JPH01301450A - Anti-lock braking controller - Google Patents
Anti-lock braking controllerInfo
- Publication number
- JPH01301450A JPH01301450A JP63133796A JP13379688A JPH01301450A JP H01301450 A JPH01301450 A JP H01301450A JP 63133796 A JP63133796 A JP 63133796A JP 13379688 A JP13379688 A JP 13379688A JP H01301450 A JPH01301450 A JP H01301450A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- wheels
- rear wheels
- speed
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011084 recovery Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 101000893493 Homo sapiens Protein flightless-1 homolog Proteins 0.000 description 1
- 102100040923 Protein flightless-1 homolog Human genes 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/48—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
この発明は、自動車の車輪をブレーキ制動する際に制動
効率を最大限向上せしめるアンチロックブレーキ制御装
置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anti-lock brake control device that maximizes braking efficiency when braking the wheels of an automobile.
自動車等の車輪をブレーキ制動する場合、走行路面のH
擦係数の変化に対応してブレーキ装置を高効率に作動さ
せるためアンチロック制御方式が用いられる。このアン
チロック制御方式によると、ブレーキ制動中であるに拘
らずブレーキ配管中のブレーキ圧力が減圧、保持又は加
圧されてブレーキの開放、制動が短時間内に繰り返され
、最適なブレーキ制動作用を得るようにブレーキが制御
される。When applying brakes to the wheels of a car, etc., the H
An anti-lock control system is used to operate the brake system with high efficiency in response to changes in the coefficient of friction. According to this anti-lock control method, the brake pressure in the brake piping is reduced, maintained, or increased even when the brake is applied, and the brake release and braking are repeated within a short period of time, thereby achieving the optimum brake braking action. The brakes are controlled to obtain.
上記アンチロック制御に用いられる制御装置は、一般に
車輪速度を検出する車輪速センサと、検出された車輪速
信号から車輪速度、減速速度、推定車輌速度、スリップ
率等を演算し、その演算結果に基づいて減圧、保持、加
圧等の制御信号を出力する電子制御回路と、この制御回
路からの制御信号により、マスクシリンダからの制動圧
を圧力調整してホイールシリンダへ送る液圧制御ユニッ
トから成る。The control device used for the above-mentioned anti-lock control generally uses a wheel speed sensor that detects the wheel speed and calculates the wheel speed, deceleration speed, estimated vehicle speed, slip rate, etc. from the detected wheel speed signal, and uses the result of the calculation. It consists of an electronic control circuit that outputs control signals such as depressurization, holding, and pressurization based on the pressure, and a hydraulic control unit that adjusts the braking pressure from the mask cylinder and sends it to the wheel cylinder based on the control signal from this control circuit. .
車輪速信号が入力されると、その入力情報からの電子制
御回路は上記種々の演算を行い、スリップ率の変化、減
速度の値等から各車輪の制動状態がロック傾向にあるか
又は口・ツクからの回復傾向にあるかの判断をし、その
結果に基づいて液圧制御ユニットに対して減圧、保持、
又は加圧等の制御信号を出力する。When a wheel speed signal is input, the electronic control circuit uses the input information to perform the various calculations described above, and determines whether the braking state of each wheel is in a locking tendency or not based on changes in slip ratio, deceleration value, etc. It is determined whether there is a tendency to recover from the accident, and based on the results, the hydraulic control unit is controlled to reduce, maintain, or maintain pressure.
Or output control signals such as pressurization.
液圧制御ユニットは、一般に電磁弁(又はこれらとカッ
トオフ弁、あるいは流量制御弁)、チエツキ弁、液圧ポ
ンプ及びモータ、アキュムレータ、リザーブタンク等を
備え、マスクシリンダからホイールシリンダへの制動経
路途中に設けた前記いずれかの弁により制動圧又はポン
プ液圧の流れを開閉制御する液圧回路から成る。このよ
うな液圧回路で各車輪をブレーキ制動する場合、ホイー
ルシリンダへの液圧の流れを開閉制御する方式として上
記電磁弁等を各車輪ごとに設け、これらをそれぞれ独立
に制御する4チャンネル方式、左右前輪に対しては電磁
弁等をそれぞれに、又後輪については左右の後輪に対し
て1組の電磁弁等を設けてそれぞれ制御する3チャンネ
ル方式、左右前輪にたいしてのみそれぞれ電磁弁等を設
は後輪は左右の前輪のいずれかに液圧を従わせるように
した2チャンネル方式のものがある。The hydraulic control unit generally includes a solenoid valve (or a cut-off valve or a flow control valve), a check valve, a hydraulic pump and motor, an accumulator, a reserve tank, etc., and is located on the braking path from the mask cylinder to the wheel cylinder. It consists of a hydraulic circuit that opens and closes the flow of braking pressure or pump hydraulic pressure using one of the above-mentioned valves provided in the pump. When applying brakes to each wheel using such a hydraulic circuit, a four-channel system is used in which the above-mentioned solenoid valves are provided for each wheel to control the opening and closing of the flow of hydraulic pressure to the wheel cylinders, and these are controlled independently. , a 3-channel system in which a solenoid valve, etc. is provided for each of the left and right front wheels, and a set of solenoid valves, etc. are provided for the left and right rear wheels to control each, respectively, and a solenoid valve, etc. is provided for each of the left and right front wheels, respectively. There is a two-channel system in which the rear wheels follow the hydraulic pressure to either the left or right front wheels.
上記液圧回路に対して液圧制御信号を与える方式として
、前後輪で左右の車輪をそれぞれ一対のものと考え、そ
の一対の車輪のうち低い液圧で制御される方(路面摩擦
係数小)を基準としてこの低圧側がロックに向かうと両
側とも減圧する制御方法(以下セレクトローという)、
反対に高い液圧側を基準とし、この高圧側がロックに向
うと両側とも減圧する制御方法(以下セレクトハイとい
う)、あるいはそれぞれの車輪の液圧をその路面の状況
に応じて独立に制御する方法(以下インデペンデントと
いう)等がすでに知られている。さらに、対角線上の前
後輪をX配管により制動する場合に、対角線上の前後輪
の一対で低速側となる方を基準としてこの低速側がロッ
クに向うと両輪とも減圧する制御方法(以下対角セレク
トローという)も知られている。As a method of giving a hydraulic pressure control signal to the above hydraulic circuit, the front and left wheels are considered as a pair, and the one of the pair of wheels is controlled with lower hydraulic pressure (lower coefficient of road friction). A control method that reduces the pressure on both sides when the low pressure side moves toward lock based on (hereinafter referred to as select low),
On the other hand, there is a control method that uses the higher hydraulic pressure side as a reference and reduces the pressure on both sides when the high pressure side approaches lock (hereinafter referred to as "select high"), or a method that independently controls the hydraulic pressure of each wheel depending on the road surface condition ( (hereinafter referred to as "Independent") are already known. Furthermore, when braking diagonally located front and rear wheels using the Also known as low.
