JPH01301116A - Optical relative displacement detector - Google Patents

Optical relative displacement detector

Info

Publication number
JPH01301116A
JPH01301116A JP13122188A JP13122188A JPH01301116A JP H01301116 A JPH01301116 A JP H01301116A JP 13122188 A JP13122188 A JP 13122188A JP 13122188 A JP13122188 A JP 13122188A JP H01301116 A JPH01301116 A JP H01301116A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
relative displacement
phase difference
intensity signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13122188A
Other languages
Japanese (ja)
Inventor
Takahide Iida
隆英 飯田
Hiroshi Miyake
三宅 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP13122188A priority Critical patent/JPH01301116A/en
Publication of JPH01301116A publication Critical patent/JPH01301116A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the detection result of relative displacement from having an error by operating a rotary mechanism according to the quantity of the deviation in the phase difference between 1st and 2nd intensity signals from a reference value when the phase difference deviates from the reference value. CONSTITUTION:In a normal state wherein a 1st diffraction grating and a 2nd diffraction grating are parallel to each other, the phase difference between the 1st intensity signal which is the intensity signal of light passed through both gratings 22 and 24 and the 2nd intensity signal which is the intensity signal of 2nd light passed through the grating 22 and a 3rd diffraction grating is set to the predetermined reference value. When the parallelism between both gratings is inferior, the phase difference between the 1st and 2nd intensity signals deviates from the reference value, so the rotary mechanism is operated according to the quantity of the deviation to set the gratings 22 and 24 parallel to each other. In this case, when the relative rotational positions of the gratings 22 and 24 are normal, both intensity signals become in phase with each other. Therefore, the detection result of the relative displacement is prevented from having an error owing to inferior parallelism between the gratings 22 and 24.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、一直線に沿って相対変位可能な第1部材と第
2部材との相対変位を光学的に検出する光学式相対変位
検出装置に関するものであり、特に、相対変位の検出精
度を向上させる技術に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical relative displacement detection device that optically detects the relative displacement between a first member and a second member that are relatively movable along a straight line. In particular, the present invention relates to a technique for improving relative displacement detection accuracy.

〔従来の技術〕[Conventional technology]

」二記光学式相対変位検出装置として光学式リニアエン
コーダ、半導体製造分野におけるマスク検査装置等が知
られている。光学式相対変位検出装置は一般に、(a)
各々が上記第1部材および第2部材にそれぞれそれらと
一体的に変位可能に設けられ、上記一直線と平行に延び
るとともにその一直線に直角な方向において互いに対面
する第1回折格子および第2回折格子と、(b)光源が
発した光のうち、第1回折格子と第2回折格子との双方
を経た光を受け、光の強度に応じた強度信号を出力する
光検出器と、(C)その光検出器の強度信号に基づいて
第1部材と第2部材との相対変位を検出する相対変位検
出手段とを含むように構成される。
2. Optical linear encoders, mask inspection devices in the semiconductor manufacturing field, and the like are known as optical relative displacement detection devices. Optical relative displacement detection devices generally include (a)
a first diffraction grating and a second diffraction grating, each of which is disposed on the first member and the second member so as to be integrally displaceable therewith, extends parallel to the straight line and faces each other in a direction perpendicular to the straight line; , (b) a photodetector that receives the light that has passed through both the first diffraction grating and the second diffraction grating out of the light emitted by the light source and outputs an intensity signal according to the intensity of the light; and (C) the photodetector. It is configured to include relative displacement detection means for detecting relative displacement between the first member and the second member based on the intensity signal of the photodetector.

光学式リニアエンコーダの一例が特開昭59−1323
11号公報に開示されている。これは、第8図に示すよ
うに、光源100からの光がコリメータレンズ102に
よってモ行光線とされ、その平行光線と直角にメインス
ケール104およびインデックススケール106が配置
されたものである。メインスケール104は長手方向(
図において矢印Xで表す。以下、X方向という。)に沿
って図示しない移動対象物と一体的に移動可能とされる
ものであり、X方向に一定ピッチPで多数のスリットが
並ぶ第1回折格子108が形成されている。一方、イン
デックススケール106は、当該エンコーダのフレーム
に光源100およびコリメータレンズ102と互いに相
対移動不能に取り付けられるとともに、X方向とは直角
な方向に離れて2つの第2回折格子110,112が形
成されている。2つの第2回折格子110,112もス
リットがX方向に一定ビッ千Pで並ぶものであるが、回
折格子110の各スリットは回折格子112の各スリッ
トから正のX方向(図において手前側とは反対側に向か
うX方向)に1ピツチPの4分の1 (以下、P/4で
表す。)だけずらされている。
An example of an optical linear encoder is JP-A-59-1323.
It is disclosed in Publication No. 11. As shown in FIG. 8, light from a light source 100 is converted into a parallel beam by a collimator lens 102, and a main scale 104 and an index scale 106 are arranged at right angles to the parallel beam. The main scale 104 is arranged in the longitudinal direction (
It is represented by an arrow X in the figure. Hereinafter, it will be referred to as the X direction. ), the first diffraction grating 108 is movable integrally with a moving object (not shown) along the X direction, and a first diffraction grating 108 is formed with a large number of slits lined up at a constant pitch P in the X direction. On the other hand, the index scale 106 is attached to the frame of the encoder so that the light source 100 and the collimator lens 102 cannot move relative to each other, and two second diffraction gratings 110 and 112 are formed apart in a direction perpendicular to the X direction. ing. The two second diffraction gratings 110 and 112 also have slits lined up in the X direction with a constant bit P, but each slit of the diffraction grating 110 is separated from each slit of the diffraction grating 112 in the positive X direction (the front side and the front side in the figure). is shifted by one quarter of a pitch P (hereinafter expressed as P/4) in the X direction (toward the opposite side).

