JPH0129998B2 - - Google Patents

Info

Publication number
JPH0129998B2
JPH0129998B2 JP10605186A JP10605186A JPH0129998B2 JP H0129998 B2 JPH0129998 B2 JP H0129998B2 JP 10605186 A JP10605186 A JP 10605186A JP 10605186 A JP10605186 A JP 10605186A JP H0129998 B2 JPH0129998 B2 JP H0129998B2
Authority
JP
Japan
Prior art keywords
pressure
pump
valve
flow path
pump discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10605186A
Other languages
Japanese (ja)
Other versions
JPS6267296A (en
Inventor
Ken Morinushi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10605186A priority Critical patent/JPS6267296A/en
Publication of JPS6267296A publication Critical patent/JPS6267296A/en
Publication of JPH0129998B2 publication Critical patent/JPH0129998B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、少流量時にモートルが過負荷とな
るポンプ、例えばウエスコポンプにおいて、還流
流路を設けてポンプ吐出全流量の一部をポンプ吸
込口へ還流されることにより蛇口流量が少流量で
もポンプの連続運転を行うことができるように
し、圧力タンクを小形化もしくは全く廃止したポ
ンプ装置(以後、タンクレスポンプ装置と称す
る)の流量感知による自動制御を行う自動式ポン
プ装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a method for pumps whose motors are overloaded when the flow rate is small, such as Wesco pumps, by providing a return flow path to absorb a portion of the total pump discharge flow. The pump can be operated continuously even if the faucet flow rate is small by returning the flow to the spout, and the pressure tank is downsized or completely eliminated by sensing the flow rate of the pump device (hereinafter referred to as tankless pump device). This invention relates to an automatic pump device that performs automatic control.

〔従来技術〕[Prior art]

第1図は従来の自動式タンクレスポンプ装置の
一例を示す系統図であり、この図で、1は揚程の
増加と共に所要動力が増大するポンプ、例えばウ
エスコポンプである。2は吸込管であり、逆止弁
3を経由して水源に接続される。4は小形圧力タ
ンク、5は圧力スイツチで、いずれもポンプ吐出
流路6に接続される。7はある所定の圧力以下で
は閉じているリリーフ弁であり、還流流路8内に
接続されている。9は蛇口流路10内に接続され
蛇口11から流出する流量を圧力の形で検出する
ための抵抗弁である。還流流路8内に接続された
差圧弁12は抵抗弁9の前圧と後圧とを検出する
ための前圧測定孔13と後圧測定孔14とを介し
て圧力差に変換した流量を感知し、この差圧があ
る値以下になると弁を閉じて還流を停止するよう
に調整されている。この差圧弁12の一例を第2
図に示す。
FIG. 1 is a system diagram showing an example of a conventional automatic tankless pump device. In this diagram, 1 is a pump whose required power increases as the head increases, such as a Wesco pump. 2 is a suction pipe, which is connected to a water source via a check valve 3. 4 is a small pressure tank, and 5 is a pressure switch, both of which are connected to the pump discharge channel 6. Reference numeral 7 denotes a relief valve that closes below a certain predetermined pressure, and is connected to the reflux passage 8 . Reference numeral 9 denotes a resistance valve connected within the faucet flow path 10 for detecting the flow rate flowing out from the faucet 11 in the form of pressure. A differential pressure valve 12 connected to the reflux flow path 8 converts the flow rate into a pressure difference through a front pressure measurement hole 13 and a back pressure measurement hole 14 for detecting the front pressure and back pressure of the resistance valve 9. The valve is sensed and adjusted to close the valve and stop reflux when this differential pressure falls below a certain value. An example of this differential pressure valve 12 is
As shown in the figure.

