JPH01299871A - Polyamic acid solution, polyimide powder and production thereof - Google Patents

Polyamic acid solution, polyimide powder and production thereof

Info

Publication number
JPH01299871A
JPH01299871A JP12864688A JP12864688A JPH01299871A JP H01299871 A JPH01299871 A JP H01299871A JP 12864688 A JP12864688 A JP 12864688A JP 12864688 A JP12864688 A JP 12864688A JP H01299871 A JPH01299871 A JP H01299871A
Authority
JP
Japan
Prior art keywords
polyamic acid
polyimide powder
formula
component
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12864688A
Other languages
Japanese (ja)
Other versions
JP2900367B2 (en
Inventor
Atsushi Suzuki
篤 鈴木
Kazuyuki Harada
和幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63128646A priority Critical patent/JP2900367B2/en
Publication of JPH01299871A publication Critical patent/JPH01299871A/en
Application granted granted Critical
Publication of JP2900367B2 publication Critical patent/JP2900367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to obtain a sine polyimide powder of excellent moldability, readily by mixing a specified polyamic acid with an amide solvent, a tert. amine and a poor solvent for the polyamic acid. CONSTITUTION:A polyamic acid (a) mainly consisting of repeating units of formula I (wherein Ar is a tetravalent aromatic residue containing at least one six-membered carbocycle, and Ar' is a bivalent aromatic or aliphatic residue) is obtained by reacting a tetracarboxylic acid derivative (i) with a diamine (ii) in an amide solvent. A mixture (b) is obtained by mixing an amide solvent (iii) (e.g., pyridine) with a tert. amine (iv) in an amount to give a component (iii) to component (iv) ratio of 99-10/1-90, a poor solvent (v) (e.g., acetone) for component (a), having a solubility parameter of 9.0-10.0(cal/cm<3>)<1/2>, in an amount to give a component (v) to component (iii) ratio of 80-50/20-50. 1-20wt.% component (a) is mixed with 99-80wt.% component (b) to obtain a polyamic acid solution. An aliphatic acid anhydride is added to this solution, and the mixture is subjected to cyclization through dehydration to obtain a polyimide powder of formula II.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、成形性の優れた微細なポリイミド粉末を簡便
に得るのに適したポリアミド酸溶液およびそれから得ら
れるポリイミドの粉末およびその製造方法に関するもの
である。
Detailed Description of the Invention <Field of Industrial Application> The present invention relates to a polyamic acid solution suitable for easily obtaining fine polyimide powder with excellent moldability, a polyimide powder obtained from the solution, and a method for producing the same. It is something.

〈従来の技術〉 ポリイミド樹脂はその優れた耐熱性、機械特性などのた
めに、電気・電子機器産業、自動車産業などにおいて重
要な位1を占めており、特に近年、機器の高速化、高性
能化が進むにつれて、必要不可欠な素材となりつつある
。なかでも、特公昭39−22196号公報に開示され
ているポリピロメリットイミド樹脂に代表される芳香族
系のポリイミド樹脂は、極めて優れた耐熱性を有してお
り、いわゆる附熱樹脂の頂点に立っているが、その反面
流動性に乏しく、成形が困器であるという問題がある。
<Conventional technology> Due to its excellent heat resistance and mechanical properties, polyimide resin plays an important role in the electrical and electronic equipment industry and the automobile industry. As technology advances, it is becoming an indispensable material. Among them, aromatic polyimide resins, such as the polypyromellitimide resin disclosed in Japanese Patent Publication No. 39-22196, have extremely excellent heat resistance and are ranked at the top of the so-called heat-added resins. However, it has the problem of poor fluidity and is difficult to mold.

このような流動性に乏しい樹脂を成形するには、一般に
数μm以下のFR,4!Ilな粉末が必要であり、その
ような粉末を得る手法がいくつか開示されているが、ど
れも欠点を有しており改善が望まれている。
In order to mold such a resin with poor fluidity, generally an FR of several μm or less, 4! There is a need for a powder having a high concentration of Il, and several methods for obtaining such a powder have been disclosed, but all of them have drawbacks and improvements are desired.