コリメータレンズ102から出射した平行光線のうち、
第1回折格子10日および第2回折格子110を経た第
1検出光が第1検出光検出器116に達し、それに応じ
て、光の強度信号が出力される一方、第1回折格子10
8および第2回折格子112を経た第2検出光が第2検
出光検出器118に達12、光の強度信号が出力される
。したがって、メインスケール104が例えば正のX方
向に移動すれば、第1検出光の強度信号11と第2検出
光の強度信号I2とが第9図(a)および(1))にそ
れぞれグラフで示すように、P/4の位相差を有し、て
変化することとなるから、各強度信号lI。
Among the parallel rays emitted from the collimator lens 102,
The first detection light that has passed through the first diffraction grating 10 and the second diffraction grating 110 reaches the first detection light detector 116, and a light intensity signal is output accordingly.
8 and the second detection light that has passed through the second diffraction grating 112 reaches the second detection light detector 118 12, and a light intensity signal is output. Therefore, if the main scale 104 moves, for example, in the positive X direction, the intensity signal 11 of the first detection light and the intensity signal I2 of the second detection light are graphed in FIGS. As shown, each intensity signal lI changes with a phase difference of P/4.

I2が同図(C)にグラフで示すように、交互に中間値
、すなわち最大値と最小値の中間の値を取り、移動量演
算手段120がその中間値となる回数をカウントすれば
、メインスケール104の、インデックススケール10
6に対するX方向移動量、つまり両スケール104.,
106のX方向相対変位が判る。
As shown in the graph in FIG. Index scale 10 of scale 104
6, that is, both scales 104. ,
The relative displacement of 106 in the X direction is known.

以上の説明から明らかなように、本従来例においては、
移動対象物とインデックススケール106が相対移動不
能に取り付けられる部材とがそれぞれ第1部材と第2部
材とであり、メインスケール104の第1回折格子1.
08が本発明における第1回折格子を構成し、インデッ
クススケールlO6の2つの第2回折格子110,11
2が共同して本発明における第2回折格子を構成し、第
1および第2検出光検出器116,118が共同して光
検出器を構成し、移動量演算手段120が相対変位検出
手段を構成する。
As is clear from the above explanation, in this conventional example,
The moving object and the members to which the index scale 106 is attached in a relatively immovable manner are a first member and a second member, respectively, and the first diffraction grating 1.
08 constitutes the first diffraction grating in the present invention, and two second diffraction gratings 110, 11 with index scale lO6
2 jointly constitute a second diffraction grating in the present invention, the first and second detection photodetectors 116 and 118 jointly constitute a photodetector, and the movement amount calculation means 120 functions as a relative displacement detection means. Configure.

〔発明が解決しようとする課題] 上記光学式相対変位検出装置においては、第1部材と第
2部材との相対変位の検出が、第1回折格子と第2回折
格子とが正確に平行な方向に延びる状態、すなわち、両
格子のスリットがそれらに沿って並ぶ2直線が正確に平
行な状態(この状態では両格子のスリット同士が正6i
に平行となる。)で行われることが大切である。そのた
め、相対変位の検出に先立って、第1部材および第2部
材の当該検出装置のフレームへの取付けが、第1回折格
子および第2回折格子の延びる方向が正確に平行となる
ように行われるが、両格子の平行度が不十分な状態で第
1部材および第2部材が取り付けられてしまうことがあ
る。この場合、第1回折格子および第2回折格子の双方
を経た光の強度信号が正規の変化をしなくなり、相対変
位の検出精度が低下するという問題が生ずる。
[Problems to be Solved by the Invention] In the optical relative displacement detection device, the relative displacement between the first member and the second member is detected in a direction in which the first diffraction grating and the second diffraction grating are precisely parallel. In other words, the two straight lines along which the slits of both gratings are lined up are exactly parallel (in this state, the slits of both gratings are 6i
parallel to. ) is important. Therefore, prior to detecting the relative displacement, the first member and the second member are attached to the frame of the detection device so that the extending directions of the first diffraction grating and the second diffraction grating are precisely parallel. However, the first member and the second member may be attached with insufficient parallelism between both grids. In this case, a problem arises in that the intensity signal of the light that has passed through both the first diffraction grating and the second diffraction grating no longer changes normally, resulting in a decrease in relative displacement detection accuracy.

特に、前述の光学式リニアエンコーダのように、第2回
折格子が複数の回折格子(前記例においては第2回折格
子110と112)から成り、それら複数の回折格子が
共に第1格子と対面する態様においては、第1部材およ
び第2部材の取付不良。
In particular, as in the aforementioned optical linear encoder, the second diffraction grating is comprised of a plurality of diffraction gratings (in the example, second diffraction gratings 110 and 112), which together face the first grating. In an aspect, the first member and the second member are improperly attached.

により、複数の回折格子各々の、第1回折格子に対する
位相が正規位相から外れ、しかも、その外れの大きさ、
およびその外れが位相を進ませる向きに発生するのか遅
らせる向きに発生ずるのかという外れの向きが複数の回
折格子について等しくないから、第1回折格子と、第2
回折格子の複数の回折格子の各々との双方を経た路光の
強度信号に位相ずれが発生し、これにより、第1部材と
第2部材との相対変位の検出精度が低下する。
As a result, the phase of each of the plurality of diffraction gratings with respect to the first diffraction grating deviates from the normal phase, and the magnitude of the deviation,
And since the direction of the deviation is not the same for a plurality of diffraction gratings, whether the deviation occurs in a direction that advances the phase or a direction that delays the phase, the first diffraction grating and the second diffraction grating
A phase shift occurs in the intensity signal of the path light that has passed through each of the plurality of diffraction gratings of the diffraction grating, thereby reducing the detection accuracy of the relative displacement between the first member and the second member.