一般にセレクトローは車輪の横抗力(ラテラルフォース
)の確保に有効であり、車輌の方向安定性、操舵性に影
響するが、制動力が不足するため制動距離が延びるとい
う不利がある。反対にセレクトハイは制動力は確保でき
るが、車輪の横抗力に欠けるという難点がある。インデ
ペンデントは、コスト高となるがそれぞれの路面の状況
に応じてきめ細かに判別できるという利点がある。この
ようなそれぞれの制御方法の利点、難点を考慮して、一
般に前輪に対しては制動力を確保するためインデペンデ
ント又はセレクトハイが、後輪に対しては車輪の方向安
定性を確保するためにセレクトローが望ましいとされて
いる。In general, select low is effective in securing lateral force of the wheels, which affects the directional stability and steering performance of the vehicle, but it has the disadvantage of lengthening the braking distance due to insufficient braking force. On the other hand, while Select High can secure braking force, it has the disadvantage of lacking lateral drag on the wheels. Although independent is more expensive, it has the advantage of being able to make detailed judgments based on the conditions of each road surface. Considering the advantages and disadvantages of each control method, generally speaking, independent or select high is used to ensure braking force for the front wheels, and directional stability is used for the rear wheels. Therefore, select low is considered desirable.
上記従来技術は、一般に前輪駆動(以下FWDという)
又は後輪駆動(RWD)を主として対象としているが、
四輪駆動(以下4WDという)に通用する場合はその駆
動方式に適合するように工夫しなければならない。この
ような従来技術として、特開昭62−238158号に
よるアンチロック制御方式が提案されている。この公報
ではFWDから4WDへの切換自在な自動車に適用する
場合のアンチロック制御方式が示されており、駆動方式
の切換えに伴なってアンチロック制御の方法も切換自在
であり、FWD状態では左右の前輪は互いに独立に、2
つの後輪はセレクトローを基準とする3チヤンネル制御
系統とし、4WD駆動状態では対角線上に前後輪に対し
てセレクトローを適用した対角セレクトローによる2チ
ヤンネル制御系統のアンチロック制御方式の回路構成が
採用されている。The above conventional technology is generally a front wheel drive (hereinafter referred to as FWD)
Or, it is mainly aimed at rear wheel drive (RWD),
If it is suitable for four-wheel drive (hereinafter referred to as 4WD), it must be devised to be compatible with that drive system. As such a conventional technique, an anti-lock control system has been proposed in Japanese Patent Laid-Open No. 62-238158. This publication describes an anti-lock control method when applied to a vehicle that can freely switch from FWD to 4WD, and the anti-lock control method can also be switched as the drive system is switched. The front wheels of the two
The two rear wheels have a 3-channel control system based on select low, and in 4WD drive mode, the anti-lock control system has a 2-channel control system with a diagonal select low that applies select low to the front and rear wheels diagonally. has been adopted.
ところで粘性継手を持つ4WD車は一般に、前軸と後軸
の間に回転速度差が生じた場合、低速軸側の車輪が駆動
力を路面に十分伝えられなくなるのを防ぐため、その駆
動力を粘性継手(ビスカップリング)を介して他軸へ伝
達して駆動力を増大し4輪の駆動力が有効に使われるよ
うに構成されている。上記回転速度差が小さいうちは粘
性継手を介して伝えられる内部循環トルクが小さく、車
軸間の干渉が少なく、各車輪を独立に制御することによ
り高効率の制動効果が得られる。By the way, 4WD vehicles with viscous couplings generally reduce the driving force when there is a difference in rotational speed between the front and rear axles to prevent the wheels on the low-speed axle from being able to sufficiently transmit the driving force to the road surface. The structure is such that the driving force is increased by transmitting it to other shafts via a viscous coupling, so that the driving force of the four wheels can be used effectively. As long as the rotational speed difference is small, the internal circulation torque transmitted through the viscous joint is small, there is little interference between the axles, and a highly efficient braking effect can be obtained by controlling each wheel independently.
しかし、回転速度差が大きくなると内部循環トルクが太
き(なり、車軸間の干渉が大きくなっていわゆるギクシ
ャク感を生じたり、又車輌の尻振り等が生じて方向安定
性が悪くなったりする。However, as the difference in rotational speed increases, the internal circulating torque increases, which increases the interference between the axles and causes a so-called jerky feeling, and also causes the vehicle to sway, resulting in poor directional stability.
そこで前述の先行技術ではこれらの不利を解消かるため
、4WD状態では対角セレクトローの制御方法を採用し
ており、この対角セレクトロー式の制御方法は、こうし
た内部循環トルクによる影響を小さく押さえることがで
きる。これは対角上の車輪間でセレクトローを行なうこ
とによって方向安定性を確保しつつ低速側の圧力を基準
として減圧を行い、前後輪間のトルク差を出来るだけ小
さくして制動するからである。Therefore, in order to eliminate these disadvantages in the prior art mentioned above, a diagonal select low control method is adopted in the 4WD state, and this diagonal select low type control method minimizes the influence of such internal circulation torque. be able to. This is because by performing a select low between diagonally opposite wheels, directional stability is ensured while reducing the pressure based on the pressure on the low speed side, and braking is performed by minimizing the torque difference between the front and rear wheels. .
しかし、粘性継手により伝えられるトルクについては限
界があり、それにも拘らずこのような対角セレクトロー
の制御を行なうと、特に左右非対称の路面などで停止距
離が延びたりすることがある。また、極低摩擦係数の路
面では対角セレクトロ一方式で制御しても各輪のスリッ
プ量が比較的大きくなり、車輌の走行が不安定になるこ
とがある。However, there is a limit to the torque that can be transmitted by a viscous joint, and if such diagonal select low control is performed despite this, the stopping distance may be extended, especially on asymmetrical road surfaces. Further, on a road surface with an extremely low coefficient of friction, even if the diagonal selector is controlled using only one type of diagonal selector, the slip amount of each wheel becomes relatively large, and the running of the vehicle may become unstable.
このような種々の問題点があるにも拘らず、前記先行技
術では4WD状態では常に対角セレクトローの制御が行
われており、上記問題点のため制動効率の点で不利があ
る。Despite these various problems, in the prior art, diagonal select low control is always performed in the 4WD state, which is disadvantageous in terms of braking efficiency due to the above problems.
この発明は、かかる従来の四輪駆動車におけるアンチロ
ックブレーキ制御の技術の現状に窓みてなされたもので
あり、その目的は路面摩擦係数と後輪スリップ量の和の
値の大小に応じて4輪を独立制御したり、前輪を独立制
御し後輪はセレクトローの制御としたり、あるいは前輪
を対角セレクトロー制御し後輪はセレクトロー制御とし
てそれぞれの状況に応じて最も効率によい制御を行なう
ことのできるアンチロックブレーキ制御装置を提供する
にある。This invention was made in view of the current state of anti-lock brake control technology in conventional four-wheel drive vehicles, and its purpose is to control anti-lock brake control based on the magnitude of the sum of the road surface friction coefficient and rear wheel slip amount. The wheels can be controlled independently, the front wheels can be controlled independently and the rear wheels can be controlled in select low mode, or the front wheels can be controlled in diagonal select low mode and the rear wheels can be controlled in select low mode to achieve the most efficient control depending on each situation. The purpose of the present invention is to provide an anti-lock brake control device that can be used.
