JPH0130071B2 - - Google Patents

Info

Publication number
JPH0130071B2
JPH0130071B2 JP26490884A JP26490884A JPH0130071B2 JP H0130071 B2 JPH0130071 B2 JP H0130071B2 JP 26490884 A JP26490884 A JP 26490884A JP 26490884 A JP26490884 A JP 26490884A JP H0130071 B2 JPH0130071 B2 JP H0130071B2
Authority
JP
Japan
Prior art keywords
ice
making
water
compressor
making plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26490884A
Other languages
Japanese (ja)
Other versions
JPS61143672A (en
Inventor
Hajime Iida
Motoshi Nishio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP26490884A priority Critical patent/JPS61143672A/en
Publication of JPS61143672A publication Critical patent/JPS61143672A/en
Publication of JPH0130071B2 publication Critical patent/JPH0130071B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は製氷機に関し、詳しくは、圧縮機の過
負荷時における運転制御の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an ice maker, and more particularly, to an improvement in operation control when a compressor is overloaded.

(従来技術) 従来より、製氷機として例えば特開昭58−
28964号公報に開示されるように、氷を生成する
ための製氷板と、水ポンプを駆動して製氷用水を
該製氷板に散水する散水回路と、圧縮機の作動に
より製氷板の冷却管に液冷媒を流通させる製氷用
冷媒回路と、離氷用開閉弁の開作動により上記製
氷板の冷却管に圧縮機のホツトガスを流通させる
離氷用冷媒回路とを備え、製氷運転時、製氷板に
製氷用水を散水するとともに、その冷却管に液冷
媒を流通させることにより、製氷板に散水された
製氷用水を液冷媒の吸熱作用でもつて冷却凍結さ
せて、該製氷板に氷を生成する一方、離氷運転
時、上記製氷板の冷却管にホツトガスを流通させ
ることにより、ホツトガスによる製氷板からの伝
熱作用でもつて該製氷板に生成された氷を離氷す
るようにしたものが知られている。
(Prior art) Conventionally, as an ice maker, for example, JP-A-58-
As disclosed in Publication No. 28964, there is an ice-making plate for producing ice, a watering circuit that drives a water pump to sprinkle ice-making water onto the ice-making plate, and a cooling pipe of the ice-making plate by the operation of a compressor. The ice-making refrigerant circuit is equipped with an ice-making refrigerant circuit that distributes liquid refrigerant, and an ice-removing refrigerant circuit that distributes hot gas from the compressor to the cooling pipe of the ice-making plate by opening an ice-removing on-off valve. By sprinkling ice-making water and flowing a liquid refrigerant through the cooling pipe, the ice-making water sprinkled on the ice-making board is cooled and frozen by the endothermic action of the liquid refrigerant, thereby producing ice on the ice-making board, It is known that during ice-removal operation, hot gas is passed through the cooling pipe of the ice-making plate, so that the ice generated on the ice-making plate is released by the heat transfer effect from the ice-making plate due to the hot gas. There is.

(発明が解決しようとする問題点) ところで、上記の如き製氷機において、製氷用
および離氷用の各冷媒回路の低圧は第7図に示す
ように、離氷運転の進行により漸次増大し、その
運転終了時に最大値となり、その後は製氷運転に
より最大値から漸次低下することを繰返す特性と
なる。このため、圧縮機の負荷は離氷運転の終了
近傍や製氷運転の開始近傍で大きくなり、外気温
度や電源電圧の変動によつては圧縮機の過負荷状
態を繰返すことがある。
(Problems to be Solved by the Invention) By the way, in the ice making machine as described above, the low pressure of each refrigerant circuit for ice making and ice removal gradually increases as the ice removal operation progresses, as shown in FIG. It reaches its maximum value at the end of the operation, and then gradually decreases from the maximum value due to ice-making operation, which is a characteristic that repeats. Therefore, the load on the compressor increases near the end of the ice-removal operation or near the start of the ice-making operation, and the compressor may repeatedly be overloaded depending on fluctuations in outside temperature or power supply voltage.

そこで、圧縮機の過負荷運転を防止すべく、例
えば実開昭56−101142号公報に開示されるよう
に、圧縮機の過負荷時にその作動を強制的に停止
させる過負荷リレーを設けて、圧縮機の信頼性の
向上を図ることが考えられる。
Therefore, in order to prevent overload operation of the compressor, an overload relay is provided that forcibly stops the operation of the compressor when it is overloaded, as disclosed in, for example, Japanese Utility Model Application No. 56-101142. It is possible to improve the reliability of the compressor.

しかるに、この場合には、特に離氷運転時にお
いて過負荷状態に至つたときには、圧縮機の運転
は停止されるものの、その後、過負荷リレーの復
帰により圧縮機が再始動すると離氷運転の続行に
より低圧の上昇を招いて再び過負荷状態になり易
く、このため、過負荷リレーによる圧縮機の発停
が繰り返されて離氷運転が何時までも続行され、
製氷運転に移行しないことになるという不具合が
ある。
However, in this case, especially when an overload condition occurs during ice removal operation, the compressor operation is stopped, but if the overload relay is reset and the compressor is restarted, ice removal operation continues. This causes a rise in low pressure and is likely to result in an overload condition again, and for this reason, the overload relay repeatedly starts and stops the compressor, causing ice removal operation to continue indefinitely.
There is a problem in that the operation does not shift to ice making operation.