たとえば、特公昭39−22196号公報には、高速混
合機中でポリアミド酸溶液を再沈澱させ、粉末を得る手
法が開示されているが、このような手法では、全体を微
細な粉末にすることが難しく、一部塊状の沈澱が生じて
しまう。
For example, Japanese Patent Publication No. 39-22196 discloses a method of re-precipitating a polyamic acid solution in a high-speed mixer to obtain a powder. It is difficult to do so, and some lump-like precipitates are formed.

また、この再沈澱型の改善方法として、特開昭61−2
34号公報には、エアースプレーを用いて噴霧状に再沈
する手法が開示されている。
In addition, as a method for improving this reprecipitation type, JP-A-61-2
No. 34 discloses a method of reprecipitating in a spray form using air spray.

この手法は確かに微細な粉末を得ることはできるが、極
めて多量の有機溶剤を必要とするうえ、噴霧時に飛散し
、収率がさがるという欠点がある。また、これらの再沈
澱方法は、重合槽と再沈澱槽の2楢を必要とするという
点からもプロセス的に煩雑な手法である。
Although this method can certainly produce fine powder, it requires an extremely large amount of organic solvent and has the disadvantage that it scatters during spraying, reducing the yield. Further, these reprecipitation methods are complicated processes in that they require two tanks: a polymerization tank and a reprecipitation tank.

さらに別法として、特公昭39−30060号公報には
、ポリアミド酸溶液を3級アミンの存在下で加熱し、ポ
リイミド粉末を得る手法が開示されている。しかし、こ
の手法は、微細な粉末を簡便に得ることはできるものの
、生成したポリイミドの結晶化度が高くなってしまうた
め、成形性が極めて損なわれるという本質的な欠点を有
している。一般に、溶液中での加熱イミド化により生成
したポリイミドは、結晶化度が高く、成形しにくいとい
う欠点を有している。
As another method, Japanese Patent Publication No. 39-30060 discloses a method of heating a polyamic acid solution in the presence of a tertiary amine to obtain polyimide powder. However, although this method can easily obtain fine powder, it has an essential drawback in that the polyimide produced has a high degree of crystallinity, resulting in extremely poor moldability. Generally, polyimide produced by heating imidization in a solution has a high degree of crystallinity and is difficult to mold.

〈発明が解決しようとする課題〉 そこで本発明者らは、成形性に優れた微細なポリイミド
粉末を簡便に得る手法について鋭意検討した結果、特定
な溶媒組成をもつポリアミド酸溶液を調整し、これを脂
肪族酸無水物で化学閉環させることが有効であることを
見出し、本発明に到達した。
<Problems to be Solved by the Invention> Therefore, the present inventors have conducted intensive studies on a method for easily obtaining fine polyimide powder with excellent moldability, and have prepared a polyamic acid solution with a specific solvent composition. The present invention was achieved by discovering that it is effective to chemically ring-close the compound with an aliphatic acid anhydride.

く課題を解決するための手段〉 すなわち本発明は、A、a、下記一般式(I)で表わさ
れる繰り返し単位を主要構造単位とするポリアミド酸1
〜20重量%、B、b、アミド系溶媒、C,3級アミン
およびd、溶解度バラ1/2 メーターが9.0〜10.0 (c ai/d)   
テあるポリアミド酸の貧溶媒の合計量が99〜80重量
%からなり、かつ重量比でb / c = 99/1〜
10/90、d/b=80/20〜50150の範囲に
あることを特徴とするポリアミド酸溶液を提供するもの
である。さらには、上記溶液中のポリアミド酸と脂肪族
酸無水物が反応して得られた下記一般式■で表わされる
繰り返し単位を主要構造単位とするポリイミドの粉末お
よびその製造方法を提供するものである。
Means for Solving the Problems> That is, the present invention provides a polyamic acid 1 whose main structural units are A, a, and a repeating unit represented by the following general formula (I).
~20% by weight, B, b, amide solvent, C, tertiary amine and d, solubility variation 1/2 meter is 9.0-10.0 (c ai/d)
The total amount of poor solvent for a certain polyamic acid consists of 99 to 80% by weight, and the weight ratio b/c = 99/1 to
10/90, d/b=80/20 to 50,150. Furthermore, the present invention provides a polyimide powder whose main structural unit is a repeating unit represented by the following general formula (1) obtained by reacting the polyamic acid and aliphatic acid anhydride in the above solution, and a method for producing the same. .