そこでの発明では上記課題を解決するための手段として
、前軸と後輪の間に粘性継手を備えた常時全輪駆動方式
の自動車の各車輪の回転速度を検出する車輪速センサと
、検出された車輪速信号から車輪速度、推定車輌速度、
減速度、スリップ率等を演算しその演算結果に基づいて
液圧制御信号を出力する電子制御回路と、前記制御信号
により前後左右の各車輪の制動力を各々独立に調整でき
る液圧制御ユニットとを備え、前記電子制御回路は路面
摩擦係数の判別手段と左右後輪のスリップ量の和を評価
する手段とを有し、前記路面摩擦係数が低く後輪スリッ
プ量の和が小さいときは4輪を独立に、後輪スリップ量
の和が大きいときは摩擦係数の高低に拘らず前輪を独立
に後輪は両後輪のうち回転速度の低い方からの情報によ
ってそれぞれ制御するようにした構成を採用したのであ
る。In this invention, as a means to solve the above problem, a wheel speed sensor that detects the rotational speed of each wheel of a constant all-wheel drive vehicle equipped with a viscous joint between the front axle and the rear wheel, and a Wheel speed, estimated vehicle speed,
an electronic control circuit that calculates deceleration, slip ratio, etc. and outputs a hydraulic control signal based on the calculation results; and a hydraulic control unit that can independently adjust the braking force of each front, rear, left, and right wheel using the control signal. The electronic control circuit has a means for determining a road surface friction coefficient and a means for evaluating the sum of slip amounts of the left and right rear wheels, and when the road surface friction coefficient is low and the sum of the rear wheel slip amounts is small, the four wheels are independently, and when the sum of the rear wheel slip amounts is large, the front wheels are controlled independently regardless of the high or low friction coefficient, and the rear wheels are controlled individually based on information from the lower rotational speed of the two rear wheels. It was adopted.
さらに、摩擦係数が小、後輪のスリップ和が大になると
内部循環トルクの影響が大となるためこれに対処する手
段として、前記第一の発明の電子制御回路の構成を、前
記路面摩擦係数が高く後輪スリップ和が小さいときは4
輪を独立に、路面摩擦係数が高く後輪スリップ和が大き
いとき、もしくは路面摩擦係数が低く後輪スリップ和が
小さいときはいずれも前輪を独立に後輪は両後輪のうち
回転速度の低い方からの情報によって、そして路面摩擦
係数が低く後輪スリップ量の和が大きいときは前輪はそ
れぞれ対角線上の後輪とのうちで回転速度の低い方から
の情報によって、後輪は両後輪のうち回転速度の低い方
からの情報によってそれぞれ制御するようにしたものを
採用したのである。Furthermore, when the coefficient of friction is small and the sum of slips of the rear wheels is large, the influence of internal circulation torque becomes large. 4 when the rear wheel slip sum is high and the rear wheel slip sum is small.
When the road surface friction coefficient is high and the rear wheel slip sum is large, or when the road surface friction coefficient is low and the rear wheel slip sum is small, the front wheels are set independently.The rear wheel is the one with the lower rotation speed of the two rear wheels. When the road surface friction coefficient is low and the sum of the rear wheel slips is large, the front wheels are controlled by the information from the diagonally opposite rear wheel, which has a lower rotation speed. We adopted a system in which control is performed based on information from the one with a lower rotational speed.
ブレーキペダル踏込によりブレーキ制動されるとアンチ
ロック制御が開始される。ブレーキ制動による加圧のた
め車輪速が減速されると、これらの車輪速の変化が電子
制御回路で計算され、この車輪速度に基づいて推定車輌
速度、路面摩擦係数μ、後輪スリップ和SRが求められ
る。次にμ、S、をそれぞれの基準値μ0、THRと比
較しその結果により制御する次のような場合が生ずる。Anti-lock control is started when the brake pedal is depressed. When the wheel speed is reduced due to pressurization due to brake braking, the change in wheel speed is calculated by the electronic control circuit, and the estimated vehicle speed, road surface friction coefficient μ, and rear wheel slip sum SR are calculated based on this wheel speed. Desired. Next, the following case occurs in which μ, S, are compared with respective reference values μ0, THR, and control is performed based on the results.
μ〉μ0、S++<THRのときは全輪がそれぞれ独立
に制御される。この場合はμが大であり車輪拘束トルク
が内部循環トルクに対して十分大きいため前輪について
は独立の制御を保証して制動力が有効に路面に伝達され
る。後輪のスリップ和が小さく内部循環トルクが路面に
対する車輪拘束トルクに対して十分小さいため後輪も独
立制御することによって高効率なブレーキ制動が得られ
る。When μ>μ0 and S++<THR, all wheels are controlled independently. In this case, μ is large and the wheel restraint torque is sufficiently large compared to the internal circulation torque, so independent control of the front wheels is ensured and braking force is effectively transmitted to the road surface. Since the rear wheel slip sum is small and the internal circulation torque is sufficiently small compared to the wheel restraint torque on the road surface, highly efficient braking can be achieved by independently controlling the rear wheels.
SRが小であるから方向安定性は阻害されない。Since SR is small, directional stability is not inhibited.
μ>μ0、SR>THR又はμくμ0、S3〈THRの
ときは前輪を独立制御し、後輪は両後輪のセレクトロー
制御とする。When μ > μ0, SR > THR or μ > μ0, S3<THR, the front wheels are controlled independently, and the rear wheels are controlled selectively for both rear wheels.
前輪を独立制御するのは上記第1の場合と同様であるが
、後輪については内部循環トルクが車輪拘束トルクに比
して小さく後輪スリップ和が大きいときは車輌の方向安
定性が悪くなり易い。後輪スリップ和が小さく内部循環
トルクが車輪拘束に近いときは後輪スリップ和が大きく
なる危険性が高く、このため、後輪を両後輪のセレクト
ローとすることによって方向安定性の改善を図ることが
できる。Independent control of the front wheels is the same as in the first case above, but for the rear wheels, when the internal circulation torque is smaller than the wheel restraint torque and the rear wheel slip sum is large, the directional stability of the vehicle deteriorates. easy. When the sum of rear wheel slips is small and the internal circulating torque is close to wheel restraint, there is a high risk that the sum of rear wheel slips will become large. Therefore, it is possible to improve directional stability by setting the rear wheels to select low for both rear wheels. can be achieved.
以上のような第一の発明による制御を適用すれば、特別
な場合を除き十分方向安定性を確保しつつ路面状況に適
用し得る制御が可能であるが、さらに第2の発明では上
記制御に加えて次のような制御が実行される。By applying the control according to the first invention as described above, it is possible to perform control that can be applied to road conditions while ensuring sufficient directional stability except in special cases. In addition, the following controls are executed.
μくμ0、Sl>THRのときは前輪は対角セレクトロ
ー、後輪は両後輪のセレクトロー制御される。When μ is μ0 and Sl>THR, the front wheels are controlled by diagonal select low, and the rear wheels are controlled by select low of both rear wheels.