−具体例を挙げれば、前述の光学式リニアエンコーダに
おいて、メインスケール104とインデックススケール
106との取付けが不良となると、例えば、第1検出光
の強度信号l、は正規の変化をするが第2検出光の強度
信号■2は正規の変化をしなくなる場合があり、この場
合には、両強度信号x、、r、が第9図(d)のグラフ
で示すように、メインスケール104が一定間隔進む毎
に中間値を取らなくなり、メインスケール104の一定
の移動量に対して中間値のカウント数が変化し、移動量
の検出結゛果に誤差が発生するのである。
- To give a specific example, in the above-mentioned optical linear encoder, if the main scale 104 and index scale 106 are improperly attached, for example, the intensity signal l of the first detection light changes normally, but the second The intensity signal 2 of the detected light may not change normally, and in this case, the main scale 104 is constant for both intensity signals x, r, as shown in the graph of FIG. As the interval advances, the intermediate value is no longer taken, and the count of the intermediate value changes for a fixed amount of movement of the main scale 104, causing an error in the detection result of the amount of movement.

本発明は、この問題、すなわち、光学式相対変位検出装
置においては、第1回折格子と第2回折格子との平行度
が悪いことに起因して相対変位の検出結果に誤差が生ず
るという問題を解決することを課題として為されたもの
である。
The present invention solves this problem, that is, in an optical relative displacement detection device, an error occurs in the relative displacement detection result due to poor parallelism between the first diffraction grating and the second diffraction grating. This was done with the goal of solving the problem.

〔課題を解決するための手段〕[Means to solve the problem]

そして、本発明の要旨は、前記第1回折格子。 The gist of the present invention is the first diffraction grating.

第2回折格子、光源、光検出器および相対変位検出手段
を含む光学式相対変位検出装置に、第2部材と一体的に
変位可能で、第1回折格子と対面するとともに第2回折
格子と平行に延び、かつ第2回折格子から第2回折格子
の延びる方向とは直角な方向に離れた第3回折格子と、
(b)光源が発した光のうち、第1回折格子と第3回折
格子との双方を経た第2の光を受け、光の強度に応じた
強度信号を出力する第2の光検出器と、(C)光検出器
の強度信号と第2の光検出器の強度信号との位相差を検
出する位相差検出手段と、(d)その位相差検出手段に
よって検出された位相差が予め定められた基準値となる
ように、第1部材および第2部材の少なくとも一方を第
1回折格子および第2回折格子の面に平行な平面内にお
いて回転させる回転機構とを設けることにある。
An optical relative displacement detection device including a second diffraction grating, a light source, a photodetector, and a relative displacement detection means, which is movable integrally with the second member, faces the first diffraction grating, and is parallel to the second diffraction grating. a third diffraction grating extending from the second diffraction grating in a direction perpendicular to the direction in which the second diffraction grating extends;
(b) a second photodetector that receives the second light that has passed through both the first diffraction grating and the third diffraction grating out of the light emitted by the light source and outputs an intensity signal according to the intensity of the light; , (C) phase difference detection means for detecting a phase difference between the intensity signal of the photodetector and the intensity signal of the second photodetector, and (d) the phase difference detected by the phase difference detection means is predetermined. and a rotation mechanism for rotating at least one of the first member and the second member in a plane parallel to the planes of the first diffraction grating and the second diffraction grating so that the reference value is the same as that of the first diffraction grating.

〔作用〕[Effect]

本発明に係る光学式相対変位検出装置においては、第1
回折格子と第2回折格子とが互いに平行である正規の場
合に、両格子を経た光(以下、第1の光という。)の強
度信号である第1強度信号と、第1回折格子および第3
回折格子を経た第2の光の強度信号である第2強度信号
との位相差が予め定められた基準値となるようにされて
いる。
In the optical relative displacement detection device according to the present invention, the first
In the normal case where the diffraction grating and the second diffraction grating are parallel to each other, the first intensity signal that is the intensity signal of the light that has passed through both gratings (hereinafter referred to as the first light), and the 3
The phase difference with the second intensity signal, which is the intensity signal of the second light that has passed through the diffraction grating, is set to a predetermined reference value.

そして、両格子の平行度が悪い場合には、第1強度信号
と第2強度信号との位相差が基準値から外れるから、そ
の外れ量に応じて回転機構を手動操作に応じて、あるい
は自動的に作動させれば、第1回折格子と第2回折格子
とを互いにNT’行にすることができる。
If the parallelism of both gratings is poor, the phase difference between the first intensity signal and the second intensity signal will deviate from the reference value. If the diffraction gratings are operated as shown in FIG.

なお、1つの回折格子の、その格子の延びる方向と直角
な方向に離れた2つの部分をそれぞれ第2回折格子およ
び第3回折格子とし、それら2部分からの光をそれぞれ
第1の光および第2の光とすることができる。この場合
、第1強度信号と第2強度信号の位相差の基準値は0、
すなわち、第1回折格子と第2回折格子との相対回転位
置が正規である場合に両強度信号の位相が互いに等しく
なる。
Note that two parts of one diffraction grating that are separated in a direction perpendicular to the direction in which the grating extends are defined as a second diffraction grating and a third diffraction grating, respectively, and the light from these two parts is used as the first light and the third diffraction grating, respectively. It can be made into two types of light. In this case, the reference value of the phase difference between the first intensity signal and the second intensity signal is 0,
That is, when the relative rotational positions of the first diffraction grating and the second diffraction grating are normal, the phases of both intensity signals become equal to each other.

