡易な発泡
条件で製造が可能となる。又、ジブロモジフルオロメタ
ンは、極性が強く、樹脂との相溶性が著しく高いだめ、
相溶性が本来十分でない性質を有するベンジルエーテル
型液状フェノール系樹脂組成物でも問題なく溶解するこ
とが可能であり、相溶性改良によって気泡微細化が図れ
るものである。
Function Generally speaking, the thermal conductivity of gases is characterized by decreasing as the molecular weight increases. However, the increase in molecular weight raises the boiling point, which inhibits foaming and makes it difficult to use as a foaming agent. However, although dibromodifluoromethane has a larger molecular weight than Freon 11, its boiling point is not high at 25° C., which is almost the same as Freon 11, due to the characteristics of a bromine compound. The above configuration in which such dibromodifluoromethane is applied as a 5,,-2 blowing agent reduces the thermal conductivity of the gas, improves the insulation performance of the foam, and does not increase the raw material temperature or the jig temperature. Manufacture is possible under simple foaming conditions. In addition, dibromodifluoromethane has strong polarity and extremely high compatibility with resins.
Even a benzyl ether type liquid phenol resin composition which inherently has insufficient compatibility can be dissolved without any problem, and by improving the compatibility, the cells can be made finer.

さらに、芳香族アミン系ポリエーテルポリオールを添加
することによりジブロモジフルオロメタンによる樹脂溶
解性を抑制でき、フオーム強度を維持している。
Furthermore, by adding an aromatic amine-based polyether polyol, the resin solubility caused by dibromodifluoromethane can be suppressed, and the foam strength is maintained.

丑だ、触媒成分として用いるジメチルピペラジンは、ベ
ンジルエーテル型液状フェノールの表面硬度の改善がは
かれ、寸だジブチルチンジラウレートハ、ポリエーテル
ポリオールに対しては強触媒であるが、ベンジルエーテ
ル型液状フェノールに対しては弱触媒でありベンジルエ
ーテル型液状6へ−。
Unfortunately, dimethylpiperazine, which is used as a catalyst component, improves the surface hardness of benzyl ether-type liquid phenol, and dibutyltin dilaurate is a strong catalyst for polyether polyols, but it is a strong catalyst for benzyl ether-type liquid phenol. It is a weak catalyst for benzyl ether type liquid 6.

フェノールとインシアネ−1・の反応を阻害するとと々
くポリエーテルの反応を進めフオーム全体の表面硬度を
改善するものである。
When the reaction between phenol and incyane-1 is inhibited, the reaction between the polyether and the polyether is immediately promoted and the surface hardness of the entire foam is improved.

このようにジブロモジフルオロメタンを発泡剤として使
用することによシ、大幅にフオームの断熱性能が改善で
き、品質上の安定性が確保でき、量産性に優れた発泡断
熱材が提供てきるのである。
In this way, by using dibromodifluoromethane as a foaming agent, the insulation performance of the foam can be significantly improved, quality stability can be ensured, and foam insulation materials with excellent mass production can be provided. .

実施例 以下、実施例を挙げて本発明の発泡断熱材を説明する。Example EXAMPLES Hereinafter, the foamed heat insulating material of the present invention will be explained with reference to Examples.

原料処方を下表に示した。The raw material formulation is shown in the table below.

表において、ポリオールAはベンジルエーテル型液状フ
ェノール樹脂組成物であり、水酸基価420 mgKO
H/g、含水量0.3%未満の7xノールポリオール、
ポリオールBはオルl−−) 1)レンジアミンを開始
剤としてプロピレンオキサイドを付加重合させて得た水
酸基価450mp KOH/gのポリエーテルポリオー
ノペ整泡剤は信越化学工業■F−338、触媒Aはジメ
チルピペラジン、触媒Bはジブチルチンジラウレ=1・
、触媒Cは花王■製茄1(TMHDA)である。有機ポ
リイソシアネ−1−Aは、三井ロ曹つレタン■製クルー
ドMDIである。発泡剤Aはジブロモジフルオロメタン
、発泡剤Bはフロン11である。
In the table, polyol A is a benzyl ether type liquid phenol resin composition, and has a hydroxyl value of 420 mgKO.
H/g, 7x norpolyol with water content less than 0.3%,
Polyol B is ol--) 1) A polyether polyone with a hydroxyl value of 450 mp KOH/g obtained by addition polymerization of propylene oxide using diamine as an initiator.The foam stabilizer is Shin-Etsu Chemical F-338, catalyst A is dimethylpiperazine, catalyst B is dibutyltin dilaure = 1.
, Catalyst C is Kao Eggplant 1 (TMHDA). Organic polyisocyanate 1-A is Crude MDI manufactured by Mitsui Roto Sotsurethane. The blowing agent A was dibromodifluoromethane, and the blowing agent B was Freon-11.