この場合は、内部循環トルクが車輪拘束トルりに近く、
後輪のスリップ和が大きいため、前輪を対角セレクトロ
ー制御することによって車軸間の干渉をさけ、後輪を両
後輪のセレクトロー制御とすることによって車輪の方向
安定性を確保することができる。In this case, the internal circulation torque is close to the wheel restraint torque,
Since the sum of slips of the rear wheels is large, it is possible to avoid interference between the axles by controlling the front wheels diagonally with select low, and to ensure the directional stability of the wheels by controlling the rear wheels with select low of both rear wheels. can.
上記それぞれの制御において、独立制御するときは検出
された車輪速をそのまま用いてスリップ率、減速度を求
め、これに基づいて各車輪についてロック傾向又はロッ
クからの回復傾向が判断され、その判断に基づいて加圧
、保持、減圧のいずれかの制御信号が出力される。In each of the above controls, when performing independent control, the detected wheel speed is used as is to determine the slip rate and deceleration, and based on this, the lock tendency or recovery tendency from lock is determined for each wheel. Based on this, a control signal for pressurization, holding, or depressurization is output.
両後輪のセレクトロー制御する場合は、両後輪のうち高
速側の車輪速を低速側のものに置き換えてスリップ率、
減速度を求め、これに基づいて上記と同様な判断をし、
その判断に基づく制御信号が出力される。When performing select low control for both rear wheels, replace the high-speed wheel speed of both rear wheels with the low-speed wheel speed to adjust the slip rate,
Find the deceleration and make the same judgment as above based on this,
A control signal based on the determination is output.
対角セレクトロー制御では、各前輪の対角線上の後輪と
の間で上記セレクトローと同様な判断に基づく制御信号
が出力される。In the diagonal select low control, a control signal based on the same judgment as the select low is output between each front wheel and the rear wheel on the diagonal line.
なお、いずれのセレクトロー制御でも車輪速を低速側の
ものに置き換える代りにスリップ率、減速度等の結果を
低速側のものに置き換えても全く同様な結果が得られる
。In any of the select low controls, the same results can be obtained by replacing the results of the slip rate, deceleration, etc. with those on the low speed side instead of replacing the wheel speed with those on the low speed side.
以下この発明の実施例について添付図を参照して詳細に
説明する。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
この発明によるアンチロックブレーキ制御装置は第7図
に示す常時全輪駆動式の自動車を対象として設けられる
。一般に4輪駆動車は前輪SFと後輪S、の間に粘性継
手■。を有し、前輪が路面に対してエンジンEの駆動力
を十分に伝達できなくなるとその駆動力はvcを介して
後輪へ伝達され、前輪の駆動力の減少分を後輪がバッフ
ァ・ノブする。The anti-lock brake control device according to the present invention is provided for a permanent all-wheel drive vehicle shown in FIG. Generally, four-wheel drive vehicles have a viscous joint■ between the front wheel SF and rear wheel S. When the front wheels are no longer able to sufficiently transmit the driving force of engine E to the road surface, the driving force is transmitted to the rear wheels via VC, and the reduced driving force of the front wheels is transferred to the rear wheels by the buffer knob. do.
第1図は前記アンチロックブレーキ制御装置の電気制御
系の概略をブロック図で示す図である。FIG. 1 is a block diagram schematically showing the electrical control system of the anti-lock brake control device.
4輪駆動車(以下4WD車という)の前後左右の各車輪
の回転状態を検出するための車輪源センサS、〜S4で
検出されたそれぞれの車輪速度信号は、電子制御回路1
0のA/D変換部11に入力されてパルス信号に変換さ
れ、パルス処理回路により処理したのちマイクロコンピ
ュータ13へ送られる。The respective wheel speed signals detected by the wheel source sensors S, ~S4 for detecting the rotational state of the front, rear, left, and right wheels of a four-wheel drive vehicle (hereinafter referred to as a 4WD vehicle) are sent to the electronic control circuit 1.
The signal is input to the A/D converter 11 of 0 and converted into a pulse signal, processed by a pulse processing circuit, and then sent to the microcomputer 13.
マイクロコンピュータ13では、上記車輪速パルス信号
に基づいて推定車輪速度、減速度、スリップ率等が演算
され、その演算結果に基づいてソレノイド駆動回路14
、モータ駆動回路15へそれぞれ必要な制御信号が送ら
れる。上記駆動回路の外にフェイルセーフリレー駆動回
路16、ウオーニングランプ駆動回路17等が設けられ
ている。The microcomputer 13 calculates the estimated wheel speed, deceleration, slip rate, etc. based on the wheel speed pulse signal, and based on the calculation results, the solenoid drive circuit 14
, and the necessary control signals are sent to the motor drive circuit 15, respectively. A fail-safe relay drive circuit 16, a warning lamp drive circuit 17, etc. are provided outside the drive circuit.
W、Lはウオーニングランプである。W and L are warning lamps.
ソレノイド駆動回路14は、第1図に示すように4つの
系統の制御信号を送り、各一対の電磁側22.22’
(2位置切換弁)の4&lをON、OFFすることに
より各車輪のブレーキシリンダそれぞれを加圧、保持、
減圧のいずれかの動作モードに切換えてブレーキ制動す
る。The solenoid drive circuit 14 sends control signals of four systems as shown in FIG.
By turning ON and OFF 4&l (2-position switching valve), the brake cylinders of each wheel are pressurized and held.
Switch to one of the pressure reduction operation modes and apply the brake.
第2図に示すように、この実施例の液圧回路はマスクシ
リンダ21と、その制動圧を調整して送り出す2&[l
の液圧制御ユニットと、各車輪のホイールシリンダから
成り、各液圧制御ユニットは一対の電磁弁22.22′
を2&[l、液圧ポンプ23、モータ24、アキユムレ
ータ25、リザーブタンク26、逆止弁27等を備えて
いる。マスクシリンダ21からの2系統の制動圧はそれ
ぞれ左右の前輪へ供給され、左前輪への制動圧は途中分
岐して右後輪へも送られ、右前輪はこれと対象となし、
従って制動圧系はX配管となっている。一対の電磁弁2
2.22′、逆止弁27は各車輪ごとに設けられ、ン&
圧ポンプ23、アキュムレータ25、リザーブタンク2
6は左右2つの制動圧系統の各系統ごとに設けられ、モ
ータ24は両軸駆動形のものにより2つの液圧ポンプ2
3を駆動している。As shown in FIG. 2, the hydraulic circuit of this embodiment includes a mask cylinder 21 and a 2&[l
It consists of a hydraulic pressure control unit and a wheel cylinder for each wheel, and each hydraulic pressure control unit has a pair of solenoid valves 22 and 22'.
It is equipped with a hydraulic pump 23, a motor 24, an accumulator 25, a reserve tank 26, a check valve 27, etc. The two systems of braking pressure from the mask cylinder 21 are supplied to the left and right front wheels, respectively, and the braking pressure to the left front wheel is branched midway and also sent to the right rear wheel, and the right front wheel is not targeted.