第2図において、本体15は孔16の縁に装着
されたパツキング17を有し、圧力室ケース18
とでダイヤフラム19を挾持しており、このダイ
ヤフラム19の中央部に作動軸20が保持されて
いる。21は押圧ばねであり、調整ねじ22によ
り適宜の荷重に調整されている。23,24はそ
れぞれ差圧弁圧力室であり、前圧測定孔13によ
る圧力が差圧弁圧力室23に、後圧測定孔14に
よる圧力が差圧弁圧力室24に導かれている。2
5はOリングであり、差圧弁圧力室23を還流流
路8と遮断するためのものである。
In FIG. 2, the main body 15 has a packing 17 attached to the edge of the hole 16, and a pressure chamber case 18.
A diaphragm 19 is held between the diaphragm 19 and an operating shaft 20 is held in the center of the diaphragm 19. Reference numeral 21 denotes a pressure spring, and the load is adjusted to an appropriate value by an adjustment screw 22. 23 and 24 are differential pressure valve pressure chambers, respectively, in which the pressure from the front pressure measurement hole 13 is guided to the differential pressure valve pressure chamber 23, and the pressure from the rear pressure measurement hole 14 is introduced to the differential pressure valve pressure chamber 24. 2
5 is an O-ring for isolating the differential pressure valve pressure chamber 23 from the reflux flow path 8.

従来の自動式タンクレスポンプ装置は上記のよ
うに構成され、例えばポンプ1の停止状態におい
て蛇口11より水の使用を開始するとポンプ吐出
流路6内の圧力が低下し、圧力スイツチ5のオン
圧力Ponまで達しポンプ1は起動する。蛇口全開
で蛇口流量Q1が大の時はポンプ1の吐出圧P0
低く、リリーフ弁7の開く圧力P1より低いため
吸込口への還流はない。ただし、差圧弁12は抵
抗弁9の前後の差圧ΔPが大きいため開いた状態
である。次に蛇口11を絞つていくとポンプ1の
吐出圧が上昇し、リリーフ弁7の開きはじめる圧
力P1より高くなるとリリーフ弁7は開きはじめ、
差圧弁12もまだ開いているためポンプ1の吐出
流量Q0の一部が吸込口へ還流をはじめるので、
さらに蛇口11を絞つていつても還流流量Q0
それほど減少せず吐出圧もそれほど上昇しなくな
る。しかしさらに蛇口11を絞つていき蛇口流量
Q1が非常に少なくなると抵抗弁9の前後の差圧
ΔPが非常に小さくなるため、差圧弁12は閉じ
られていき、還流流量Q2が減少するためポンプ
1の吐出圧もまた上昇し、圧力スイツチ5のオフ
圧P0FFに達してポンプ1は停止する。
The conventional automatic tankless pump device is configured as described above. For example, when water is started from the faucet 11 while the pump 1 is stopped, the pressure in the pump discharge passage 6 decreases, and the on-pressure of the pressure switch 5 decreases. Pump 1 is started. When the faucet is fully open and the faucet flow rate Q 1 is large, the discharge pressure P 0 of the pump 1 is low and lower than the pressure P 1 at which the relief valve 7 opens, so there is no flow back to the suction port. However, the differential pressure valve 12 remains open because the differential pressure ΔP across the resistance valve 9 is large. Next, as the faucet 11 is turned down, the discharge pressure of the pump 1 increases, and when it becomes higher than the pressure P1 at which the relief valve 7 begins to open, the relief valve 7 begins to open.
Since the differential pressure valve 12 is still open, part of the discharge flow rate Q 0 of the pump 1 begins to flow back to the suction port.
Furthermore, even if the faucet 11 is closed, the recirculation flow rate Q 0 does not decrease much and the discharge pressure does not increase much. However, as the faucet 11 is further tightened, the faucet flow rate increases.
When Q 1 becomes very small, the differential pressure ΔP across the resistance valve 9 becomes very small, so the differential pressure valve 12 is closed, and the reflux flow rate Q 2 decreases, so the discharge pressure of the pump 1 also increases. When the off pressure of the pressure switch 5 reaches P0FF , the pump 1 stops.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように従来の自動式タンクレスポンプ装
置では蛇口流量Q1を感知するために、わざわざ
抵抗弁9を設けて損失を生じさせているため、蛇
口流量Q1がある程度より大きい時のポンプ装置
の実揚程を低下させる原因となつてしまう。また
抵抗弁9により生じる前後の差圧ΔPは、抵抗弁
9を通過する流体の流速、すなわち蛇口流量Q1
の二乗に比例するため、肝心の微少流量の時に感
度が悪いという問題点があつた。
As mentioned above, in the conventional automatic tankless pump device, in order to sense the faucet flow rate Q 1 , a resistance valve 9 is purposely provided to cause a loss, so the pump device when the faucet flow rate Q 1 is larger than a certain level. This will cause the actual head to decrease. Moreover, the pressure difference ΔP between the front and rear sides generated by the resistance valve 9 is the flow velocity of the fluid passing through the resistance valve 9, that is, the faucet flow rate Q 1
Since it is proportional to the square of , there was a problem that the sensitivity was poor at the critical minute flow rate.