ここでArは少なくとも一つの炭素6員環を含む4価の
芳香族残基であり、そのうちの2価ずつは、Ar基のベ
ンゼン環内の隣接する炭素原子に結合していることによ
って特徴づけられ、具体的には、 などが挙げられる。また、Ar−は2価の芳香族あるい
は脂肪族残基であり、芳香族の場合には、1〜4個の炭
素6員環をもち、脂肪族の場合は、04〜CI4の骨格
をもつことにより特徴づけられ、たとえば などが挙げられる。また、■および■は単独のポリマー
であってもよいし、あるいは共重合体であってもかまわ
ない。
Here, Ar is a tetravalent aromatic residue containing at least one carbon six-membered ring, each of which is characterized by being bonded to an adjacent carbon atom in the benzene ring of the Ar group. Specific examples include: Moreover, Ar- is a divalent aromatic or aliphatic residue, and in the case of aromatic, it has a 6-membered ring with 1 to 4 carbon atoms, and in the case of aliphatic, it has a skeleton of 04 to CI4. It is characterized by, for example, the following. Moreover, (1) and (2) may be independent polymers or may be copolymers.

このようなポリアミド酸の合成法は公知であり、たとえ
ば特公昭39−22196号公報にその詳細が開示され
ているが、テトラカルボン酸誘導体(たとえば二無水物
)とジアミンとをアミド系溶媒中で反応させることによ
り得ることができる。
Such a method for synthesizing polyamic acid is publicly known, and its details are disclosed, for example, in Japanese Patent Publication No. 39-22196. It can be obtained by reaction.

本発明でいうアミド系溶媒とは、具体的にはN、N−ジ
メチルアセトアミド、N、N−ジメチルホルムアミド、
N−メチルピロリドンなどの溶媒をさし、これらはいず
れもポリアミド酸の良溶媒である。また、3級アミンと
しては、ピリジン、3−エチルピリジン、4−メチルピ
リジン、2.6−ルチジン、インキノリン、N。
In the present invention, the amide solvent specifically refers to N,N-dimethylacetamide, N,N-dimethylformamide,
It refers to solvents such as N-methylpyrrolidone, all of which are good solvents for polyamic acids. Further, examples of the tertiary amine include pyridine, 3-ethylpyridine, 4-methylpyridine, 2,6-lutidine, inquinoline, and N.

N−ジメチルベンジルアミン、トリメチルアミン、トリ
エチルアミンなどを具体的に挙げることができるが、な
かでもピリジンが好ましい。
Specific examples include N-dimethylbenzylamine, trimethylamine, and triethylamine, among which pyridine is preferred.

本発明でいうところの溶解度パラメーターが1/2 9.0〜10.0 (c af/i)   であるポリ
アミド酸の貧溶媒としては、具体的にはアセトン(9,
9)、メチルエチルケトン(9,3)のようなケトン系
溶媒、テトラヒドロフラン(9,1)  、1.4−ジ
オキサン(10,0)のようなエーテル系溶媒、クロロ
ホルム<9.3)のようなハロゲン系溶媒、酢酸エチル
(9,1)のようなエステル系溶媒などを挙げることが
できるが、特にア七トンが好ましい、〔0内はr Po
1yraer Handb。
In the present invention, acetone (9,
9), ketone solvents such as methyl ethyl ketone (9,3), ether solvents such as tetrahydrofuran (9,1), 1,4-dioxane (10,0), and halogens such as chloroform <9.3). and ester solvents such as ethyl acetate (9,1), but a7tone is particularly preferred. [0 is r Po
1yraer Handb.

OJからの引用による 溶解度パラメーター値、1/2 (caf/d)   )−また、これらの溶媒は2種以
上を混合して用いることもできる。
Solubility parameter value, 1/2 (caf/d), as quoted from OJ)-Also, two or more of these solvents can be used in combination.

また、溶解度パラメーターが上記範囲であるポリアミド
酸の貧溶媒であっても、水酸基、1級アミノ基、2級ア
ミノ基などを有する溶媒は好ましくない、なぜならば、
これらの溶媒は酸無水物と反応するため、あとから添加
される脂肪族酸無水物を消費してしまうからである。
Furthermore, even if the solubility parameter is a poor solvent for polyamic acid within the above range, solvents having hydroxyl groups, primary amino groups, secondary amino groups, etc. are not preferred because:
This is because these solvents react with the acid anhydride and thus consume the aliphatic acid anhydride that is added later.