Therefore, the braking pressure system is an X pipe. A pair of solenoid valves 2
2.22', check valve 27 is provided for each wheel, and
Pressure pump 23, accumulator 25, reserve tank 2
Reference numeral 6 is provided for each of the two left and right braking pressure systems, and the motor 24 is of a double-shaft drive type to drive two hydraulic pumps 2.
It is driving 3.
この液圧回路は一般に環流式と呼ばれている。This hydraulic circuit is generally called a circulation type.
上記アンチロックブレーキ制御装置によるアンチロック
制御は次のように行なわれる(第3図〜第6図参照)。Anti-lock control by the anti-lock brake control device is performed as follows (see FIGS. 3 to 6).
電源を投入し自動車が発進すると、その走行中の各車輪
の車輪速信号は電子制御回路10に入力され、マイクロ
コンピュータ13で各車輪の車輪速度VFLII 、V
□N 、■RLH、■+111+1の計算が行なわれる
。ブレーキペダル踏込によりブレーキ制動されると、ア
ンチロ・ンク制御が開始される。第3図に示すように、
ブレーキ制動により変化する上記車輪速度を計算した後
、さらにこの車輪速度からII定車輌速度VREF、路
面摩擦係数μ、後輪スリップ和SR”= (2Vary
VRLII Vi、lu )等が計算される。When the power is turned on and the car starts, the wheel speed signals of each wheel in motion are input to the electronic control circuit 10, and the microcomputer 13 calculates the wheel speeds VFLII, V of each wheel.
□N, ■RLH, ■+111+1 are calculated. When the brake pedal is depressed and the brake is applied, anti-rotation control is started. As shown in Figure 3,
After calculating the above wheel speed which changes due to braking, further from this wheel speed II constant vehicle speed VREF, road surface friction coefficient μ, rear wheel slip sum SR"= (2Vary
VRLII Vi, lu ), etc. are calculated.
次に、路面摩擦係数μが所定値μ。と比較される。μは
4輪の平均値として表わされ、μ。は路面に対して最大
駆動力を与えることができる付近の適当な値である。Next, the road surface friction coefficient μ is a predetermined value μ. compared to μ is expressed as the average value of the four wheels. is an appropriate value around which the maximum driving force can be applied to the road surface.
その後、μの大小いずれの場合も後輪のスリップ和Sえ
が基準値THR(スレッシュホールド)と比較される。Thereafter, regardless of whether μ is large or small, the rear wheel slip sum S is compared with a reference value THR (threshold).
このTHRは全輪を独立に制御したときに、走行安定性
を害する程の影響を与えるかどうかを基準として決めら
れる値である。This THR is a value determined on the basis of whether or not, when all wheels are controlled independently, there is a sufficient influence to impair running stability.
上記μとSRのそれぞれの比較をした後は、その大小の
組合せが4通り生ずるから、それぞれの組合せに最適な
制御が次のように行なわれる。After the above-mentioned comparison of μ and SR is made, four combinations of their magnitudes are generated, so the optimal control for each combination is performed as follows.
(1)の場合はμが高く、このため制動力を高効率に路
面に及ぼすことができ、かつS大小であるから走行安定
性が阻害されない、従って、4輪を独立に制動する方が
制動力を確保することができる。In the case of (1), μ is high, so the braking force can be applied to the road surface with high efficiency, and since S is large and small, driving stability is not hindered. Therefore, it is better to brake the four wheels independently. Power can be secured.
(2)の場合はS、小であるから後輪による方向安定性
はよいがμが低いため全体としては前輪からの内部循環
トルクの影響により後輪のスリップ和が大きくなり易く
、方向安定性が悪くなり易い、従って、前輪を独立制御
して制動力を確保し、後輪は両後輪のセレクトロー制御
711によって方向安定性を得る必要がある。In the case of (2), since S is small, the directional stability of the rear wheels is good, but since μ is low, the total slip of the rear wheels tends to increase as a whole due to the influence of internal circulation torque from the front wheels, resulting in poor directional stability. Therefore, it is necessary to independently control the front wheels to ensure braking force, and to obtain directional stability for the rear wheels through select low control 711 of both rear wheels.
(3)の場合はμが高いため制動力は得られるが、S。In case (3), braking force can be obtained because μ is high, but S.
大であるため後輪による方向安定性が悪くなるため、(
2)と同様の制御とするのがよい。Because of the large size, the directional stability provided by the rear wheels deteriorates (
It is preferable to use the same control as in 2).
(4)の場合はIが低く、SR大のため制動力が得られ
ず、方向安定性も悪くなる。従って、まず後輪は両後輪
のセレクトローとすることによって車輪間の干渉を極力
低下させかつ車輌の安定性を得ると共に制動力をできる
だけ確保する。In the case of (4), I is low and SR is large, so braking force cannot be obtained and directional stability also deteriorates. Therefore, first, by setting the rear wheels to select low, interference between the wheels is reduced as much as possible, vehicle stability is obtained, and braking force is secured as much as possible.
以上のようなそれぞれの場合に従って図示のような各車
輪速度の置き換えが行なわれる。In accordance with each of the above cases, the wheel speeds are replaced as shown.
(1)の場合は、各車輪の速度情報でそのまま個別に制
御されるから、μくμ0、SR>THRの判断ループの
それぞれNOのラインを通り、V(i)(i=1〜4)
がV FLM〜■□□の値そのままとされる。In the case of (1), since each wheel is controlled individually based on the speed information, it passes through the NO line in the judgment loop of μμμ0 and SR>THR, and V(i) (i=1 to 4)
is left unchanged at the value of VFLM~■□□.
(3)の場合は、■□M >’VIILHの比較をした
結果により、前輪は入力速度情報そのままとし、後輪は
回転速度の低い方を基準として高い方の速度を低い方の
ものに置き換えが行なわれる。In the case of (3), based on the comparison result of ■□M >'VIILH, the input speed information for the front wheels is kept as is, and for the rear wheels, the higher speed is replaced with the lower one based on the lower rotation speed. will be carried out.
(2)の場合も同様に図示のS、>THRの判断ループ
でNoのラインを通り(3)と同様な速度の置換えが行
なわれる。In the case of (2), the same speed replacement as in (3) is performed through the No line in the S,>THR judgment loop shown in the figure.
(4)の場合は、図示のようにまずV FLII >
V ++*□、及びVFIN >VIILHの比較によ
り対角セレクトローの判断がなされる。そしてその結果
4つの場合についてそれぞれ後輪に対して両後輪のセレ
クトローが行なわれ、8通りの速度の置換えがなされる
。In the case of (4), first V FLII >
The diagonal select low is determined by comparing V++*□ and VFIN>VIILH. As a result, a select low is performed for both rear wheels in each of the four cases, resulting in eight speed replacements.