この発明は、無駄な損失を生じさせる抵抗弁9
がなく、しかも蛇口流量Q1が微少流量である時
の感度がよい蛇口流量感知能力を有する自動式タ
ンクレスポンプ装置を得ることを目的とするもの
である。
This invention eliminates the resistance valve 9 that causes unnecessary loss.
The object of the present invention is to obtain an automatic tankless pump device that has a faucet flow rate sensing ability with high sensitivity when the faucet flow rate Q1 is a minute flow rate.

〔問題点を解決するための手段〕 この発明に係る自動式ポンプ装置はポンプ吐出
流路を蛇口流路と還流流路とに分岐し、この両流
路の流量を圧力の形で感知し両流量の差が所定の
値以下になつたとき弁を開く差圧弁と、上記還流
流路に介在し所定ポンプ吐出圧以下では弁を閉じ
るリリーフ弁と、所定圧力の幅をもつてポンプを
起動・停止する圧力スイツチとを備え、上記圧力
スイツチを上記差圧弁を介し上記ポンプ吐出流路
に接続したものである。
[Means for solving the problem] The automatic pump device according to the present invention branches the pump discharge flow path into a faucet flow path and a reflux flow path, and senses the flow rate of both flow paths in the form of pressure. A differential pressure valve that opens when the difference in flow rate is below a predetermined value, a relief valve that is interposed in the reflux flow path and closes the valve when the pump discharge pressure is below a predetermined pressure, and a relief valve that starts the pump with a predetermined pressure range. The pressure switch is connected to the pump discharge flow path via the differential pressure valve.

〔作用〕[Effect]

この発明においては蛇口流量が微少になつたと
き差圧弁が開き、これにより圧力スイツチはポン
プ吐出流路に接続され、ポンプ吐出圧上昇を検知
し、ポンプを停止する。
In this invention, when the faucet flow rate becomes very small, the differential pressure valve opens, and the pressure switch is thereby connected to the pump discharge passage, detects an increase in the pump discharge pressure, and stops the pump.

〔実施例〕〔Example〕

第3図はこの発明の一実施例を示す自動式タン
クレスポンプ装置の系統図である。この図で、符
号1〜8および10,11は、上記第1図の従来
装置と同一部分である。抵抗弁9および抵抗弁の
前圧測定孔13、後圧測定孔14はなく、かわり
にポンプ吐出流路6、還流流路8に分岐による影
響がほゞ無い範囲でできるだけ近接させてそれぞ
れ壁面静圧孔26、壁面静圧孔27が設けられて
おり、壁面静圧孔26は第4図に示す差圧弁29
の差圧弁圧力室24に、壁面静圧孔27は差圧弁
圧力室23にそれぞれ接続されている。
FIG. 3 is a system diagram of an automatic tankless pump device showing an embodiment of the present invention. In this figure, numerals 1 to 8 and 10 and 11 are the same parts as in the conventional device shown in FIG. 1 above. There is no resistance valve 9, front pressure measurement hole 13, and back pressure measurement hole 14 of the resistance valve, and instead they are placed as close as possible to the pump discharge flow path 6 and reflux flow path 8 to the extent that there is almost no influence from branching, and the wall surface static. A pressure hole 26 and a wall static pressure hole 27 are provided, and the wall static pressure hole 26 is connected to a differential pressure valve 29 shown in FIG.
The differential pressure valve pressure chamber 24 and the wall static pressure hole 27 are connected to the differential pressure valve pressure chamber 23, respectively.