本発明の特徴は、特定の溶媒組成をもつポリアミド酸溶
液を調整する点およびそれに脂肪族酸無水物を添加して
脱水閉環させる点にある。
The characteristics of the present invention are that a polyamic acid solution having a specific solvent composition is prepared, and an aliphatic acid anhydride is added thereto for dehydration and ring closure.

このような酸無水物添加法はすでによく知られており、
特にフィルム状のポリイミドを製造する際に広く用いら
れている。しかし、この方法は、そのままポリイミド粉
末の製造方法として用いることは難しい、なぜならば、
酸無水物の添加により、ポリアミド酸溶液全体がゲル化
し、大きなゲルの塊りになってしまうからである。
This acid anhydride addition method is already well known;
It is widely used especially when producing film-like polyimide. However, it is difficult to use this method directly as a method for producing polyimide powder because:
This is because the addition of the acid anhydride causes the entire polyamic acid solution to gel, forming a large gel mass.

そして、本発明者らは、このゲル化を防ぐ方法を検討し
ている過程で、ある特定な溶媒組成においては、ゲル化
がおきず、かつ非常に微細な粉末が得られることを見出
した。すなわち、ポリアミド酸に対する良溶媒と貧溶媒
の比率を調節し、ポリマー溶媒間の相互作用力をコント
ロールすることにより、成形に適した微細な粉末が得ら
れることを見出したのである。
In the process of investigating methods to prevent this gelation, the present inventors discovered that gelation does not occur and very fine powder can be obtained in a certain specific solvent composition. In other words, they discovered that fine powder suitable for molding can be obtained by adjusting the ratio of good and poor solvents to polyamic acid and controlling the interaction force between polymer solvents.

ここで、アミド系溶媒は、ポリアミド酸の良溶媒であり
、重合溶媒でもある。また、溶解度パラメーターが9.
0〜10.0 (c aj!/cJl)′4であるポリ
アミド酸の貧溶媒は、ポリアミド酸とアミド系溶媒との
親和力を阻害し、イミド閉環後のゲル化を防ぐ役割を果
たす、ここで、溶解度パラメーターが9.0 (c a
fl/cal) ”2未満である溶媒は、ポリアミド酸
に対する溶解性が低すぎ、ポリアミド酸を沈澱させてし
まうため好ましくなく、10.0 (c an/d> 
”2を越える溶媒は、ポリアミド酸に対する親和性が強
すぎ、ゲル化を防ぐ効果がないため好ましくない。
Here, the amide solvent is a good solvent for polyamic acid and is also a polymerization solvent. In addition, the solubility parameter is 9.
0 to 10.0 (c aj!/cJl)'4, the poor solvent for polyamic acid inhibits the affinity between the polyamic acid and the amide solvent, and plays the role of preventing gelation after imide ring closure. , the solubility parameter is 9.0 (c a
10.0 (c an/d>
Solvents exceeding 2 are not preferred because they have too strong an affinity for polyamic acid and are not effective in preventing gelation.

また、3級アミンは、アミド系溶媒と貧溶媒とが均一に
混合するための補助溶媒の役割を果たす。すなわち、ポ
リアミド酸/アミド系溶媒よりなる重合溶液に、貧溶媒
を添加した場合、均一に混合させるためには強力かつ長
時間の撹拌を必要とするが、ここに3級アミンが存在す
ると、混合が容易になり、かつ生成したポリイミド粉末
の粒径が均質化することが見出された。
Further, the tertiary amine serves as an auxiliary solvent for uniformly mixing the amide solvent and the poor solvent. In other words, when a poor solvent is added to a polymerization solution consisting of a polyamic acid/amide solvent, strong and long stirring is required to mix it uniformly, but the presence of tertiary amines makes the mixing difficult. It has been found that the particle size of the produced polyimide powder becomes more homogeneous.

また、3級アミンは、同時に脱水閉環反応に対する触媒
の役割も果たし、脂肪族酸無水物添加後のポリイミド粉
末の生成速度を早めることができる。
Furthermore, the tertiary amine also serves as a catalyst for the dehydration ring closure reaction, and can accelerate the production rate of polyimide powder after addition of the aliphatic acid anhydride.