これらの原料を種々組合せて高圧発泡機で発泡を行々い
、実施例として& 1 、162、参考例として16 
A、 −A Cを表に示した。このときの発泡条件は原
料温度20℃、治具温度40℃であった。これらのフェ
ノールウレタンフオームの密度、気泡径、熱伝導率も同
表に示した。なお熱伝導率は、真空理工■製に−Mat
icを使って平均温度24℃で測定した。
Various combinations of these raw materials were foamed using a high-pressure foaming machine.
A, -AC are shown in the table. The foaming conditions at this time were a raw material temperature of 20°C and a jig temperature of 40°C. The density, cell diameter, and thermal conductivity of these phenol urethane foams are also shown in the same table. The thermal conductivity is determined by -Mat manufactured by Shinku Riko ■.
Measurements were made using IC at an average temperature of 24°C.

9、−。9,-.

表から明らか々ように本発明のフェノールウレタンフオ
ームは、優れた断熱性能を示すことが判った。これは、
気体熱伝導率が小さくなっただめフオームの熱伝導率が
改善できたことを示している。又、ジブロモジフルオロ
メタンによる相溶性改善によシ気泡径が細かくなシ、輻
射伝熱の低減分も含寸れてより優れた断熱性改善が図れ
た結果である。なお、ジブロモジフルオロメタンの沸点
は、25℃と常温であり、発泡条件として原料の液温管
理、断熱箱体のプレヒート温度等が極めて容易であり、
問題なく発泡が可能であった。これは、ジブロモジフル
オロメタンは、分子量が210で、フロン11の137
に比べ大きな分子量を有し、気体熱伝導率が小さいとい
う特徴をもちながら、かつ、臭素化合物の特性として分
子量増加しても沸点は低いという特異な特徴を有してい
るだめである。この化合物の特性及び発泡メカニズムに
ついては不明であり、解明は今後の課題である。
As is clear from the table, the phenol urethane foam of the present invention was found to exhibit excellent heat insulation performance. this is,
This shows that the thermal conductivity of the foam was improved because the gas thermal conductivity was reduced. In addition, the improvement in compatibility with dibromodifluoromethane resulted in finer bubble diameters and a reduction in radiant heat transfer, resulting in better insulation improvement. In addition, the boiling point of dibromodifluoromethane is 25°C, which is room temperature, and the foaming conditions include controlling the liquid temperature of the raw material and preheating temperature of the insulating box, etc.
Foaming was possible without any problems. This means that dibromodifluoromethane has a molecular weight of 210 and a Freon 11 of 137.
It has a large molecular weight and low gas thermal conductivity compared to bromine compounds, and also has the unique characteristic of a bromine compound that its boiling point is low even when its molecular weight increases. The properties and foaming mechanism of this compound are unknown, and elucidation is a challenge for the future.

このように分子量が増加しても沸点がフロン11と同様
に常温域にあるため、発泡にあたり工業化10、。
Even if the molecular weight increases in this way, the boiling point remains in the room temperature range like Freon 11, so it is industrialized for foaming.

を損なうとと々く容易に適用可能であり、かつ極性が強
いだめ、ベンジルエーテル型液状フェノール系樹脂組成
物の相溶性を高めて微細気泡を具現化し、ジブロモジフ
ルオロメタン自身の気体熱伝導率の低さと輻射伝熱の低
減により、フオームの断熱性能が改善できたのである。
Because it is easy to apply and has strong polarity, it increases the compatibility of the benzyl ether type liquid phenolic resin composition to realize fine bubbles, and lowers the gas thermal conductivity of dibromodifluoromethane itself. The foam's thermal insulation performance was improved due to its low temperature and reduced radiant heat transfer.

さらに、芳香族アミン系ポリエーテルポリオールの添加
によってジブロモジフルオロメタンによる樹脂溶解性が
抑制されフオーム強度をより強いものに維持できるもの
である。
Further, by adding the aromatic amine polyether polyol, the resin solubility caused by dibromodifluoromethane is suppressed, and the foam strength can be maintained even stronger.

壕だ、触媒成分として用いるジメチルピペラジンは、ベ
ンジルエーテル型液状フェノールの表面硬度の改善がは
かれ、またジブチルチンジラウレートは、ポリエーテル
ポリオールに対しては強触媒であるが、ベンジルエーテ
ル型液状フェノールに対しては弱触媒でありベンジルエ
ーテル型液状フェノールとインシアネートの反応を阻害
することなくポリエーテルの反応を進めフオーム全体の
表面硬度の改善がはかれ、優れたフオームを得るもので
ある。
However, dimethylpiperazine, which is used as a catalyst component, can improve the surface hardness of benzyl ether type liquid phenol, and dibutyltin dilaurate is a strong catalyst for polyether polyols, but it is not effective for benzyl ether type liquid phenol. On the other hand, it is a weak catalyst and promotes the reaction of polyether without inhibiting the reaction between benzyl ether type liquid phenol and incyanate, improving the surface hardness of the entire foam, resulting in an excellent foam.