また、第1回折格子と第2回折格子とは光源からの光の
進行方向に並ぶから、両格子を経た第1の光を得るため
に、光源に近い側の格子は透過型とされるが、光源から
遠い側の格子は透過型であっても、反射型であってもよ
い。また、第3回折格子は、第1部材と第2部材とのう
ち光源に近い側の部材に設けられる場合には透過型とさ
れるが、光源から遠い側の部材に設けられる場合には、
透過型であっても反射型であってもよい。
Furthermore, since the first diffraction grating and the second diffraction grating are arranged in the direction of propagation of light from the light source, in order to obtain the first light that has passed through both gratings, the grating closer to the light source is of a transmission type. , the grating on the side far from the light source may be of a transmissive type or a reflective type. Further, when the third diffraction grating is provided on the member closer to the light source between the first member and the second member, it is considered to be a transmission type, but when it is provided on the member farther from the light source,
It may be of a transmissive type or a reflective type.

また、第1強変信号と第2強変信号との位相差の検出は
、第1部材と第2部材との相対変位の検出に先立って行
われ、その相対変位検出の開始後には行われないのが一
般的であるが、第1部材と第2部材と相対変位に伴って
第1回折格子と第1回折格子七の相対回転位置が変化す
るおそれがある場合には、相対変位検出の開始後にも行
うようにすることができる。
Furthermore, the detection of the phase difference between the first strong variation signal and the second strong variation signal is performed prior to the detection of the relative displacement between the first member and the second member, and is not performed after the start of the relative displacement detection. However, if there is a possibility that the relative rotational position of the first diffraction grating and the first diffraction grating 7 will change due to the relative displacement of the first member and the second member, the relative displacement detection This can also be done after the start.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に従えば、第1部材と第2部材との
相対変位を、第1回折格子と第2回折格子とが正確に平
行な方向に延びる状態で検出することが可能となって、
検出精度が向上するという効果が得られる。
As described above, according to the present invention, it is possible to detect the relative displacement between the first member and the second member in a state where the first diffraction grating and the second diffraction grating extend in exactly parallel directions. hand,
This has the effect of improving detection accuracy.

また、本発明に従えば、第1回折格子と第2回折格子と
の相対回転位置の正規位置からの外れ量が光学的に高い
精度で検出されるから、その相対回転位置を高い精度で
修正することが可能となり、その結果、第1部材と第2
部材との相対変位の検出精度が一層向上するという効果
も得られる。
Furthermore, according to the present invention, since the amount of deviation of the relative rotational position between the first diffraction grating and the second diffraction grating from the normal position is optically detected with high precision, the relative rotational position can be corrected with high precision. As a result, the first member and the second member
It is also possible to obtain the effect that the detection accuracy of relative displacement with the member is further improved.

さらに、本発明に従えば、本来、第1部材と第2部材と
の相対変位検出のために設けられた光源。
Furthermore, according to the present invention, the light source is originally provided for detecting relative displacement between the first member and the second member.

第1回折格子、第2回折格子および光検出器が、第1回
折格子と第2回折格子との平行度修正のために利用でき
、新たに必要な要素が、第3回折格子、第2の光検出器
および回転機構で済むこととなって、本発明実施に伴う
コスト上昇をできる限り少なく抑えることができるとい
う効果も得られる。
The first diffraction grating, the second diffraction grating, and the photodetector can be used to correct the parallelism between the first diffraction grating and the second diffraction grating, and the newly required elements are the third diffraction grating, the second diffraction grating, and the second diffraction grating. Since only a photodetector and a rotation mechanism are required, there is also the effect that the increase in cost associated with implementation of the present invention can be suppressed as much as possible.

〔実施例〕〔Example〕

以下、本発明を光学式リニアエンコーダに適用した場合
の一実施例を図面に基づいて詳細に説明する。
An embodiment in which the present invention is applied to an optical linear encoder will be described in detail below with reference to the drawings.

第1図は、本発明の実施例である光学式リニアエンコー
ダを示す。これは、基本的には前記従来例である第8図
に示す光学式リニアエンコーダと同様のものである。図
においてlOが前記光源たる半導体レーザ、12がその
半導体レーザ10が発したレーザ光を平行光線にする前
記コリメータレンズ、14が前記メインスケール、16
が前記インデックススケール、そして17がレーザ駆動
装置である。メインスケール14は、多数の圧電素子が
積層されて成る圧電アクチュエータ18により図におい
て紙面に直角なX方向に移動させられる移動対象物Oと
一体的に移動させられる。なお、圧電アクチュエータ1
8は移動装置19によって電圧を印加される。
FIG. 1 shows an optical linear encoder that is an embodiment of the present invention. This is basically the same as the conventional optical linear encoder shown in FIG. 8. In the figure, lO is the semiconductor laser as the light source, 12 is the collimator lens that converts the laser light emitted by the semiconductor laser 10 into parallel light, 14 is the main scale, and 16
is the index scale, and 17 is a laser driving device. The main scale 14 is moved integrally with a moving object O, which is moved in the X direction perpendicular to the plane of the paper in the figure, by a piezoelectric actuator 18 formed by laminating a large number of piezoelectric elements. In addition, piezoelectric actuator 1
8 is energized by a moving device 19.