本体30はパツキング31を装着した孔32を
有し、弁体33を一体化した作動軸34が孔32
の中心を通つている。その他の符号21〜25は
第2図に示すものと同じである。この圧力スイツ
チ用差圧弁29の働きは従来の差圧弁12とまつ
たく逆で、二つの圧力室の差ΔPが小さい時に弁
が開放され、大きい時に閉鎖されるようになつて
いる。また小形圧力タンク4はこの場合ポンプ吐
出流路6でなく、蛇口流路10に接続されている
必要がある。更に、ポンプ吐出流路6が還流流路
8と蛇口流路10に分岐する部分の配管構造は、
ポンプ吐出流路6と還流流路8が原則的には同断
面積で直線的に接続されている方がよい。
The main body 30 has a hole 32 in which a packing 31 is attached, and an operating shaft 34 with an integrated valve body 33 is inserted into the hole 32.
passes through the center of Other symbols 21 to 25 are the same as those shown in FIG. The function of this pressure switch differential pressure valve 29 is exactly opposite to that of the conventional differential pressure valve 12, and the valve is opened when the difference ΔP between the two pressure chambers is small and closed when it is large. Moreover, the small pressure tank 4 needs to be connected to the faucet flow path 10 instead of the pump discharge flow path 6 in this case. Furthermore, the piping structure of the part where the pump discharge flow path 6 branches into the reflux flow path 8 and the faucet flow path 10 is as follows.
In principle, it is preferable that the pump discharge channel 6 and the reflux channel 8 have the same cross-sectional area and are connected linearly.