11 ベーノ なお、比較例に示したように、フロン11を発泡剤とし
たものは気体熱伝導率が大きくなると共に、気泡が粗大
化し、フオームの熱伝導率改善効果は乏しいことが判っ
た。
11 Beano As shown in the comparative example, it was found that when Freon 11 was used as a foaming agent, the gas thermal conductivity increased and the bubbles became coarser, so that the effect of improving the thermal conductivity of the foam was poor.

発明の効果 本発明は、上記の説明からも明らかなように、以下に示
すような効果が得られるものである。すなわち、本発明
の発泡断熱材は、気体熱伝導率が小さく、かつ、気泡微
細化による輻射伝熱によって、極めて優れた断熱性能を
有する。又、使用するジブロモジフルオロメタンは、沸
点が26℃と常温域にあり、液温や型温等の発泡条件を
整えることが容易で、量産性が良好である。このような
生産性に優れ、かつ断熱性能が大幅に向上する発泡断熱
拐によって省エネルギーに寄与し、品質面での著しい改
善が可能となるのである。
Effects of the Invention As is clear from the above description, the present invention provides the following effects. That is, the foamed heat insulating material of the present invention has a low gas thermal conductivity and has extremely excellent heat insulating performance due to radiant heat transfer due to the miniaturization of the cells. Further, the dibromodifluoromethane used has a boiling point of 26° C., which is in the normal temperature range, and it is easy to adjust foaming conditions such as liquid temperature and mold temperature, and mass productivity is good. Foamed insulation, which has excellent productivity and greatly improves insulation performance, contributes to energy savings and makes it possible to significantly improve quality.

Claims (1)

【特許請求の範囲】[Claims] 有機ポリイソシアネートと、ポリオール成分としてベン
ジルエーテル型液状フェノールとオルト−トリレンジア
ミンを開始剤とするポリエーテルポリオールとからなる
樹脂組成物と、整泡剤と、触媒成分として少なくともジ
メチルピペラジとジブチルチンジラウレートと、発泡剤
としてジブロモジフルオロメタンとよりなる発泡断熱材
A resin composition consisting of an organic polyisocyanate, a polyether polyol having benzyl ether type liquid phenol as a polyol component and an ortho-tolylene diamine as an initiator, a foam stabilizer, and at least dimethylpiperazi and dibutyltin dilaurate as catalyst components. , a foam insulation material consisting of dibromodifluoromethane as a blowing agent.
JP63131862A 1988-05-30 1988-05-30 Expanded heat insulating material Pending JPH01301729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131862A JPH01301729A (en) 1988-05-30 1988-05-30 Expanded heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131862A JPH01301729A (en) 1988-05-30 1988-05-30 Expanded heat insulating material

Publications (1)

Publication Number Publication Date
JPH01301729A true JPH01301729A (en) 1989-12-05

Family

ID=15067863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131862A Pending JPH01301729A (en) 1988-05-30 1988-05-30 Expanded heat insulating material

Country Status (1)

Country Link
JP (1) JPH01301729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708127A3 (en) * 1994-10-22 1996-08-14 Elastogran Gmbh Process for the preparation of rigid polyurethane foams having reduced thermal conductivity and their use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708127A3 (en) * 1994-10-22 1996-08-14 Elastogran Gmbh Process for the preparation of rigid polyurethane foams having reduced thermal conductivity and their use

Similar Documents

Publication Publication Date Title
KR20100075414A (en) Composition for rigid polyurethane foam and rigid polyurethane foam
CN1034933A (en) Use amine catalyst to prepare fine-cell rigid polyurethane foam
JPS5984913A (en) Production of rigid polyurethane foam
CN112175158B (en) Refrigerator, hard polyurethane foam and preparation method of hard polyurethane foam
JPH01301729A (en) Expanded heat insulating material
JP2597300B2 (en) Method for producing flexible polyurethane foam
CN113896860B (en) Full-water polyurethane rigid foam material, preparation method and application
KR100609851B1 (en) A method for preparation of rigid polyurethane foam
JP2001526728A (en) Rigid polyurethane foam
JPS63256608A (en) Foamed heat insulating material
JPH01236220A (en) Expanded heat-insulating material
JP4010174B2 (en) Method for producing flexible polyurethane foam
JPH0364312A (en) Production of rigid polyurethane foam
KR100356486B1 (en) A method for preparation of rigid polyurethane foam
KR20110067738A (en) A polyurethane foam with low thermal conductivity and a manufacturing method thereof
JPH01236222A (en) Expanded heat-insulating material
JPH01236218A (en) Expanded heat-insulating material
JP2001329041A (en) Production method of rigid foamed synthetic resin
JPH11158308A (en) Production of finely porous rigid foam by using isocyanate as base material
JPH03287639A (en) Preparation of rigid polyurethane and polyisocyanurate foam
JPH01236221A (en) Expanded heat-insulating material
JPH01168717A (en) Amine catalyst for hard fine cell polyurethane foam
JPH0410491B2 (en)
JPH04279619A (en) Production of rigid polyurethane foam composite material
JPH01236219A (en) Production of rigid polyurethane foam