メインスケール14には第2図に模型的に示すように、
多数のスリットが一定ピッチPで並ぶ回折格子20が設
けられている。一方、インデックススケール16には第
3図に模型的に示すように、共にX方向に延び、かつ、
その延びる方向に直角な方向に並ぶ3つの回折格子22
,24.26が形成されている。なお、第2図および第
3図はそれぞれ、メインスケール14およびインデック
ススケール16を半導体レーザlO側から見た正面図で
ある。インデックススケール16の各回折格子22,2
4.26にはメインスケール14よりは少数のスリット
が一定ピッチPで並び、かつ、回折格子22の各スリッ
ト位置と回折格子26の各スリット位置とが互いに等し
くされるとともに、回折格子24の各スリット位置が回
折格子22゜26の各スリット位置から負のX方向にP
/4だけずらされている。
As schematically shown in FIG. 2, the main scale 14 includes:
A diffraction grating 20 in which a large number of slits are arranged at a constant pitch P is provided. On the other hand, as schematically shown in FIG. 3, the index scale 16 both extends in the X direction, and
Three diffraction gratings 22 lined up in a direction perpendicular to its extending direction
, 24.26 are formed. Note that FIGS. 2 and 3 are front views of the main scale 14 and the index scale 16, respectively, viewed from the semiconductor laser IO side. Each diffraction grating 22, 2 of the index scale 16
4.26, fewer slits than the main scale 14 are arranged at a constant pitch P, and each slit position of the diffraction grating 22 and each slit position of the diffraction grating 26 are made equal to each other, and each slit position of the diffraction grating 24 is made equal to each other. The slit position is P in the negative X direction from each slit position of the diffraction grating 22°26.
It is shifted by /4.

メインスケール14に照射された平行光線はそれの回折
格子20で0次の回折を受けた後、回折格子22,24
.26のそれぞれで再び0次の回折を受ける。回折格子
22,24.26それぞれからの第1.第2および第3
回折光は拡大レンズ30を経た後、3つの光検出器32
.34.36にそ゛れぞれ到達する。光検出器32,3
4.36は共通の支持台38に固定されている。各光検
出器32,34.36は各回折光の強度に応じた強変信
号1+、Iz、r3を発生し、それらを信号処理装置4
0へ出力する。
The parallel light beam irradiated onto the main scale 14 undergoes zero-order diffraction at its diffraction grating 20, and then passes through the diffraction gratings 22, 24.
.. 26 again undergoes zero-order diffraction. The first . 2nd and 3rd
After the diffracted light passes through a magnifying lens 30, it is sent to three photodetectors 32.
.. 34 and 36 respectively. Photodetector 32,3
4.36 are fixed to a common support stand 38. Each photodetector 32, 34, 36 generates strongly variable signals 1+, Iz, r3 according to the intensity of each diffracted light, and sends them to the signal processing device 4.
Output to 0.

信号処理装置40は第1回折光および第2回折光の双方
の強度信号11.I2に基づいてメインスケール14の
移動量を演算するが、この演算は前記従来例の光学式リ
ニアエンコーダの場合と同様である。
The signal processing device 40 generates intensity signals 11. of both the first diffracted light and the second diffracted light. The amount of movement of the main scale 14 is calculated based on I2, and this calculation is similar to that of the conventional optical linear encoder.

信号処理装置40はまた、第1回折光および第3回折光
の双方の強度信号11.Isの位相差を検出する機能を
有する。メインスケール14とインデックススケール1
6とは、回折格子20と回折格子22,24.26とが
正確に平行な方向に延びるように配置されるべきである
が、何らかの事情でこの条件が満たされないことがある
。メインスケール14とインデックススケール16とが
、回折格子20および回折格子22,24.26の面に
平行な平面内において相対的に微小角度傾くことがある
のである。このとき、第1および第3回折光の強度信号
It、1.+に例えば第4図に示す位相差ΔXが発生す
る。信号処理装置40はこのΔXを検出する機能を有し
、インデックススケール16は回転機構42により上記
平面内で回転可能とされているから、信号処理装置40
により検出された位相差ΔXが零となるように回転機構
42が作動させられ、インデックススケール16の回転
位置が修正されて、回折格子20と回折格子22,24
.26とが互いに高い精度で平行となる。信号処理装置
40は、前記移動装置19からそれが前記圧電アクチュ
エータ18に印加した電圧の高さを表す信号を得、第1
および第3回折光の強度信号11.Izがそれぞれそれ
らの中間値となるときの圧電アクチュエータ18の印加
電圧の差を両強度信号1..I、の位相差として検出す
るものであり、回転機構42はインデックススケール1
6の一端を静止支持部材で支持し、他端を圧電素子で支
持して、その圧電素子に印加する電圧を制御することに
よりインデックススケール16を回折格子22,24.
26の面に平行な平面内で微小角度回転させるものであ
る。
The signal processing device 40 also generates intensity signals 11. of both the first diffracted light and the third diffracted light. It has a function of detecting the phase difference of Is. Main scale 14 and index scale 1
6, the diffraction grating 20 and the diffraction gratings 22, 24, and 26 should be arranged so as to extend in exactly parallel directions, but this condition may not be met for some reason. The main scale 14 and the index scale 16 may be tilted at a relatively small angle in a plane parallel to the surfaces of the diffraction grating 20 and the diffraction gratings 22, 24, 26. At this time, the intensity signals It of the first and third diffracted lights, 1. For example, a phase difference ΔX shown in FIG. 4 occurs at +. The signal processing device 40 has a function of detecting this ΔX, and since the index scale 16 is rotatable within the above plane by the rotation mechanism 42, the signal processing device 40
The rotation mechanism 42 is operated so that the phase difference ΔX detected by
.. 26 are parallel to each other with high precision. A signal processing device 40 obtains a signal from the moving device 19 representing the height of the voltage applied by it to the piezoelectric actuator 18, and
and third diffracted light intensity signal 11. The difference between the voltages applied to the piezoelectric actuator 18 when Iz becomes the intermediate value between the two intensity signals 1. .. The rotation mechanism 42 detects the phase difference between the index scale 1 and the index scale 1.
6 is supported by a stationary support member and the other end is supported by a piezoelectric element, and by controlling the voltage applied to the piezoelectric element, the index scale 16 is connected to the diffraction gratings 22, 24 .
This is to rotate a minute angle within a plane parallel to the plane of No. 26.