本発明は斯かる点に鑑みてなされたものであ
り、その目的は、上記の如き過負荷リレー等によ
り圧縮機の過負荷状態を検出するとともに、一旦
圧縮機の過負荷状態に至つた場合には、その後の
圧縮機の再始動時、その運転モードを低圧が低下
する製氷運転にすることにより、圧縮機の発停に
よる離氷運転の続行を防止して、運転サイクルを
正常に戻すことにある。
The present invention has been made in view of these points, and its purpose is to detect an overload state of the compressor using the above-mentioned overload relay, etc., and to detect the overload state of the compressor once the overload state has been reached. When the compressor is subsequently restarted, the operation mode is set to ice-making operation in which the low pressure drops, thereby preventing the continuation of ice removal operation due to starting and stopping of the compressor, and returning the operation cycle to normal. be.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は
第1図に示すように、氷を生成するための製氷板
1と、水ポンプ5の駆動により製氷用水を該製氷
板1に散水する散水回路8と、製氷板1の冷却管
に圧縮機13からの液冷媒を流通させる製氷用冷
媒回路11と、離氷用開閉弁20の開作動により
上記製氷板1の冷却管に上記圧縮機13のホツト
ガスを流通させる離氷用冷媒回路12を備え、製
氷運転時、製氷板1に散水された製氷用水を液冷
媒により冷却凍結して氷を生成する一方、離氷運
転時、製氷板に生成された氷をホツトガスにより
離氷させるようにした製氷機において、上記圧縮
機13の過負荷状態を検出する過負荷状態検出手
段25と、該過負荷状態検出手段25の出力を受
け、所定時間のあいだ上記圧縮機13を停止させ
るとともに上記離氷用開閉弁20を開き且つ水ポ
ンプ5を作動させ、氷を製氷板1から離脱させた
のち、製氷運転に移行させる制御手段40を備え
る構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG. A water sprinkling circuit 8 that sprinkles water on the ice making plate 1; an ice making refrigerant circuit 11 that distributes liquid refrigerant from the compressor 13 to the cooling pipe of the ice making plate 1; 1 is provided with an ice-removing refrigerant circuit 12 through which hot gas from the compressor 13 flows, and during ice-making operation, the ice-making water sprinkled on the ice-making plate 1 is cooled and frozen by a liquid refrigerant to generate ice, In an ice making machine which uses hot gas to break ice generated on an ice making plate during ice removal operation, an overload state detection means 25 for detecting an overload state of the compressor 13, and the overload state detection means are provided. 25, the compressor 13 is stopped for a predetermined period of time, the ice removal on-off valve 20 is opened, and the water pump 5 is activated to remove ice from the ice making plate 1, and then the ice making operation is started. The configuration includes a control means 40 for controlling the speed.

(作用) 以上の構成により、本発明では、圧縮機の過負
荷時、特に離氷運転の終了近傍で圧縮機の過負荷
状態に至つたときには、所定時間のあいだ圧縮機
が停止させるとともに離氷用開閉弁が開き水ポン
プ5が作動して、圧縮機の負荷が軽減されると同
時に離氷が促進されて製氷板に生成された氷が該
製氷板から離脱する。そして、その後の圧縮機の
再始動時には運転モードが強制的に製氷運転にな
ることによつて、低圧が漸次低下することになる
ので、過負荷検出手段が再び作動することなく製
氷運転が続行されて、正常の運転サイクルに戻る
のである。
(Function) With the above configuration, in the present invention, when the compressor is overloaded, especially when the compressor reaches an overload state near the end of ice removal operation, the compressor is stopped for a predetermined time and the ice removal operation is stopped. The on-off valve opens and the water pump 5 operates, reducing the load on the compressor and at the same time promoting ice removal so that the ice produced on the ice-making plate is removed from the ice-making plate. When the compressor is subsequently restarted, the operation mode is forced into ice-making operation, and the low pressure gradually decreases, so ice-making operation continues without the overload detection means operating again. Then, the normal driving cycle resumes.

(実施例) 以下、本発明の実施例を第2図以下の図面に基
づいて詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings from FIG. 2 onwards.