実際の速度状態は上記13通りのうちいずれかにあるか
ら、その時のV (i)(i=1〜4)について再び評
価が行なわれ、スリップ率、減速度等が算出される。そ
の結果(θ(i)(i=1〜4))、第4図に示す動作
モードの組合せによるフェイズI、■、■のいずれかと
判断されると、その判断フェイズの指令信号がソレノイ
ドFtイ、FIIH,RLH,R□のそれぞれに出力さ
れる。Since the actual speed state is in one of the above 13 ways, the current V (i) (i=1 to 4) is evaluated again, and the slip ratio, deceleration, etc. are calculated. As a result (θ(i) (i=1 to 4)), if it is determined that the operation mode combination shown in Fig. 4 is in phase I, ■, or ■, the command signal for that determination phase will be sent to the solenoid Ft. , FIIH, RLH, and R□.
第4図は第3図のV(i)の評価、ソレノイドへの出力
部分の詳細なフローチャートであり、−船釣なアンチロ
ック制御に用いられる判断、出力命令のプログラムであ
る。このフローチャートでは、一般に3つのフェイズが
用いられ、動作モード加圧、減圧、保持を組合せて、常
時加圧をフェイズI、N圧と保持指令の組合せをフェイ
ズ■、加圧と保持指令の組合せをフェイズ■とする。FIG. 4 is a detailed flowchart of the evaluation of V(i) in FIG. 3 and the output to the solenoid, and is a program for judgment and output commands used in anti-lock control for boat fishing. In this flowchart, three phases are generally used: a combination of operation modes pressurization, depressurization, and holding; phase I for constant pressurization; phase II for a combination of N pressure and hold command; and phase II for a combination of pressurization and hold command. Phase ■.
第4図のプログラムは後述するメインプログラムで初期
設定され、フェイズが■に設定されているから最初のフ
ェイズは当然■である。このフェイズrの状態でロック
傾向の有無が検出される。The program shown in FIG. 4 is initialized by the main program described later, and since the phase is set to ■, the first phase is naturally ■. In this state of phase r, the presence or absence of a tendency to lock is detected.
このロック傾向の検出は、V (i)(i=1〜4)の
評価として減速度、スリップ率が求められ、これによっ
てロック傾向が判断される。上記判断の結果ロック傾向
が検出されないときはフェイズIの処理命令、即ち常時
加圧指令がソレノイドに対して出力される。このためさ
らにブレーキは制動の状態のままとなるから、時間が経
過するにつれてロック傾向を示すこととなる。ロック傾
向が検出されると、フェイズHの処理命令が出力され、
減圧と保持の処理がなされる。このため時間経過ととも
にロック回復傾向が検出されるようになり、次にフェイ
ズ■の処理命令が出力される。この加圧と保持命令では
徐々に加圧されていくから、これが繰り返されると再び
ロック傾向が現われる。To detect this tendency to lock, the deceleration and slip rate are obtained as an evaluation of V (i) (i=1 to 4), and the tendency to lock is determined based on these. If the locking tendency is not detected as a result of the above judgment, a phase I processing command, that is, a constant pressurization command is output to the solenoid. For this reason, the brake remains in a braking state, and as time passes, the brake tends to lock. When a lock tendency is detected, a phase H processing instruction is output,
Depressurization and holding processes are performed. Therefore, as time passes, a lock recovery tendency is detected, and then a processing command for phase (2) is output. With this pressurization and holding command, the pressure is gradually increased, so if this is repeated, the locking tendency will appear again.
ロック傾向が検出されるとさらにフェイズHの処理命令
が出力され、その後再びフェイズ■へと移行し、これら
を繰り返すことによってブレーキ制動が高効率に行なわ
れる。When a locking tendency is detected, a phase H processing command is further output, and the process then shifts to phase (2) again, and by repeating these steps, brake braking is performed with high efficiency.
上記フェイズ11■、■の処理命令は、前記V(i)に
=t〜4)のそれぞれに対してその結果としてのθ(i
)(i=1〜4)の判断により行なわれる。従って、ど
のフェイズの処理が行なわれるかはv(1)の値によっ
てそれぞれ異なる。The processing commands in Phases 11 (2) and (2) are used to calculate the resulting θ(i) for each of V(i) = t~4
) (i=1 to 4). Therefore, which phase of processing is performed differs depending on the value of v(1).
第5図はメインプログラムの例を示す。このメインプロ
グラムに対して第3図、第4図のサブプログラムは定時
割込のプログラムとして構成され、イニシアルチェソク
後初期化処理をし、フェイズをIに設定後割込許可をし
、その後図示のような緊急を要しないような判断を行な
い、異常がない限りこれを繰り返す無限ループから成る
。一定時間ごとに割込があるとメインループは一時中断
してサブプログラムを実施する。FIG. 5 shows an example of the main program. For this main program, the subprograms shown in Figures 3 and 4 are configured as regular interrupt programs, which perform initialization processing after the initial check, set the phase to I, enable interrupts, and then It consists of an infinite loop in which decisions that do not require an emergency are made, and this process is repeated as long as there is no abnormality. When an interrupt occurs at regular intervals, the main loop is temporarily interrupted and the subprogram is executed.
第6図は第3図のサブプログラムのもう1つの実施例で
ある。基本的には同じプログラムであるが、V (i)
(i=1〜4)の評価を先に行なって、その結果として
得られるスリップ率や減速度の結果θ(i)に=t〜4
)に対して両後輪のセレクトロー、対角セレクトローの
選択をするときはμ、S、の判別をした後、車輪速の比
較をして上記結果θ(i)を低速側の結果に置き変え、
その置変え後の結果により各フェイズの処理命令を出力
する点のみが異なる。FIG. 6 is another embodiment of the subprogram of FIG. 3. It is basically the same program, but V (i)
(i = 1 to 4) is evaluated first, and the resulting slip rate and deceleration result θ(i) = t to 4.
), when selecting select low for both rear wheels or diagonal select low, after determining μ and S, compare the wheel speeds and convert the above result θ(i) to the low speed result. replace,
The only difference is that processing instructions for each phase are output depending on the result after the replacement.
〔効果]
以上詳細に説明したように、この発明では路面摩擦係数
μ、後輪スリップ和S、lのそれぞれの基準値との大小
によって生ずる4つの場合について、4輪を独立制御、
前輪を独立制御し後輪を両後輪のセレクトロー制御、前
輪を対角セレクトロー制御とし後輪は両後輪のセレクト
ロー制御のいずれかにより制御するように構成したから
、常に4輪を独立制御したりあるいは常に対角セレクト
ローで制御する場合に生ずる方向安定性の減少、制動力
の不足という不具合をそれぞれの場合に応じた上記最適
の制御を行えるようにすることによって解消し、高効率
のブレーキ制御作用を得ることができる。[Effect] As explained in detail above, in this invention, the four wheels are independently controlled in four cases that occur depending on the magnitude of the road surface friction coefficient μ and the rear wheel slip sum S and l with respect to their respective reference values.
The front wheels are controlled independently, the rear wheels are controlled by select low control of both rear wheels, the front wheels are controlled by diagonal select low control, and the rear wheels are controlled by either select low control of both rear wheels, so all four wheels are controlled at all times. The problems of reduced directional stability and insufficient braking force that occur when using independent control or constant diagonal select low control are resolved by making it possible to perform the above-mentioned optimal control according to each case, and improve high performance. Efficient brake control action can be obtained.