本実施例においては、第1および第3回折光の強度信号
!、、1.の位相差ΔXの検出、および回転機構42の
作動が、メインスケール14の移動量検出に先立って行
われるから、移動量が高い精度で検出できるという効果
が得られる。
In this example, the intensity signals of the first and third diffracted lights! ,,1. Since the detection of the phase difference ΔX and the operation of the rotation mechanism 42 are performed prior to the detection of the amount of movement of the main scale 14, the effect that the amount of movement can be detected with high accuracy can be obtained.

また、本実施例のインデックススケール16においては
、回折格子24が回折格子22と回折格子26とに挟ま
れて配置され、回折格子22と回折格子24との距離が
回折格子22と回折格子26との距離より短くなってい
る。そのため、回折格子20に対する回折格子22.2
6の位相誤差が前述のように除去されたとき、回折格子
20に対する回折格子24の位相差は一層精度よく除去
されることとなる利点がある。
Furthermore, in the index scale 16 of this embodiment, the diffraction grating 24 is arranged between the diffraction grating 22 and the diffraction grating 26, and the distance between the diffraction grating 22 and the diffraction grating 24 is the same as the distance between the diffraction grating 22 and the diffraction grating 26. is shorter than the distance of Therefore, the diffraction grating 22.2 for the diffraction grating 20
When the phase error of 6 is removed as described above, there is an advantage that the phase difference between the diffraction grating 24 and the diffraction grating 20 can be removed with higher accuracy.

以上の説明から明らかなように、本実施例においては、
移動対象物0および光学式リニアエンコーダの、インデ
ックススケール16が相対移動不能に取り付けられるフ
レーム(図示しない)がそれぞれ第1部材および第2部
月であり、メインスケール14の回折格子20が透過型
の第1回折格子、インデックススケール16の回折格子
22゜24が透過型の第2回折格子、回折格子26が透
過型の第3回折格子である。また、信号処理装置40の
、メインスケール14の移動量を演算する部分が相対変
位検出手段であり、第1回折光の強度信号11と第3回
折光の強度信号!3との位相差を演算する部分が位相差
検出手段である。
As is clear from the above explanation, in this example,
The frames (not shown) to which the moving object 0 and the index scale 16 of the optical linear encoder are attached in a relatively immovable manner are the first member and the second part, respectively, and the diffraction grating 20 of the main scale 14 is of the transmission type. The first diffraction grating, the diffraction gratings 22 and 24 of the index scale 16, is a transmission type second diffraction grating, and the diffraction grating 26 is a transmission type third diffraction grating. Further, the part of the signal processing device 40 that calculates the movement amount of the main scale 14 is a relative displacement detection means, and the intensity signal 11 of the first diffracted light and the intensity signal of the third diffracted light! The part that calculates the phase difference with No. 3 is the phase difference detection means.

以上詳記した実施例においては、メインスケール14の
移動量の検出分解能が、それの回折格子20のスリット
ピッチPの4分の1とされているが、検出分解能を高め
るためには上記実施例を次のように変更すればよい。
In the embodiment described in detail above, the detection resolution of the movement amount of the main scale 14 is set to one quarter of the slit pitch P of the diffraction grating 20. However, in order to increase the detection resolution, it is necessary to You can change it as follows.

すなわち、■前記インデックススケール16を、第5図
に示すように、多数のスリットがX方向に並ぶスリット
列60がX方向と直角な方向に第0ないし第nスリット
列というようにn+1個並んで形成され、かつ、それら
第0スリット列60から第n−1スリット列60までの
n個のスリット列60が順次P / nだけ正のX方向
にずらされるとともに、第0スリット列60と第nスリ
ット列60との各スリット位置が互いに等しいものとし
、■前記メインスケール14の各スリットを第6図に示
すように、インデックススケール16のn+1個のスリ
ット列60がすべて対面するように長くし、■メインス
ケール14の回折格子20および各スリット列60の双
方を経た第0ないし第n回折光をそれぞれ受け、各回折
光の強度に応じた強度信号!。ないしI7を出力する第
nないし第n光検出器(図示しない)を設け、かつ、そ
れら光検出器を前記信号処理装置40と接続するのであ
る。
That is, (1) the index scale 16 is arranged such that n+1 slit rows 60 in which a large number of slits are arranged in the X direction are arranged in the direction perpendicular to the X direction, such as 0th to nth slit rows, as shown in FIG. The n slit rows 60 from the 0th slit row 60 to the n−1 slit row 60 are sequentially shifted by P/n in the positive X direction, and the 0th slit row 60 and the The positions of the slit rows 60 and the slit rows 60 are equal to each other, and each slit of the main scale 14 is made long so that the n+1 slit rows 60 of the index scale 16 all face each other, as shown in FIG. ■An intensity signal corresponding to the intensity of each diffracted light by receiving each of the 0th to nth diffracted lights that have passed through both the diffraction grating 20 of the main scale 14 and each slit row 60! . nth to nth photodetectors (not shown) that output signals I7 to I7 are provided, and these photodetectors are connected to the signal processing device 40.