第2図は製氷機の全体構成を示し、1は氷を生
成するための製氷板、2は該製氷板1の上方に配
置され、底部に多数の散水孔2aを有する散水タ
ンクであつて、該散水タンク2には水配管3を介
して、製氷板1下方に配置された水受皿4aを有
する水タンク4が連通接続され、該水タンク4内
には、該水タンク4の水を水配管3を介して散水
タンク2に汲上げ供給する水ポンプ5が配設され
ており、また水タンク4の水受皿4aには給水用
電磁弁6を介設した給水管7の他端開口部が臨ん
でおり、上記水ポンプ5の駆動により水タンク4
の製氷用水を散水タンク2に供給したのち、この
製氷用水を散水孔2aから製氷板1に流下散水し
て製氷に供するとともに、該製氷板1から落ちる
水を水受皿4aから水タンク4に戻し、且つ製氷
により低下した水タンク4の水位を給水管7から
の給水により所定の高水位にまで復帰させるよう
にした散水回路8が構成されている。尚、9は水
タンク4の余分な水を排出するオーバフロー管で
ある。
FIG. 2 shows the overall configuration of the ice making machine, in which 1 is an ice making plate for producing ice, 2 is a watering tank placed above the ice making plate 1, and having a large number of watering holes 2a at the bottom, A water tank 4 having a water tray 4a disposed below the ice-making plate 1 is connected to the water tank 2 through a water pipe 3, and the water in the water tank 4 is stored in the water tank 4. A water pump 5 is disposed to pump and supply water to the watering tank 2 via a pipe 3, and the water receiving tray 4a of the water tank 4 has an opening at the other end of a water supply pipe 7 with a water supply solenoid valve 6 interposed therein. is facing the water tank 4 due to the drive of the water pump 5.
After the ice-making water is supplied to the water sprinkling tank 2, this ice-making water is sprinkled down from the water sprinkling hole 2a onto the ice-making plate 1 for ice-making, and the water falling from the ice-making plate 1 is returned to the water tank 4 from the water tray 4a. In addition, a water sprinkling circuit 8 is configured to restore the water level of the water tank 4, which has fallen due to ice making, to a predetermined high water level by supplying water from the water supply pipe 7. Note that 9 is an overflow pipe for discharging excess water from the water tank 4.

さらに、10,10は製氷板1の製氷板本体1
a,1aに設けた冷却管、11は該冷却管10,
10に液冷媒を流通させる製氷用冷媒回路、12
は上記製氷板1の冷却管10,10にホツトガス
を流通させる離氷用冷媒回路であつて、該製氷用
冷媒回路11は、圧縮機13と、フアン14を備
えた空冷式の凝縮器15と、膨張弁16と、蒸発
器としての冷却管10,10とが冷媒配管17に
より順次接続されてなる。尚、18はアキユムレ
ータである。
Furthermore, 10, 10 is the ice making plate main body 1 of the ice making plate 1.
a, the cooling pipe provided in 1a, 11 is the cooling pipe 10,
an ice-making refrigerant circuit that circulates liquid refrigerant to 10;
is an ice-removing refrigerant circuit that circulates hot gas through the cooling pipes 10, 10 of the ice-making plate 1; the ice-making refrigerant circuit 11 includes a compressor 13, an air-cooled condenser 15 equipped with a fan 14; , an expansion valve 16 and cooling pipes 10, 10 serving as an evaporator are successively connected by a refrigerant pipe 17. Note that 18 is an accumulator.

一方、離氷用冷媒回路12は、上記圧縮機13
と、離氷時に開作動する離氷用開閉弁としての離
氷用電磁弁20と冷却管10,10とが冷媒配管
17により順次接続されてなる。
On the other hand, the deicing refrigerant circuit 12 is connected to the compressor 13.
A solenoid valve 20 for ice removal, which is an on-off valve for ice removal that operates to open when ice is removed, and cooling pipes 10, 10 are sequentially connected by a refrigerant pipe 17.

そして、製氷時には、離氷用電磁弁20の閉作
動および膨張弁16の開作動により冷媒を図中実
線矢印の如く循環させることにより、圧縮機13
から吐出された高温高圧の冷媒が有する熱量を凝
縮器15で外気に放熱したのち、冷却管10,1
0(蒸発器)で製氷板1を流下する製氷用水から
熱量を吸熱することを繰返して、上記製氷板1で
製氷用水を冷却凍結させて氷を生成する一方、離
氷時には、離氷用電磁弁20の開作動および膨張
弁16の閉作動により冷媒(ホツトガス)を図中
破線矢印の如く循環させることにより、圧縮機1
3からの冷媒(ホツトガス)が有する熱量を冷却
管10,10で放熱することを繰返して、製氷板
1に生成された氷を離氷させるように構成されて
いる。尚、製氷板1の製氷板本体1a周りには、
これに沿つて上記給水管7が配置されていて、離
氷時、水タンク4への水補給を行うときには、こ
の補給水の熱量を製氷板1の氷に与えて離氷効率
の向上を図るようになされている。
When making ice, the refrigerant is circulated in the compressor 13 as shown by the solid arrow in the figure by closing the ice-removing solenoid valve 20 and opening the expansion valve 16.
After the heat of the high-temperature, high-pressure refrigerant discharged from the cooling pipes 10 and 1 is radiated to the outside air in the condenser 15,
0 (evaporator) repeatedly absorbs heat from the ice-making water flowing down the ice-making plate 1, and the ice-making water is cooled and frozen on the ice-making plate 1 to generate ice. By opening the valve 20 and closing the expansion valve 16, the refrigerant (hot gas) is circulated as shown by the broken line arrow in the figure.
The ice produced on the ice-making plate 1 is released by repeatedly dissipating the heat contained in the refrigerant (hot gas) from the ice-making plate 1 through the cooling pipes 10, 10. In addition, around the ice-making plate main body 1a of the ice-making plate 1,
The water supply pipe 7 is arranged along this line, and when replenishing water to the water tank 4 during ice removal, the heat of this replenishment water is given to the ice on the ice making plate 1 to improve ice removal efficiency. It is done like this.