3級アミンは貧溶媒と同時に添加することもできるが、
好ましくは重合時にすでに添加しておいた方がよい、一
方、貧溶媒は重合時に添加しておくと、重合度があがり
にくいため、重合後に添加することが好ましい。
The tertiary amine can be added at the same time as the poor solvent, but
It is preferable to add it already at the time of polymerization. On the other hand, if a poor solvent is added at the time of polymerization, it is difficult to increase the degree of polymerization, so it is preferable to add it after polymerization.

の 本発時テリアミド酸溶液は、特定組成の溶媒中にポリア
ミド酸が均一溶解していることを特徴とするが、ここで
貧溶媒とアミド系溶媒との比率(d/b)は重量比で8
0/20〜50150がよく、特にポリアミド酸が下記
式0で表わされる繰り返し単位を主要構造単位とするポ
リアミド酸であり、貧溶媒がアセトンである場合には、
75/25〜55/45の範囲が好ましい。
The developed theramic acid solution is characterized by polyamic acid being uniformly dissolved in a solvent of a specific composition, but the ratio (d/b) of the poor solvent and the amide solvent is expressed as a weight ratio. 8
0/20 to 50150 is good, especially when the polyamic acid is a polyamic acid whose main structural unit is a repeating unit represented by the following formula 0, and the poor solvent is acetone.
A range of 75/25 to 55/45 is preferred.

上記範囲よりも貧溶媒が少ない場合は、ゲル化がおきて
しまい好ましくなく、また、多い場合は得られる粉末が
粗大粒子となり、成形後の強度が大幅に低下するため好
ましくない。
If the amount of the poor solvent is less than the above range, gelation will occur, which is undesirable, and if it is too much, the obtained powder will become coarse particles, which will significantly reduce the strength after molding, which is not preferred.

また、アミド系溶媒と3級アミンの比率(b/C)は、
重量比で99/1〜10/90がよく、好ましくは95
15〜40/60がよい。
In addition, the ratio of amide solvent and tertiary amine (b/C) is
The weight ratio is preferably 99/1 to 10/90, preferably 95
15-40/60 is good.

特に、ポリアミド酸が式0で表わされる繰り返し単位を
主要構造単位とするポリアミド酸である場合には、95
15〜30/70がよく、特に好ましくは90/10〜
60/40がよい。
In particular, when the polyamic acid is a polyamic acid whose main structural unit is a repeating unit represented by formula 0, 95
15 to 30/70 is good, particularly preferably 90/10 to
60/40 is good.

上記範囲よりも3級アミンが少ない場合は、その添加効
果が現われず好ましくない。多い場合は、得られるポリ
イミド粉末が粗大化するか、またはポリアミド酸の段階
で沈澱してしまうため好ましくない。
If the amount of tertiary amine is less than the above range, the effect of its addition will not appear, which is not preferable. If the amount is too large, the obtained polyimide powder will become coarse or it will precipitate at the polyamic acid stage, which is not preferable.

本発明のポリアミド酸溶液において、ポリアミド酸の重
量 濃度は1〜20%、好ましくは1〜15%がよい、
1%未満では、溶媒量が多くなりすぎて実用的でなく、
20%を越えると全体の粘度が高くなりすぎ、十分な撹
拌ができなくなるため好ましくない。
In the polyamic acid solution of the present invention, the weight concentration of polyamic acid is 1 to 20%, preferably 1 to 15%.
If it is less than 1%, the amount of solvent becomes too large and is not practical.
If it exceeds 20%, the viscosity of the whole becomes too high and sufficient stirring becomes impossible, which is not preferable.