このようにすれば、メインスケール14が例えば正のX
方向(図において右方向)に移動するにつれて、第nな
いし第n回折光の強度信号1゜ないしl、、の各々が、
第7図(a)に示すように、スリット列60の番号の増
大する方向に互いにP / nだけ位相が遅れる状態で
変化することとなり、信号処理装置40が、位相が互い
に逆となる強度信号Iの組み合わせ、すなわち、第0回
折光の強度信号I0と第n / 2回折光の強度信チ[
77□、第1回折光の強度信号1.と第(n/2+1)
回折光の強度信号177□、4等において、番号の小さ
い方から大きい方の強度信号Iを差し引いた値ΔIを演
算すれば、同図(b)に示すように、メインスケール1
4がP / n移動する毎にいずれかのΔIが0となる
から、その回数をカウントすれば、メインスケール14
の移動量をそれの回折格子20のスリットピッチPのn
分の1の分解能で検出することが可能となる。また、メ
インスケール14をΔIが0となる位置に順に位置決め
すれば、P/nステップという非常に細かいステップで
の位置決めが可能となる。すなわち、本実施例において
は、第nスリット列60から第n−1スリット列60ま
でのn個のスリット列60が本発明における第2回折格
子を構成し、それらに対応するn個の光検出器が本発明
における第1の光検出器なのである。
In this way, the main scale 14 can be set to, for example, positive
As it moves in the direction (rightward in the figure), the intensity signals 1° to 1 of the n-th to n-th diffracted lights, respectively,
As shown in FIG. 7(a), the phases of the slit arrays 60 change with a delay of P/n from each other in the direction of increasing numbers, and the signal processing device 40 generates intensity signals whose phases are opposite to each other. The combination of I, that is, the intensity signal I0 of the 0th diffracted light and the intensity signal I0 of the n/2nd diffracted light [
77□, intensity signal of first diffracted light 1. and the (n/2+1)th
If we calculate the value ΔI by subtracting the larger intensity signal I from the smaller number among the intensity signals 177□, 4, etc. of the diffracted light, we can obtain the main scale 1 as shown in FIG.
Every time 4 moves P/n, one of ΔI becomes 0, so if you count the number of times, main scale 14
The amount of movement of the slit pitch P of the diffraction grating 20 is n
It becomes possible to detect with a resolution of 1/2. Further, if the main scale 14 is positioned in sequence at the position where ΔI is 0, positioning can be performed in extremely fine steps called P/n steps. That is, in this embodiment, the n slit arrays 60 from the n-th slit array 60 to the n-1 slit array 60 constitute the second diffraction grating in the present invention, and the corresponding n slit arrays 60 constitute the second diffraction grating in the present invention. The detector is the first photodetector in the present invention.

また、本実施例においては、第nスリット列60が本発
明における第3回折格子を構成しており、第0回折光の
強度信号I0と第n回折光の強度信号In(との位相を
合わせることによって第1回折格子と第2回折格子との
平行度を調節することができる。その平行度の調整の様
子は前記実施例と同様であり、本実施例においては、第
n光検出器が本発明に係る第2の光検出器を構成する。
Further, in this embodiment, the n-th slit array 60 constitutes the third diffraction grating of the present invention, and the intensity signal I0 of the 0th diffracted light and the intensity signal In of the n-th diffracted light are adjusted in phase. By doing this, the parallelism between the first diffraction grating and the second diffraction grating can be adjusted.The way the parallelism is adjusted is the same as in the previous embodiment, and in this embodiment, the nth photodetector is A second photodetector according to the present invention is configured.

その他、当業者の知識に基づいて種々の変更。Other various changes based on the knowledge of those skilled in the art.