加えて、21は水タンク4の所定の高水位およ
び低水位を検出するフロートスイツチ、22は散
水回路8の水温を給水管7の水温により検出する
給水管サーミスタ、23は圧縮機13への吸入側
冷媒配管(吸入管)17の冷媒温度を検出する吸
入管サーミスタであつて、該各機器21〜23の
検出信号はコントローラ24に入力され、該コン
トローラ24により、上記水ポンプ5、圧縮機1
3、凝縮器フアン14、給水用電磁弁6および離
氷用電磁弁20が作動制御される。
In addition, 21 is a float switch that detects predetermined high and low water levels in the water tank 4, 22 is a water supply pipe thermistor that detects the water temperature of the water supply circuit 8 based on the water temperature of the water supply pipe 7, and 23 is a suction to the compressor 13. It is a suction pipe thermistor that detects the refrigerant temperature of the side refrigerant pipe (suction pipe) 17, and the detection signals of each of the devices 21 to 23 are input to the controller 24, which controls the water pump 5, compressor 1, etc.
3. The operation of the condenser fan 14, the water supply solenoid valve 6, and the ice removal solenoid valve 20 is controlled.

上記コントローラ24には、第3図に示すよう
に、上記圧縮機13の過負荷状態を検出する過電
流リレーよりなる過負荷状態検出手段としての過
負荷リレー25が信号の授受可能に接続されてい
る。また、コントローラ24の内部には、上記過
負荷リレー25からの過負荷信号を入力する過負
荷リレー作動入力部30と、該過負荷リレー作動
入力部30の出力を受ける過負荷対策制御部31
とを備えている。該過負荷対策制御部31は、上
記過負荷リレー作動入力部30からの出力を受け
た圧縮機13の過負荷時において、過負荷タイマ
32のタイマ時間(to)(例えば3分)のあいだ、
圧縮機13を停止させるとともに離氷用電磁弁2
0を開作動させ、且つ水ポンプ5および凝縮器フ
アン15を回転駆動するものである。尚、図中、
33〜36は電磁接触器、37は圧縮機用電磁接
触器、38は運転表示灯である。
As shown in FIG. 3, the controller 24 is connected to an overload relay 25 as overload state detection means, which is an overcurrent relay for detecting an overload state of the compressor 13, so as to be able to send and receive signals. There is. Further, inside the controller 24, there is an overload relay operation input section 30 that inputs the overload signal from the overload relay 25, and an overload countermeasure control section 31 that receives the output of the overload relay operation input section 30.
It is equipped with The overload countermeasure control section 31 controls, during the timer time (to) (for example, 3 minutes) of the overload timer 32, when the compressor 13 receives the output from the overload relay operation input section 30 and is overloaded.
The compressor 13 is stopped and the de-icing solenoid valve 2 is
0 and rotates the water pump 5 and condenser fan 15. In addition, in the figure,
33 to 36 are electromagnetic contactors, 37 is a compressor electromagnetic contactor, and 38 is an operation indicator light.

次に、上記コントローラ24の作動を第4図お
よび第5図のフローチヤートに基づいて説明す
る。先ず、ステツプS1で運転/停止スイツチ(図
示せず)が運転側に操作されると、ステツプS2
おいて運転表示灯38を点灯させたのち、ステツ
プS3において吸入管サーミスタ23からの検出信
号に基づき吸入管温度TFが所定温度(例えば15
℃)以上か否かを判別し、TF≧15℃のYESの場
合には製氷開始時であると判断してステツプS4
降に進む一方、TF<15℃のNOの場合には離氷運
転開始時であると判断して直ちにステツプS10
降に進む。
Next, the operation of the controller 24 will be explained based on the flowcharts of FIGS. 4 and 5. First, when the run/stop switch (not shown) is operated to the operating side in step S1 , the operating indicator light 38 is turned on in step S2 , and then the detection signal from the suction pipe thermistor 23 is turned on in step S3 . Based on the inlet pipe temperature T
If the answer is YES (T F ≧15℃), it is determined that it is time to start ice making and the process proceeds to step S4 onwards, while if the answer is NO (T F <15℃), the ice making process will proceed. It is determined that it is time to start ice operation and immediately proceeds to step S10 and subsequent steps.

そして、ステツプS4において製氷運転を開始す
べく水ポンプ5、圧縮機13および凝縮器フアン
14を回転駆動し、且つ離氷用電磁弁20を閉じ
て、散水タンク2からの散水と共に冷却管10,
10への低温冷媒の流通により製氷板1での製氷
を開始する。この時、水ポンプ5の回転駆動によ
り水が散水タンク2に汲上げられて、その分、水
タンク4の水位が直ちに低化するのを補償すべく
給水用電磁弁6を所定時間(t2)(例えば40秒)
だけ開作動させて、水タンク4の水位を高水位に
保持する。
Then, in step S4 , the water pump 5, compressor 13, and condenser fan 14 are rotated to start the ice-making operation, and the ice-releasing electromagnetic valve 20 is closed, so that water is sprinkled from the water tank 2 and the cooling pipe 10 is ,
Ice-making on the ice-making plate 1 is started by the flow of low-temperature refrigerant to the ice-making plate 10. At this time, the water is pumped up into the sprinkler tank 2 by the rotational drive of the water pump 5, and the water supply solenoid valve 6 is operated for a predetermined period of time (t 2 ) (e.g. 40 seconds)
The water level in the water tank 4 is maintained at a high level by opening the water tank 4.