本発明においては、特定組成に調整したポリアミド酸溶
液に、脂肪族酸無水物を添加しポリイミドの粉末を得る
が、このような脂肪族酸無水物の具体例としては、無水
酢酸、無水プロピオン酸、酢酸ギ酸無水物などが挙げら
れる。これらの脂肪族酸無水物は、アミド酸単位に対し
、0.3当量以上用いればポリイミド粉末を得ることが
できるが、0.8当量以上用いることが好ましい。また
、脂肪族酸無水物は単独で添加してもよいが、適当な溶
媒で希釈させて添加した方が、生成したポリイミド粉末
の粒径が、均質化する傾向があり好ましい、脂肪族酸無
水物による脱水閉環反応は、室温においても十分進行す
るが、加熱することにより、反応速度を早めることがで
きる。しかし、150℃以上では、反応が早すぎてゲル
化しやすくなるため、80℃以下、好ましくは60℃以
下で行うのがよい。
In the present invention, polyimide powder is obtained by adding an aliphatic acid anhydride to a polyamic acid solution adjusted to a specific composition. Specific examples of such aliphatic acid anhydrides include acetic anhydride, propionic anhydride, , acetic acid formic anhydride, and the like. If these aliphatic acid anhydrides are used in an amount of 0.3 equivalent or more based on the amic acid unit, a polyimide powder can be obtained, but it is preferable to use 0.8 equivalent or more. Although the aliphatic acid anhydride may be added alone, it is preferable to add the aliphatic acid anhydride after diluting it with an appropriate solvent because the particle size of the resulting polyimide powder tends to be homogenized. Although the dehydration ring-closure reaction with substances proceeds satisfactorily even at room temperature, the reaction rate can be accelerated by heating. However, if the temperature is 150°C or higher, the reaction will be too rapid and gelation will occur easily, so it is preferable to carry out the reaction at 80°C or lower, preferably 60°C or lower.

本発明によるポリイミドの粉末の製造方法によると、微
細なポリイミド粉末が懸濁した状態の溶液が得られるが
、ここからポリイミド粉末を取り出すには、ア過、蒸留
、スプレードライなどにより、溶媒を取り除けばよい、
得られた粉末は、そのまま成形に供することらできるが
、ミキサー、粉砕機などで処理すると、成形品の均一化
に効果がある。
According to the method for producing polyimide powder according to the present invention, a solution in which fine polyimide powder is suspended is obtained, but in order to extract the polyimide powder from this solution, the solvent must be removed by filtration, distillation, spray drying, etc. Goodbye,
The obtained powder can be used for molding as it is, but processing it with a mixer, pulverizer, etc. is effective in making the molded product uniform.

本発明のポリイミドの粉末には、必要に応じて種々の添
加剤を配合し、望ましい特性を付与することもできるが
、そのような添加剤の例としては、フッ素樹脂、グラフ
ァイト、二硫化モリブデン、マイカ、タルク、ガラス繊
維、カーボン繊維、アルミニウム、銀、各種金属酸化物
などが挙げられる。これらの添加剤は重合の過程ですで
に配合しておくことらできるし、また、成形前に配合す
ることらできるが、いずれにしても均一に分散させるこ
とが望ましい。
The polyimide powder of the present invention can be blended with various additives as necessary to impart desired characteristics. Examples of such additives include fluororesin, graphite, molybdenum disulfide, Examples include mica, talc, glass fiber, carbon fiber, aluminum, silver, and various metal oxides. These additives can be already blended during the polymerization process or can be blended before molding, but in either case, it is desirable that they be uniformly dispersed.

〈実施例〉 以下に実施例を挙げて本発明をさらに詳述する。<Example> The present invention will be explained in further detail by giving examples below.

なお、実施例において、加圧成形は次のような方法で行
った、すなわち、金型中に粉末を充填し、室温において
3X103hgf/dの圧力をかける0次にこれを徐々
に昇温し、最終的に450℃まで加熱する。この昇温過
程で、ガスが発生するため、時々放圧し、ガスを抜くよ
うにする。450℃で5分間保ったのち、加圧したまま
冷却し、300°C以下になったところで取り出す0次
にこの成形品から、65nmX13rn X 3 tm
の試験片を切り出し、引張および曲げ試験に供した。
In the examples, pressure molding was carried out in the following manner: the powder was filled into a mold, a pressure of 3 x 103 hgf/d was applied at room temperature, the temperature was gradually raised, Finally, heat to 450°C. During this heating process, gas is generated, so the pressure should be released from time to time to remove the gas. After keeping it at 450°C for 5 minutes, it is cooled while being pressurized and taken out when the temperature is below 300°C. Next, from this molded product, a 65nm x 13rn x 3tm
A test piece was cut out and subjected to tensile and bending tests.