改良等を施した態様で本発明を実施することができる。The present invention can be implemented in a modified form.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である光学式リニアエンコー
ダの系統図、第2図および第3図はそれぞれ、そのリニ
アエンコーダのメインスケールおよびインデックススケ
ールの正面図、第4図はその実施例において、メインス
ケールとインデックススケールとの平行度が悪い場合に
おける第1回折光の強度信号1.と第3回折光の強度信
号1.3との位相差の一例を示すグラフである。第5図
および第6図はそれぞれ、上記実施例とは態様の異なる
インデックススケールおよびメインスケールの正面図で
あり、第7図(a)および(b)はその実施例における
メインスケールの移動量検出を説明するためのグラフで
ある。第8図は従来の光学式リニアエンコーダの系統図
であり、第9図(a)ないしくC)はそのリニアエンコ
ーダにおけるメインスケールの移動量検出を説明するた
めのグラフであり、同図(d)はメインスケールとイン
デックススケールとの平行度が悪い場合にメインスケー
ルの移動量の検出精度が低下する原因を説明するための
グラフである。 10;半導体レーザ  14:メインスケール16:イ
ンデックススケール 20.22,24,26:回折格子 32.34.36:光検出器 40:信号処理装置  42:回転機構60ニスリット
列 出I11人 株式会社 豊田自動織機製作所第2図 第4図 OF/2  P −′″ 1!7図 第8図 第9図
Fig. 1 is a system diagram of an optical linear encoder that is an embodiment of the present invention, Figs. 2 and 3 are front views of the main scale and index scale of the linear encoder, and Fig. 4 is an embodiment thereof. Intensity signal 1 of the first diffracted light when the parallelism between the main scale and the index scale is poor. 3 is a graph showing an example of the phase difference between the intensity signal 1.3 of the third diffracted light and the intensity signal 1.3 of the third diffracted light. 5 and 6 are respectively front views of an index scale and a main scale that are different in aspect from the above embodiment, and FIGS. 7(a) and 7(b) show movement amount detection of the main scale in the embodiment. This is a graph for explaining. FIG. 8 is a system diagram of a conventional optical linear encoder, and FIG. ) is a graph for explaining the reason why the detection accuracy of the movement amount of the main scale decreases when the parallelism between the main scale and the index scale is poor. 10: Semiconductor laser 14: Main scale 16: Index scale 20.22, 24, 26: Diffraction grating 32.34.36: Photodetector 40: Signal processing device 42: Rotating mechanism 60 Nislit row I11 people Toyota Automobile Co., Ltd. Loom Factory Figure 2 Figure 4 OF/2 P -''' 1!7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 一直線に沿って相対変位可能な第1部材と第2部材との
相対変位を検出する装置であって、各々が前記第1部材
および第2部材にそれぞれそれらと一体的に変位可能に
設けられ、前記一直線と平行に延びるとともにその一直
線に直角な方向において互いに対面する第1回折格子お
よび第2回折格子と、 光源が発した光のうち、前記第1回折格子と第2回折格
子との双方を経た光を受け、光の強度に応じた強度信号
を出力する光検出器と、 その光検出器の強度信号に基づいて前記第1部材と第2
部材との相対変位を検出する相対変位検出手段と を含む光学式相対変位検出装置において、 前記第2部材と一体的に変位可能で、前記第1回折格子
と対面するとともに前記第2回折格子と平行に延び、か
つ第2回折格子から第2回折格子の延びる方向とは直角
な方向に離れた第3回折格子と、 前記光源が発した光のうち、前記第1回折格子と第3回
折格子との双方を経た第2の光を受け、光の強度に応じ
た強度信号を出力する第2の光検出器と、 前記光検出器の強度信号と第2の光検出器の強度信号と
の位相差を検出する位相差検出手段と、その位相差検出
手段によって検出された位相差が予め定められた基準値
となるように、前記第1部材および第2部材の少なくと
も一方を前記第1回折格子および第2回折格子の面に平
行な平面内において回転させる回転機構と を設けたことを特徴とする光学式相対変位検出装置。
[Scope of Claims] A device for detecting relative displacement between a first member and a second member that are relatively movable along a straight line, each of which is integrally attached to the first member and the second member, respectively. a first diffraction grating and a second diffraction grating that are displaceably provided and extend parallel to the straight line and face each other in a direction perpendicular to the straight line; and of the light emitted by the light source, the first diffraction grating and the second diffraction grating a photodetector that receives light that has passed through both the diffraction grating and outputs an intensity signal corresponding to the intensity of the light;
An optical relative displacement detection device including a relative displacement detection means for detecting relative displacement with a member, which is movable integrally with the second member, faces the first diffraction grating, and faces the second diffraction grating. a third diffraction grating that extends in parallel and is separated from the second diffraction grating in a direction perpendicular to the direction in which the second diffraction grating extends; and of the light emitted by the light source, the first diffraction grating and the third diffraction grating a second photodetector that receives the second light that has passed through both the light detector and outputs an intensity signal corresponding to the intensity of the light; and an intensity signal of the photodetector and the second photodetector. a phase difference detection means for detecting a phase difference; and at least one of the first member and the second member is subjected to the first diffraction so that the phase difference detected by the phase difference detection means becomes a predetermined reference value. An optical relative displacement detection device comprising: a rotation mechanism that rotates the grating and the second diffraction grating in a plane parallel to the plane thereof.
JP13122188A 1988-05-28 1988-05-28 Optical relative displacement detector Pending JPH01301116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13122188A JPH01301116A (en) 1988-05-28 1988-05-28 Optical relative displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13122188A JPH01301116A (en) 1988-05-28 1988-05-28 Optical relative displacement detector

Publications (1)

Publication Number Publication Date
JPH01301116A true JPH01301116A (en) 1989-12-05

Family

ID=15052865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13122188A Pending JPH01301116A (en) 1988-05-28 1988-05-28 Optical relative displacement detector

Country Status (1)

Country Link
JP (1) JPH01301116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042191A (en) * 2007-08-10 2009-02-26 Toyohashi Univ Of Technology Rotation fluctuation measuring device and scale section

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042191A (en) * 2007-08-10 2009-02-26 Toyohashi Univ Of Technology Rotation fluctuation measuring device and scale section

Similar Documents

Publication Publication Date Title
US7061624B2 (en) Grating interference type optical encoder
US5327218A (en) Method and apparatus for measuring displacement by using a diffracted inverted image projected on a diffraction grating
US7714273B2 (en) Position-measuring device
US7858922B2 (en) Position-measuring device
US8804131B2 (en) Optical angle-measuring device with combined radial-circular grating
JPH0130089B2 (en)
EP1353153B1 (en) Optical displacement detector
US5648658A (en) Apparatus and method for generating position-dependent signals using a scanning plate having a plurality of differently configured scanning regions
JP3495783B2 (en) Encoder
JPH03279812A (en) Diffraction interference type encoder
US5574559A (en) Displacement detection apparatus using multiple displacement detection signals formed by a multiple phase combination grating
JPH01301116A (en) Optical relative displacement detector
US11353583B2 (en) Optical position-measurement device with varying focal length along a transverse direction
US10648838B2 (en) Contamination and defect resistant rotary optical encoder configuration including a rotary scale with yawed scale grating bars and structured illumination generating arrangement with a beam deflector configuration
KR0165222B1 (en) Vertical displacement measurement device of x-y stage
EP0486050B1 (en) Method and apparatus for measuring displacement
CN108931190B (en) Displacement detection device
US20240110816A1 (en) Optical encoder
JPH0599638A (en) Angle measuring device
JPH0627645B2 (en) Two-dimensional displacement detector
JP3199549B2 (en) Encoder device
JPH0462004B2 (en)
CN110967047B (en) Contamination and defect resistant rotary optical encoder configuration providing displacement signals
RU175968U1 (en) Optical design of an ultra-precision holographic linear displacement sensor with a controlled mirror unit
JPS6234244Y2 (en)