しかる後、ステツプS5においてフロートスイツ
チ21の高水位検出信号の有無を判別し、高水位
検出信号の無いNOの場合には断水時であると判
断して、ステツプS6において水ポンプ5、圧縮機
13および凝縮器フアン14の駆動を停止したの
ち、ステツプS7で製水終了タイマ34からの製氷
期間経過信号の受信を持つて、水タンク4への水
補給を行うべくステツプS4に戻る。一方、上記ス
テツプS5でフロートスイツチ21からの高水位検
出信号の有るYESの場合には断水時でないと判
断して製氷運転を続行すべくステツプS8に進み、
該ステツプS9でフロートスイツチ21からの低水
位検出信号の有無を判別するとともに、ステツプ
S9で製氷終了タイマ34からの製氷期間経過信号
の有無を判別し、共に受けていない製氷途中の
NOの場合にはそのまま待機して製氷運転を続行
する一方、何れか一方の信号を受けたYESのと
きには製氷終了時であると判断してステツプS10
に進む。
After that, in step S5 , it is determined whether or not there is a high water level detection signal from the float switch 21, and if the high water level detection signal is NO and there is no high water level detection signal, it is determined that there is a water outage, and in step S6 , the water pump 5 and the compressor are switched on. After stopping the driving of the ice making machine 13 and the condenser fan 14, upon receiving the ice making period elapsed signal from the water making end timer 34 in step S7 , the process returns to step S4 to replenish the water tank 4 with water. . On the other hand, if the high water level detection signal from the float switch 21 is YES in step S5 , it is determined that there is no water outage and the process proceeds to step S8 to continue the ice making operation.
In step S9 , it is determined whether or not there is a low water level detection signal from the float switch 21, and the step
In S9 , the presence or absence of the ice-making period elapsed signal from the ice-making end timer 34 is determined, and the ice-making period elapsed signal that has not been received is determined.
In the case of NO, the ice making operation continues as it is, while on the other hand, if either signal is received and the answer is YES, it is determined that it is time to finish ice making, and the process proceeds to step S10 .
Proceed to.

続いて、ステツプS10において離氷運転を開始
すべく水ポンプ5および凝縮器フアン14の駆動
を停止するとともに、離氷用電磁弁20を開き、
圧縮機1からの冷媒(ホツトガス)を冷却管1
0,10に流通させて離氷を開始し、且つ水タン
ク4で製氷運転のために低下した水位を高水位に
まで復帰させるべく給水用電磁弁6を開くととも
に、この開作動時間をステツプS11で給水タイマ
44により計測する。
Next, in step S10 , the water pump 5 and the condenser fan 14 are stopped to start the ice removal operation, and the ice removal solenoid valve 20 is opened.
Refrigerant (hot gas) from compressor 1 is transferred to cooling pipe 1
0 and 10 to start ice removal, and open the water supply solenoid valve 6 to restore the water level that has dropped due to the ice-making operation to a high water level in the water tank 4, and set the opening operation time to step S. 11 , the water supply timer 44 measures the water supply time.

そして、ステツプS12で給水電磁弁6の開作動
時間が所定時間(t1)(例えば2分)経過したか
否かを判別し、経過したYESの場合には、水タ
ンク4の水位が高水位に戻つたと判断してステツ
プS13で給水用電磁弁6を閉じて水タンク4への
水補給を終了するとともに、離氷時の散水時間を
算出すべくステツプS14で給水管サーミスタ22
からの安定した水温信号(第6図参照)を入力
し、ステツプS15で該水温値が高いほど短い散水
時間、例えば水温が0〜7℃では第1散水時間
T1(例えば6分)を、7〜14℃では第2散水時間
T2(例えば3分)を、14℃〜では第3散水時間T3
(例えば1分)をそれぞれ選択する。
Then, in step S12 , it is determined whether the opening operation time of the water supply solenoid valve 6 has elapsed for a predetermined time ( t1 ) (for example, 2 minutes), and if YES, the water level in the water tank 4 is high. When it is determined that the water level has returned to the same level, the water supply solenoid valve 6 is closed in step S13 to complete water supply to the water tank 4, and at the same time, in step S14 , the water supply pipe thermistor 22 is closed in order to calculate the water sprinkling time during ice break-off.
In step S15 , the higher the water temperature value, the shorter the watering time, for example, when the water temperature is 0 to 7°C, the first watering time is input.
T 1 (e.g. 6 minutes) and the second watering time at 7-14°C.
T 2 (e.g. 3 minutes), third watering time T 3 at 14℃~
(for example, 1 minute).