次に動作について説明する。壁面静圧孔26の
設けられた位置のポンプ吐出流路6の断面Aと壁
面静圧孔27の設けられた位置の還流流路8の断
面Bとにおける全圧をそれぞれPtA、PtBとする
と、両断面間の距離があまりなく、しかも直線的
に接続されているのでほゞPtA=PtBとなる。また
断面Aと断面Bとにおける動圧をそれぞれPDA
PDB、静圧をPSA、PSBとすると、二つの流路の断
面積が等しいので二つの流路の流量の二乗の差
(Q2 0−Q2 2)は(PDA−PDB)に比例する。上記二つ
の事実より(Q2 0−Q2 2)はほゞ(PSB−PSA)に比
例することがわかる。蛇口流量Q1に対する差圧
弁12の差圧弁圧力室23と差圧弁圧力室24と
の差圧ΔPの大きさの関係は、従来の抵抗弁9に
よる場合では前述のように蛇口流量Q1の二乗の
関数ΔP=aQ2 1であり、この発明の場合にはポン
プ吐出流量Q0の二乗と還流流量Q2の二乗との差
の関数、すなわちΔP=b(Q2 0−Q2 2)であるので、
第5図にそれぞれ示すような曲線,となる
(a、bは定数)。この図から判るように、この発
明による蛇口流量感知装置の方が、従来の抵抗弁
9によるものより蛇口流量Q1が微少である時の
感度がよい。この実施例の動作は、例えばポンプ
1が停止した状態で蛇口11を開くと、小形圧力
タンク4内に溜つていた水が流出して流路内の圧
力が低下していく。この時、蛇口流量感知のため
の二つの壁面静圧孔26,28のところは水が流
れていないので、圧力スイツチ用差圧弁29のと
ころは開放されている。圧力が圧力スイツチオン
の圧力Ppoに達すると、ポンプ1が起動し出し、
ポンプ吐出流路6を水が流れ出して二つの壁面静
圧孔26,27の差圧ΔPが大きくなるので、圧
力スイツチ用差圧弁29が閉鎖されて圧力スイツ
チ5のところは閉鎖された時点の圧力で密封され
る。次に蛇口11を絞つていくとある圧力P1
境にリリーフ弁7が開きはじめて還流を開始する
ので、さらに蛇口11を絞つていつてもそれほど
ポンプ1の吐出圧力は上昇しなくなる。この時点
ですでにポンプ1の吐出圧は圧力スイツチ5がオ
フの圧力P0FFに達しているのであるが、圧力スイ
ツチ5は密封されたまゝなのでポンプ1は運転さ
れたまゝである。さらに蛇口11を絞つていつて
蛇口流量Q1が非常に少なくなり、ある所定の流
量に達すると圧力スイツチ用差圧弁29が急激に
開放されて圧力スイツチ5が働きポンプ1は停止
する。この特性を第6図に示す。
Next, the operation will be explained. The total pressures at the cross section A of the pump discharge passage 6 at the position where the wall static pressure hole 26 is provided and the cross section B of the return flow passage 8 at the position where the wall static pressure hole 27 is provided are P tA and P tB , respectively. Then, since there is not much distance between the two cross sections and they are connected linearly, it becomes approximately P tA =P tB . In addition, the dynamic pressures at cross section A and cross section B are respectively P DA ,
If P DB and the static pressure are P SA and P SB , the cross-sectional area of the two channels is equal, so the difference in the square of the flow rate of the two channels (Q 2 0 − Q 2 2 ) is (P DA − P DB ) is proportional to From the above two facts, it can be seen that (Q 2 0 −Q 2 2 ) is approximately proportional to (P SB −P SA ). In the case of the conventional resistance valve 9 , the relationship between the magnitude of the differential pressure ΔP between the differential pressure valve pressure chamber 23 and the differential pressure valve pressure chamber 24 of the differential pressure valve 12 with respect to the faucet flow rate Q 1 is the square of the faucet flow rate Q 1 as described above. In the case of this invention, it is a function of the difference between the square of the pump discharge flow rate Q 0 and the square of the reflux flow rate Q 2 , that is, ΔP = b (Q 2 0 − Q 2 2 ). Because there is
The curves shown in FIG. 5 are obtained (a and b are constants). As can be seen from this figure, the faucet flow rate sensing device according to the present invention has better sensitivity when the faucet flow rate Q 1 is minute than that using the conventional resistance valve 9. The operation of this embodiment is such that, for example, when the faucet 11 is opened with the pump 1 stopped, the water stored in the small pressure tank 4 flows out and the pressure in the flow path decreases. At this time, since water is not flowing through the two wall static pressure holes 26 and 28 for sensing the faucet flow rate, the pressure switch differential pressure valve 29 is open. When the pressure reaches the pressure P po of the pressure switch, pump 1 starts,
As water flows out of the pump discharge channel 6, the differential pressure ΔP between the two wall static pressure holes 26 and 27 increases, so the differential pressure valve 29 for the pressure switch is closed and the pressure at the pressure switch 5 is the same as the pressure at the time when the pressure switch 5 is closed. sealed. Next, when the faucet 11 is turned down, the relief valve 7 begins to open at a certain pressure P 1 and recirculation begins, so even if the faucet 11 is further turned down, the discharge pressure of the pump 1 does not increase as much. At this point, the discharge pressure of the pump 1 has already reached the pressure P0FF at which the pressure switch 5 is turned off, but the pressure switch 5 remains sealed, so the pump 1 continues to operate. Further, by tightening the faucet 11, the faucet flow rate Q1 becomes very small, and when it reaches a certain predetermined flow rate, the pressure switch differential pressure valve 29 is suddenly opened and the pressure switch 5 is activated, and the pump 1 is stopped. This characteristic is shown in FIG.

第6図において、横軸はポンプ吐出流量Q0
よび蛇口流量Q1を、縦軸は全揚程H0および実揚
程Hをとつてあり、曲線は従来のH―Q1特性、
曲線はこの発明のH―Q1特性を示す。直線
はポンプ単体のH0―Q0特性である。H1は圧力ス
イツチ5がオンとなる揚程、H2は圧力スイツチ
5がオフとなる揚程、H3はモータが過負荷とな
る揚程である。
In Fig. 6, the horizontal axis shows the pump discharge flow rate Q 0 and the faucet flow rate Q 1 , the vertical axis shows the total head H 0 and the actual head H, and the curve shows the conventional H-Q 1 characteristic.
The curve shows the HQ 1 characteristics of this invention. The straight line is the H 0 - Q 0 characteristic of the pump alone. H1 is the lift at which the pressure switch 5 is turned on, H2 is the lift at which the pressure switch 5 is turned off, and H3 is the lift at which the motor is overloaded.