第1図はこの発明によるアンチロックブレーキ制御装置
の実施例の電子制御回路のブロック図、第2図は液圧回
路のブロック図、第3図は電子制御回路内のサブプログ
ラムのフローチャート、第4図は通常のアンチロック制
御の部分フロートヤード、第5図はメインプログラムの
フローチャート、第6図は第3図のフローチャートのも
う1つの実施例、第7図は全輪駆動車の動力伝達機構の
概略図である。
10・・・・・・電子制御回路、
13・・・・・・マイクロコンピュータ、22.22′
・・・・・・電磁弁、
23・・・・・・液圧ポンプ、
S1〜S4・・・・・・車輪速センサ、V、・・・・・
・粘性継手、 S、・・・・・・前軸、SA・・・・・
・後軸。
特許出願人 住友電気工業株式会社FIG. 1 is a block diagram of an electronic control circuit of an embodiment of an anti-lock brake control device according to the present invention, FIG. 2 is a block diagram of a hydraulic circuit, FIG. 3 is a flowchart of a subprogram in the electronic control circuit, and FIG. The figure shows a partial float yard for normal anti-lock control, Figure 5 is a flowchart of the main program, Figure 6 is another embodiment of the flowchart in Figure 3, and Figure 7 is a diagram of the power transmission mechanism of an all-wheel drive vehicle. It is a schematic diagram. 10...Electronic control circuit, 13...Microcomputer, 22.22'
... Solenoid valve, 23 ... Hydraulic pump, S1 to S4 ... Wheel speed sensor, V, ...
・Viscous joint, S,...Front shaft, SA...
- Rear axis. Patent applicant: Sumitomo Electric Industries, Ltd.
Claims (4)
式の自動車の各車輪の回転速度を検出する車輪速センサ
と、検出された車輪速信号から車輪速度、推定車輌速度
、減速度、スリップ率等を演算しその演算結果に基づい
て液圧制御信号を出力する電子制御回路と、前記制御信
号により前後左右の各車輪の制御力を各々独立に調整で
きる液圧制御ユニットとを備え、前記電子制御回路は路
面摩擦係数の判別手段と左右後輪のスリップ量の和を評
価する手段とを有し、前記路面摩擦係数が高く後輪スリ
ップ量の和が小さいときは4輪を独立に、後輪スリップ
量の和が大きいときは摩擦係数の高低に拘らず前輪を独
立に後輪を両後輪のうち回転速度の低い方からの情報に
よってそれぞれ制御するように構成して成るアンチロッ
クブレーキ制御装置。(1) A wheel speed sensor that detects the rotational speed of each wheel of a constantly all-wheel drive vehicle equipped with viscous joints between the front wheels and rear wheels, and a wheel speed and estimated vehicle speed based on the detected wheel speed signal. An electronic control circuit that calculates deceleration, slip rate, etc. and outputs a hydraulic control signal based on the calculation results, and a hydraulic control unit that can independently adjust the control force of each front, rear, left, and right wheel using the control signal. The electronic control circuit has a means for determining a road surface friction coefficient and a means for evaluating the sum of slip amounts of the left and right rear wheels, and when the road surface friction coefficient is high and the sum of the rear wheel slip amounts is small, the four wheels are independently, and when the sum of the rear wheel slip amounts is large, the front wheels are controlled independently regardless of the level of the friction coefficient, and the rear wheels are controlled respectively based on information from the lower rotational speed of the two rear wheels. Anti-lock brake control device.
輪スリップ和が小さいときは4輪を独立に、路面摩擦係
数が高く後輪スリップ和が大きいとき、もしくは路面摩
擦係数が低く後輪スリップ和が小さいときはいずれも前
輪を独立に後輪は両後輪のうち回転速度の低い方からの
情報によって、そして路面摩擦係数が低く後輪スリップ
量の和が大きいときは前輪はそれぞれ対角線上の後輪と
のうちで回転速度の低い方からの情報によって、後輪は
両後輪のうち回転速度の低い方からの情報によってそれ
ぞれ制御するようにしたことを特徴とする請求項1に記
載のアンチロックブレーキ制御装置。(2) The electronic control circuit controls the four wheels independently when the road surface friction coefficient is high and the rear wheel slip sum is small, and controls the rear wheels independently when the road surface friction coefficient is high and the rear wheel slip sum is large, or when the road surface friction coefficient is low and the rear wheel slip sum is small. When the sum of slips is small, the front wheels are driven independently, and the rear wheels are driven diagonally by information from the lower rotational speed of the two rear wheels, and when the road friction coefficient is low and the sum of the rear wheel slips is large, the front wheels are driven diagonally. According to claim 1, the rear wheels are controlled by information from the lower rotational speed of the upper rear wheels, and the rear wheels are controlled by information from the lower rotational speed of the two rear wheels. Anti-lock brake control device as described.
れた車輪速信号から全輪の車輪速度、推定車輌速度、路
面摩擦係数μ、後輪のスリップ和S_Rを演算し、μ、
S_Rのそれぞれの基準値μ_0、THRと比較し、そ
の結果生ずる4つの場合についてμ>μ_0、S_R<
THRのときは検出された車輪速度の値でスリップ率、
減速度を各車輪について求めその結果に基づいて各車輪
を独立に制御し、μ>μ_0、S_R>THR又はμ>
μ_0、S_R<THRのときは前輪については検出さ
れた車輪速度の値で、後輪については両後輪の車輪速を
比較し高速側の車輪速度を低速側のものに置き換えてス
リップ率、減速度を求めその結果に基づいて前輪は独立
に制御し後輪は両後輪のセレクトロー制御とし、μ<μ
_0、S_R>THRのときは前輪については各前輪の
対角上の後輪の車輪速と比較して高速側の車輪速度を低
速側のものに置き換え後輪については前記両後輪のセレ
クトロー制御と同じ速度の置き換えをしてスリップ率、
減速度を求めその結果に基づいて前輪はセレクトロー制
御とし後輪は両後輪のセレクトロー制御をし、上記それ
ぞれの制御ではスリップ率、減速度を求めた結果に基づ
いて各車輪のロック傾向又はロックからの回復傾向を判
断し、その判断内容に従って各車輪のソレノイドへ加圧
、保持、減圧のいずれかの制御指令を出力するようにし
たことを特徴とする請求項1に記載のアンチロックブレ
ーキ制御装置。(3) The electronic control circuit calculates the wheel speeds of all wheels, estimated vehicle speed, road surface friction coefficient μ, and rear wheel slip sum S_R from the wheel speed signals detected by the wheel speed sensors, μ,
Compare S_R with each reference value μ_0, THR, and find μ>μ_0, S_R<
In the case of THR, the slip rate is determined by the detected wheel speed value.