しかる後、ステツプS16で吸入管サーミスタ2
3からの吸入管温度TF信号が16℃以上になるこ
と、つまり製氷板1の氷がホツトガスの流通によ
り実質的に離氷し始めるのを待つて、ステツプ
S17で水ポンプ5を駆動して製氷板1への散水を
行い、その後、ステツプS18において上記ステツ
プS15で選択した散水時間TA、T2又はT3の経過
を待つてステツプS19で該水ポンプ5の駆動を停
止し、ステツプS20で吸入管サーミスタ23から
の吸入管温度TF信号が16℃以上であることを再
チエツクしてステツプS4に戻る。
After that, in step S16 , the suction pipe thermistor 2 is
Wait for the suction pipe temperature T F signal from step 3 to reach 16°C or higher, that is, for the ice on the ice making plate 1 to substantially start to break off due to the flow of hot gas, and then proceed to step 3.
In step S17 , the water pump 5 is driven to sprinkle water on the ice-making plate 1, and then, in step S18 , the process waits for the watering time T A , T2 , or T3 selected in step S15 to elapse, and then proceeds to step S19. Then, the water pump 5 is stopped, and in step S20 , it is checked again that the suction pipe temperature T F signal from the suction pipe thermistor 23 is 16°C or higher, and the process returns to step S4 .

尚、ステツプS10での離氷運転開始後、給水用
電磁弁6の開作動に基づく水補給より水タンク4
の水位が高水位に戻るまでの所定時間(t1)(2
分間)のあいだに、吸入管温度TFが16℃以上に
なつたステツプS21の場合には、給水管サーミス
タ22からの水温信号に拘らずステツプS22で水
ポンプ5を第1散水時間T1(1分間)だけ駆動し
て散水タンク2からの1分間の散水を開始し、そ
の後、ステツプS23で所定時間(t1)(例えば2
分)の経過を待つて、ステツプS24で給水用電磁
弁6を閉じて水タンク4への水補給を終了し、ス
テツプS4に戻るようになされている。
In addition, after the start of ice removal operation in step S10 , the water tank 4 is filled with water based on the opening operation of the water supply solenoid valve 6.
The predetermined time (t 1 ) for the water level to return to the high water level (2
If the suction pipe temperature T F becomes 16°C or higher during the first watering period T 1 (for 1 minute) to start watering for 1 minute from the watering tank 2, and then in step S23 for a predetermined time (t 1 ) (for example, 2 minutes).
After waiting for the elapse of 1 minute), the water supply solenoid valve 6 is closed in step S24 to complete the water supply to the water tank 4, and the process returns to step S4 .

そして、上記第4図の作動フローに基づく製氷
運転時又は離氷運転時において、過負荷リレー2
5により圧縮機13の過負荷状態が検出される
と、これに割込んで第5図の過負荷軽減フローに
進む。そして、該過負荷軽減フローにおいて、ス
テツプSAで圧縮機13を停止させて過負荷運転
を防止するとともに、離氷用電磁弁20を開いて
高低圧をバランスさせ、且つ水ポンプ5を回転駆
動して特に離氷運転時における離氷を行い、さら
に凝縮器フアン14を回転駆動して高圧を低下さ
せ、同時に過負荷タイマ32で所定時間(to)
(例えば3分)の計測を開始する。
Then, during ice making operation or ice removal operation based on the operation flow shown in Fig. 4 above, the overload relay 2
When an overload condition of the compressor 13 is detected in step 5, this is interrupted and the process proceeds to the overload reduction flow shown in FIG. In the overload reduction flow, the compressor 13 is stopped in step S A to prevent overload operation, and the deicing solenoid valve 20 is opened to balance high and low pressures, and the water pump 5 is driven to rotate. In particular, ice removal is performed during ice removal operation, and furthermore, the condenser fan 14 is driven to rotate to lower the high pressure, and at the same time, the overload timer 32 is activated for a predetermined time (to).
(for example, 3 minutes).

しかる後、ステツプSBで過負荷タイマ32での
時間計測が完了したか否かを判別し、時間計測の
完了していないNOの場合には上記ステツプSA
の過負荷軽減モードを保持する一方、時間計測の
完了したYESの場合にはステツプSCに進み、該
ステツプSCで離氷用電磁弁20を閉じたのち、ス
テツプSDで過負荷リレー25により過負荷状態の
有無を判別し、過負荷状態でなくなつたことを確
認して、強制的に製氷運転を開始すべく上記第4
図のステツプS4に戻る。
After that, in step S B , it is determined whether or not the time measurement by the overload timer 32 has been completed. If the answer is NO that the time measurement has not been completed, the overload reduction mode in step S A is maintained. On the other hand, if the time measurement is completed and the answer is YES, the process proceeds to step S C , where the de -icing solenoid valve 20 is closed, and then the presence or absence of an overload condition is determined by the overload relay 25 at step S D. After confirming that there is no longer an overload condition, the fourth step is performed to forcibly start ice-making operation.
Return to step S4 in the diagram.

よつて、上記第5図の過負荷軽減フローによ
り、過負荷リレー25の出力を受け、過負荷タイ
マ32のタイマ時間(to)のあいだ圧縮機13を
停止させるとともに離氷用電磁弁20を開き且つ
水ポンプ5を作動させ、氷を製氷板1から離脱さ
せたのち、製氷運転に移行させるようにした制御
手段40を構成している。
Therefore, according to the overload reduction flow shown in FIG. 5 above, upon receiving the output of the overload relay 25, the compressor 13 is stopped for the timer time (to) of the overload timer 32, and the deicing solenoid valve 20 is opened. It also constitutes a control means 40 which activates the water pump 5 to remove ice from the ice-making plate 1 and then shifts to ice-making operation.