なお、上述した各実施例はいずれもポンプ吐出
流路6と還流流路8とが同じ断面積で直線的に接
続されている場合に限つて説明したが、断面積が
異なつた場合や、あまり直線的に接続されていな
い場合でも、圧力スイツチ用差圧弁29の押圧ば
ね21や調整ねじ22で校正することにより、上
記の動作を行わせることは可能である。
In addition, each of the above-mentioned embodiments has been explained only in the case where the pump discharge flow path 6 and the reflux flow path 8 are linearly connected with the same cross-sectional area, but when the cross-sectional area is different or Even if they are not connected linearly, the above operation can be performed by calibrating the pressure spring 21 and adjustment screw 22 of the pressure switch differential pressure valve 29.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、ポンプ吐出全
流量と還流流量との2つの流量を圧力の形で感知
し、この2つの流量の差が所定の値以下になつた
とき作動する差圧弁により圧力スイツチをポンプ
吐出流路に接続することにより圧力スイツチを作
動させポンプを制御しているので、従来のように
蛇口流路に抵抗弁を要せず抵抗弁による無駄な損
失がないばかりか、蛇口流路が微少であるときの
感度が良くポンプの制御精度が向上される等効果
がある。
As explained above, this invention senses two flow rates in the form of pressure, the pump discharge total flow rate and the reflux flow rate, and uses a differential pressure valve that operates when the difference between these two flow rates becomes less than a predetermined value to increase the pressure. By connecting the switch to the pump discharge flow path, the pressure switch is operated and the pump is controlled, so there is no need for a resistance valve in the faucet flow path unlike in the past, and there is no wasteful loss caused by the resistance valve. There are effects such as good sensitivity when the flow path is minute and improved control accuracy of the pump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自動式タンクレスポンプ装置の
一例の系統図、第2図は第1図の装置に使用され
る差圧弁の構造の一例を示す一部を断面で表わし
た図、第3図はこの発明の一実施例を示す系統
図、第4図は第3図の装置に使用される差圧弁の
構造の一例を示す一部を断面で表わした図、第5
図は第3図の実施例の蛇口流量の感知特性を従来
の装置の場合と対比させて示す図、第6図は第3
図の実施例のH―Q1特性を従来の装置の場合と
対比させて示す図である。 図中、1はポンプ、4は小形圧力タンク、5は
圧力スイツチ、6はポンプ吐出流路、7はリリー
フ弁、8は還流流路、10は蛇口流路、12は差
圧弁、26,27は壁面静圧孔、29は圧力スイ
ツチ用差圧弁である。なお、図中の同一符号は同
一または相当部分を示す。
Fig. 1 is a system diagram of an example of a conventional automatic tankless pump device, Fig. 2 is a partial cross-sectional view showing an example of the structure of a differential pressure valve used in the device of Fig. 1, and Fig. 3 is a system diagram of an example of a conventional automatic tankless pump device. Figure 4 is a system diagram showing one embodiment of the present invention, Figure 4 is a partial cross-sectional view showing an example of the structure of the differential pressure valve used in the device shown in Figure 3, and Figure 5
The figure shows the sensing characteristics of the faucet flow rate of the embodiment shown in Fig. 3 in comparison with that of the conventional device.
FIG. 3 is a diagram showing the H-Q 1 characteristics of the illustrated embodiment in comparison with that of a conventional device. In the figure, 1 is a pump, 4 is a small pressure tank, 5 is a pressure switch, 6 is a pump discharge channel, 7 is a relief valve, 8 is a reflux channel, 10 is a faucet channel, 12 is a differential pressure valve, 26, 27 29 is a wall static pressure hole, and 29 is a differential pressure valve for a pressure switch. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 ポンプの吐出側に結合されたポンプ吐出流路
と、このポンプ吐出流路を分岐し形成されたポン
プ吐出水を蛇口に流出させる蛇口流路および上記
ポンプ吐出水の一部をポンプ吸込側に還流させる
還流流路と、この還流流路に介在し上記ポンプの
所定ポンプ吐出圧以下では上記還流流路を閉塞し
還流を阻止するリリーフ弁と、上記ポンプ吐出流
路のポンプ吐出全流量と上記還流流量の2つの流
量を圧力の形で感知しこの2つの流量の差が所定
の値以下になつたとき弁を開く差圧弁と、所定圧
力の幅をもつて作動し上記ポンプの起動・停止を
行う圧力スイツチとを備え、上記圧力スイツチを
上記差圧弁を介し上記ポンプ吐出流路に接続した
ことを特徴とする自動式ポンプ装置。 2 ポンプ吐出流路と還流流路とが同断面積でか
つ直線的に接続されていることを特徴とする特許
請求の範囲第1項に記載の自動式ポンプ装置。
[Scope of Claims] 1. A pump discharge flow path connected to the discharge side of the pump, a faucet flow path formed by branching this pump discharge flow path and allowing the pump discharge water to flow out to a faucet, and one part of the pump discharge water. a reflux passage for refluxing the part to the pump suction side; a relief valve interposed in the reflux passage for blocking the reflux passage and preventing reflux when the pump discharge pressure is below a predetermined pump discharge pressure; There is a differential pressure valve that senses the two flow rates of the pump discharge total flow rate and the above-mentioned reflux flow rate in the form of pressure and opens the valve when the difference between these two flow rates becomes less than a predetermined value, and a differential pressure valve that operates with a predetermined pressure width. An automatic pump device comprising: a pressure switch for starting and stopping the pump, the pressure switch being connected to the pump discharge flow path via the differential pressure valve. 2. The automatic pump device according to claim 1, wherein the pump discharge flow path and the reflux flow path have the same cross-sectional area and are connected linearly.
JP10605186A 1986-05-07 1986-05-07 Automatic pump device Granted JPS6267296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10605186A JPS6267296A (en) 1986-05-07 1986-05-07 Automatic pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10605186A JPS6267296A (en) 1986-05-07 1986-05-07 Automatic pump device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8075176A Division JPS536911A (en) 1976-07-06 1976-07-06 Automatic pump apparatus