Determine the deceleration of each wheel and control each wheel independently based on the result, μ>μ_0, S_R>THR or μ>
When μ_0, S_R<THR, the value of the detected wheel speed is used for the front wheels, and the value of the detected wheel speed is used for the rear wheels.The wheel speed of both rear wheels is compared and the high speed wheel speed is replaced with the low speed side, and the slip rate is reduced. Based on the speed, the front wheels are controlled independently, and the rear wheels are controlled in select low mode for both rear wheels, so that μ<μ
When _0, S_R>THR, for the front wheels, the wheel speed on the high speed side is replaced with the wheel speed on the low speed side when compared with the wheel speed of the rear wheel diagonally opposite each front wheel, and for the rear wheels, the select low speed of both rear wheels is changed. Slip rate by replacing the same speed as control,
Deceleration is determined and based on the results, the front wheels are subjected to select low control, and the rear wheels are subjected to select low control for both rear wheels.In each of the above controls, the tendency of each wheel to lock is determined based on the results of determining the slip rate and deceleration. 2. The anti-lock system according to claim 1, wherein a recovery tendency from locking is determined, and a control command for pressurization, holding, or depressurization is output to a solenoid of each wheel according to the determined content. Brake control device.
た車輪速信号から全輪の車輪速度、推定車輌速度、路面
摩擦係数μ、後輪のスリップ和S_Rを演算し、これら
に基づいてスリップ率、減速度を算出して各車輪のロッ
ク傾向、又はロックからの回復傾向を判断する結果を得
、次にμ、S_Rのそれぞれの基準値μ_0、THRと
比較してその結果生ずる4つの場合についてμ>μ_0
、S_R<THRのときは検出された車輪速度の値に対
応する結果に基づいて各車輪を独立に制御し、μ>μ_
0、S_R>THR又はμ<μ_0、S_R<THRの
ときは前輪については検出された車輪速度の値に対応す
る結果に基づいて、後輪については両後輪の車輪速を比
較し高速側の前記結果を低速側のものに置き換えて前輪
は独立に制御し後輪は両後輪のセレクトロー制御とし、
μ<μ_0、S_R>THRのときは前輪については各
前輪の対角上の後輪の車輪速と比較して高速側の結果を
低速側の結果に置き換え後輪については前記両後輪のセ
レクトロー制御と同様に高速側の結果を低速側のものに
置き換えて前輪は対角セレクトロー制御とし後輪は両後
輪のセレクトロー制御とし、上記それぞれの制御信号を
各車輪のソレノイドへ出力して加圧、保持、減圧のいず
れかの制御をするようにしたことを特徴とする請求項1
に記載のアンチロックブレーキ制御装置。(4) The electronic control circuit calculates the wheel speeds of all wheels, estimated vehicle speed, road surface friction coefficient μ, and rear wheel slip sum S_R from the wheel speed signals detected by the wheel sensors, and calculates the slip rate based on these. , calculate the deceleration to determine the tendency of each wheel to lock or recover from lock, and then compare μ and S_R with respective reference values μ_0 and THR for the four resulting cases. μ>μ_0
, when S_R<THR, each wheel is controlled independently based on the result corresponding to the detected wheel speed value, and when μ>μ_
0, S_R>THR or μ<μ_0, S_R<THR, for the front wheels, the wheel speeds of both rear wheels are compared based on the result corresponding to the detected wheel speed value, and the wheel speed of both rear wheels is compared. By replacing the above results with those on the low speed side, the front wheels are controlled independently and the rear wheels are controlled with select low control for both rear wheels.
When μ<μ_0, S_R>THR, for the front wheels, compare the wheel speed of the rear wheels on the diagonal of each front wheel, replace the high speed result with the low speed result, and for the rear wheels, select both rear wheels. Similar to low control, the results on the high speed side are replaced with those on the low speed side, the front wheels are subjected to diagonal select low control, the rear wheels are subjected to select low control of both rear wheels, and the above respective control signals are output to the solenoids of each wheel. Claim 1 characterized in that any one of pressurization, holding, and depressurization is controlled by
The anti-lock brake control device described in .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63133796A JP2645726B2 (en) | 1988-05-30 | 1988-05-30 | Anti-lock brake control device |
KR1019890014521A KR930007725B1 (en) | 1988-05-30 | 1989-10-10 | Antilock brake control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63133796A JP2645726B2 (en) | 1988-05-30 | 1988-05-30 | Anti-lock brake control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01301450A true JPH01301450A (en) | 1989-12-05 |
JP2645726B2 JP2645726B2 (en) | 1997-08-25 |
Family
ID=15113223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63133796A Expired - Lifetime JP2645726B2 (en) | 1988-05-30 | 1988-05-30 | Anti-lock brake control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2645726B2 (en) |
KR (1) | KR930007725B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447364A (en) * | 1992-02-06 | 1995-09-05 | Aisin Seiki Kabushiki Kaisha | Anti-skid control system for rear wheels |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980061956A (en) * | 1996-12-31 | 1998-10-07 | 박병재 | Vehicle road condition determination method |
EP1136336B1 (en) * | 2000-03-20 | 2006-11-02 | Robert Bosch GmbH | Braking control for all-wheel drive vehicles with viscous clutch |
-
1988
- 1988-05-30 JP JP63133796A patent/JP2645726B2/en not_active Expired - Lifetime
-
1989
- 1989-10-10 KR KR1019890014521A patent/KR930007725B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447364A (en) * | 1992-02-06 | 1995-09-05 | Aisin Seiki Kabushiki Kaisha | Anti-skid control system for rear wheels |
Also Published As
Publication number | Publication date |
---|---|
JP2645726B2 (en) | 1997-08-25 |
KR930007725B1 (en) | 1993-08-18 |
KR910007741A (en) | 1991-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5822709A (en) | Vehicle attitude control system having vehicle decelerating device operated before operation of vehicle attitude control device | |
US5320422A (en) | Slip control device for vehicle wheel | |
KR0152247B1 (en) | Wheel slip regulating system | |
EP0488052B1 (en) | Running state control system for a vehicle | |
US20090018741A1 (en) | Device operable to control turning of vehicle | |
JPH0712813B2 (en) | Slip control type brake system | |
JPS621666A (en) | Antiskid controller | |
JPH05178188A (en) | Traction controller for vehicle | |
US5005132A (en) | Antilock brake control device | |
JPH0572291B2 (en) | ||
US5043898A (en) | Antilock brake control device | |
JP2500857B2 (en) | Anti-skidding control device | |
JPH01301450A (en) | Anti-lock braking controller | |
JP2927899B2 (en) | Anti-spin brake control device | |
EP1291228A1 (en) | Method for controlling brake systems | |
CN219382456U (en) | Vehicle with a vehicle body having a vehicle body support | |
JP2592099B2 (en) | Anti-lock brake control device | |
JP3072643B2 (en) | Vehicle braking control device | |
JP5176732B2 (en) | Vehicle motion control system | |
JP2960986B2 (en) | Anti-skid control device | |
JPH0747948A (en) | Anti-skid brake control and traction control method | |
CN116442969A (en) | Vehicle anti-lock braking system, control method thereof and vehicle | |
JPH04123938A (en) | Traction control unit for vehicle | |
JPH0740042B2 (en) | Longitudinal acceleration sensor abnormality detection device | |
JPH0688530B2 (en) | Anti-lock brake control method for vehicle |