したがつて、上記実施例においては、製氷運転
時、製氷板1には散水回路8によつて水が流下散
水されるとともに、該製氷板1の冷却管10,1
0に製氷用冷媒回路11からの低温液冷媒が流通
することにより、この流下散水された水が冷却凍
結して製氷板1に氷が生成される。また、離氷運
転時、製氷板1の冷却管10,10には離氷用冷
媒回路12からのホツトガスが流通することによ
り、製氷板1に生成された氷が離氷することにな
る。
Therefore, in the above embodiment, during the ice-making operation, water is sprayed down the ice-making plate 1 by the water spray circuit 8, and the cooling pipes 10, 1 of the ice-making plate 1 are sprayed with water.
When the low temperature liquid refrigerant from the ice-making refrigerant circuit 11 flows through the ice-making refrigerant circuit 11, the water sprayed down is cooled and frozen, and ice is generated on the ice-making plate 1. Further, during the ice-removing operation, hot gas from the ice-removing refrigerant circuit 12 flows through the cooling pipes 10, 10 of the ice-making plate 1, so that the ice generated on the ice-making plate 1 is removed.

今、離氷運転の終了時近傍や製氷運転の開始時
近傍(第7図参照)、特に前者において外気温度
や電源電圧が変動し、圧縮機13の過負荷状態が
生じると、圧縮機13の停止によりその過負荷運
転が防止されるとともに、離氷用電磁弁20の開
作動により高低圧がバランスされ、且つ水ポンプ
5の駆動により製氷板1からの離氷が行なわれ、
さらに凝縮器フアン14の回転駆動により高圧が
低下する。
If the outside air temperature or power supply voltage fluctuates near the end of the ice removal operation or near the start of the ice making operation (see Figure 7), especially in the former, and an overload condition of the compressor 13 occurs, the compressor 13 will be overloaded. By stopping, overload operation is prevented, and by opening the ice-removing solenoid valve 20, high and low pressures are balanced, and by driving the water pump 5, ice is removed from the ice-making plate 1.
Furthermore, the high pressure is reduced by rotating the condenser fan 14.

そして、過負荷タイマ32のタイマ時間(to)
が経過すると、強制的な製氷運転への移行により
低圧が低下することになるので、以後、圧縮機1
3の過負荷状態を招くことなく製氷が進行する。
よつて、過負荷状態からの所定時間経過後に再び
離氷運転を行う場合のように、圧縮機の発停に起
因する離氷運転の続行を招くことがなく、早期に
正常の運転サイクルに戻すことができる。
And the timer time (to) of the overload timer 32
When the time has elapsed, the low pressure will drop due to the forced transition to ice-making operation, so from now on, the compressor 1
Ice making proceeds without causing the overload condition of 3.
Therefore, unlike when ice removal operation is performed again after a predetermined period of time has elapsed from an overload state, there is no need to continue ice removal operation due to starting and stopping of the compressor, and the normal operation cycle can be returned to quickly. be able to.

尚、上記実施例では、圧縮機13の過負荷時、
圧縮機13の停止と共に凝縮器フアン14を回転
駆動させるようにしたが、これに基づく高圧の低
下は製氷運転時において効果を発揮し、離氷運転
時には発揮しないので、必ずしも必要でない。
In the above embodiment, when the compressor 13 is overloaded,
Although the condenser fan 14 is driven to rotate when the compressor 13 is stopped, this reduction in high pressure is effective during ice-making operation, but not during ice-removal operation, so it is not necessarily necessary.

(発明の効果) 以上説明したように、本発明によれば、製氷運
転と離氷運転とを交互に繰返す製氷機において、
圧縮機の過負荷時、特に離氷運転終了時近傍にお
ける過負荷時、所定時間のあいだ圧縮機の負荷を
軽減するとともに離氷を行い、その後は強制的に
製氷運転に移行させて低圧が低下するようにした
ので、圧縮機の信頼性の向上を図ることができる
とともに、圧縮機の発停に起因する離氷運転の続
行を防止して、正常運転への早期復帰を可能にで
きるものである。
(Effects of the Invention) As explained above, according to the present invention, in an ice maker that alternately repeats ice making operation and ice removal operation,
When the compressor is overloaded, especially near the end of ice removal operation, the load on the compressor is reduced and ice removed for a predetermined period of time, and then the system is forced to switch to ice-making operation to lower the low pressure. This not only improves the reliability of the compressor, but also prevents the continuation of de-icing operation caused by the compressor starting and stopping, making it possible to quickly return to normal operation. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロツク図であ
る。第2図ないし第7図は本発明の実施例を示
し、第2図は全体構成図、第3図はコントローラ
の内部構成を示す図、第4図および第5図はコン
トローラの作動を示すフローチヤート図、第6図
は給水温度の時間に対する変化特性を示す図、第
7図は低圧の変化特性を示す図である。 1……製氷機、5……水ポンプ、8……散水回
路、10……冷却管、11……製氷用冷媒回路、
12……離氷用冷媒回路、13……圧縮機、20
……離氷用電磁弁、24……コントローラ、25
……過負荷リレー、40……制御手段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 7 show embodiments of the present invention, FIG. 2 is an overall configuration diagram, FIG. 3 is a diagram showing the internal configuration of the controller, and FIGS. 4 and 5 are flowcharts showing the operation of the controller. The chart diagram, FIG. 6, is a diagram showing the change characteristics of the feed water temperature with respect to time, and FIG. 7 is a diagram showing the change characteristics of the low pressure. 1...Ice maker, 5...Water pump, 8...Water circuit, 10...Cooling pipe, 11...Ice making refrigerant circuit,
12... Refrigerant circuit for ice removal, 13... Compressor, 20
... Solenoid valve for ice removal, 24 ... Controller, 25
... Overload relay, 40 ... Control means.