Publications (2)

Publication Number Publication Date
JPS6267296A JPS6267296A (en) 1987-03-26
JPH0129998B2 true JPH0129998B2 (en) 1989-06-15

Family

ID=14423826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10605186A Granted JPS6267296A (en) 1986-05-07 1986-05-07 Automatic pump device

Country Status (1)

Country Link
JP (1) JPS6267296A (en)

Also Published As

Publication number Publication date
JPS6267296A (en) 1987-03-26

Similar Documents

Publication Publication Date Title
US5193990A (en) Fluid management system with auxiliary dispensing chamber
US5642752A (en) Controllable constant flow regulating lift valve
US5114280A (en) Vacuum type sewage collecting system and vacuum valve controller for the same
US4124332A (en) Automatically operative pumping equipment
US6792799B2 (en) Positive flow meter
KR101033847B1 (en) Expention tank system used proportional control type automatic valve
US3973877A (en) Automatic pumping device
JPS617908A (en) Liquid surface controller
US5901603A (en) Liquid level monitor
JPH0129998B2 (en)
US5169291A (en) Water heater with shut-off valve
JPS6146675B2 (en)
JPH0121047B2 (en)
JP3827597B2 (en) Decompression backflow prevention device
JP2674018B2 (en) Pump flow control method
JP3388049B2 (en) Gas meter
JPS6016677Y2 (en) automatic water supply device
JP2000020135A (en) Flow rate controller
US4493607A (en) Tee-type valve for self-priming pump system
JP2553964Y2 (en) Water supply pressurization device
JPH0348466Y2 (en)
KR820002435Y1 (en) Pump device for electric well pump
JPS6113758Y2 (en)
JP3360894B2 (en) Backflow prevention device
JPS6223010Y2 (en)