Claims (1)

【特許請求の範囲】[Claims] 1 氷を生成するための製氷板1と、水ポンプ5
の駆動により製氷用水を該製氷板1に散水する散
水回路8と、製氷板1の冷却管に圧縮機13から
の液冷媒を流通させる製氷用冷媒回路11と、離
氷用開閉弁20の開作動により上記製氷板1の冷
却管に上記圧縮機13のホツトガスを流通させる
離氷用冷媒回路12とを備え、製氷運転時、製氷
板1に散水された製氷用水を液冷媒により冷却凍
結して氷を生成する一方、離氷運転時、製氷板に
生成された氷をホツトガスにより離氷させるよう
にした製氷機において、上記圧縮機13の過負荷
状態を検出する過負荷状態検出手段25と、該過
負荷状態検出手段25の出力を受け、所定時間の
あいだ上記圧縮機13を停止させるとともに上記
離氷用開閉弁20を開き且つ水ポンプ5を作動さ
せ、氷を製氷板1から離脱させたのち、製氷運転
に移行させる制御手段40とを備えたことを特徴
とする製氷機。
1 Ice-making plate 1 for generating ice and water pump 5
A water sprinkling circuit 8 that sprinkles ice-making water onto the ice-making plate 1 by driving the ice-making refrigerant circuit 11 that distributes liquid refrigerant from the compressor 13 to the cooling pipe of the ice-making plate 1; It is equipped with an ice-removing refrigerant circuit 12 that causes hot gas from the compressor 13 to flow through the cooling pipe of the ice-making plate 1 when activated, and during ice-making operation, the ice-making water sprinkled on the ice-making plate 1 is cooled and frozen by a liquid refrigerant. An overload state detection means 25 for detecting an overload state of the compressor 13 in an ice making machine that generates ice and uses hot gas to break ice generated on an ice making plate during ice removal operation; Upon receiving the output of the overload state detection means 25, the compressor 13 is stopped for a predetermined period of time, the ice removal on-off valve 20 is opened, and the water pump 5 is operated to remove the ice from the ice making plate 1. An ice-making machine characterized by comprising a control means 40 for later shifting to ice-making operation.
JP26490884A 1984-12-14 1984-12-14 Ice machine Granted JPS61143672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26490884A JPS61143672A (en) 1984-12-14 1984-12-14 Ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26490884A JPS61143672A (en) 1984-12-14 1984-12-14 Ice machine

Publications (2)

Publication Number Publication Date
JPS61143672A JPS61143672A (en) 1986-07-01
JPH0130071B2 true JPH0130071B2 (en) 1989-06-15

Family

ID=17409882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26490884A Granted JPS61143672A (en) 1984-12-14 1984-12-14 Ice machine

Country Status (1)

Country Link
JP (1) JPS61143672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075234A1 (en) * 2018-10-10 2020-04-16 三菱電機株式会社 Multi-mode interferometric optical waveguide device and photonic integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075234A1 (en) * 2018-10-10 2020-04-16 三菱電機株式会社 Multi-mode interferometric optical waveguide device and photonic integrated circuit

Also Published As

Publication number Publication date
JPS61143672A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US5894734A (en) Water-circulating type ice maker
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JPH0130071B2 (en)
US6988373B2 (en) Method for operating automatic ice-making machine
JP3130778B2 (en) Refrigerator with automatic ice machine
JP3573911B2 (en) Ice machine control device
JPH043868A (en) Operation control device for ice maker
JP2002098453A (en) Method for dealing with abnormality of automatic ice maker
JP2654261B2 (en) Operation control device for ice machine
JPH08338675A (en) Method and device for preventing imperfect ice generation in water circulation type ice making machine
JP2831497B2 (en) Fountain type automatic ice machine
JPS647309B2 (en)
JPH0674626A (en) Flowing down type ice making machine
JPS6015090Y2 (en) automatic ice maker
JPH0420766A (en) Operation control device of ice making machine
JPS647308B2 (en)
JP2000329433A (en) Ice maker
JPH09196537A (en) Ice storage type cold water supply apparatus
JP3054525B2 (en) Ice machine
JPH0743053A (en) Operation controller for icemaker
JPS5938688Y2 (en) automatic ice maker
JPH0332948Y2 (en)
JPH08178491A (en) Freezer-refrigerator
JP2000283615A (en) Electric refrigerator
JPH0512682Y2 (en)