実施例1 4.4“−ジアミノジフェニルエーテル(DDE)60
.07gを1,130gのN、N−ジメチルアセトアミ
ド<DMAc)と340gのピリジンの混合液に溶解さ
せた。ここにピロメリット酸二無水物(PMJDA) 
65.44 gを加え、1時間撹拌を続けたところ、7
inh(DMAC中、濃度0.5 g / d 1.3
0”Cで測定)が2゜35のポリアミド酸溶液が得られ
た0次にこれに2.500 gのアセトン(溶解度パラ
メーター値: 9.9 (c af/d) ”2)を加
え、激シく撹拌したところ、約15分で均一なポリアミ
ド酸溶液が得られた。
Example 1 4.4"-diaminodiphenyl ether (DDE) 60
.. 07g was dissolved in a mixture of 1,130g N,N-dimethylacetamide <DMAc) and 340g pyridine. Here pyromellitic dianhydride (PMJDA)
When 65.44 g was added and stirring was continued for 1 hour, 7
inh (in DMAC, concentration 0.5 g/d 1.3
Next, 2.500 g of acetone (solubility parameter value: 9.9 (c af/d) 2) was added to this solution, and the solution was heated vigorously. After vigorous stirring, a uniform polyamic acid solution was obtained in about 15 minutes.

続いてこのポリアミド酸溶液を水浴で30’Cに温調し
、無水酢酸65gを加えたところ約5分後に、ポリイミ
ドの粉末が析出した。これを−過し、アセトンで洗浄後
、空気中160’Cで5時間乾燥したところ112gの
ポリイミド粉末が得られた(収率98%)。この粉末を
加圧成形し、物性試験を行ったところ表1に示すように
優れた特性を有していた。
Subsequently, the temperature of this polyamic acid solution was adjusted to 30'C in a water bath, and 65 g of acetic anhydride was added. After about 5 minutes, polyimide powder was precipitated. This was filtered, washed with acetone, and dried in air at 160'C for 5 hours to obtain 112 g of polyimide powder (yield: 98%). When this powder was pressure-molded and subjected to physical property tests, it was found to have excellent properties as shown in Table 1.

実施例2 DDE60.07gをDMAcl、130gおよびピリ
ジン400frの混合液に溶解し、ここにPMDA21
.81 trおよびベンゾフェノンテトラカルボン酸二
無水物(BTDA)64.45 gを加えた。1時間撹
拌を続けたところ7inhが1.81のポリアミド酸溶
液が得られた0次にこれにアセトン3,000.を加え
、激しく撹拌したところ、約15分で均一なポリアミド
酸溶液が得られた。
Example 2 60.07 g of DDE was dissolved in a mixture of 130 g of DMAcl and 400 fr of pyridine, and PMDA21
.. 81 tr and 64.45 g of benzophenone tetracarboxylic dianhydride (BTDA) were added. After stirring for 1 hour, a polyamic acid solution of 1.81 in 7 inh was obtained.Next, 3,000 ml of acetone was added to this. was added and stirred vigorously, and a homogeneous polyamic acid solution was obtained in about 15 minutes.

続いてこのポリアミド酸溶液を水浴で30℃に温調し、
無水#酸100gを加えたところ、約15分後にポリイ
ミドの粉末が析出した。これを沢過し、トルエンで洗浄
後、空気中160℃で5時間乾燥したところ、131g
のポリイミド粉末が得られた(収率98%)。この粉末
を加圧成形し、物性試験を行ったことろ、表1に示すよ
うに優れた特性を有していた。
Subsequently, the temperature of this polyamic acid solution was adjusted to 30°C in a water bath,
When 100 g of anhydrous #acid was added, polyimide powder was precipitated about 15 minutes later. When this was thoroughly filtered, washed with toluene, and dried in air at 160°C for 5 hours, 131g
Polyimide powder was obtained (yield 98%). This powder was pressure-molded and subjected to physical property tests, and as shown in Table 1, it had excellent properties.

比較例1 実施例1においてアセトンを1.0OOsrとするほか
は、実質的に同様な方法で重合を行い、ポリアミド酸溶
液を得た。しかし、これに無水酢酸を実施例1と同量添
加したところ、全体がゲル化してしまい、粉末を得るこ
とはできなかった。
Comparative Example 1 A polyamic acid solution was obtained by polymerizing in substantially the same manner as in Example 1, except that the acetone was changed to 1.0 OOsr. However, when the same amount of acetic anhydride as in Example 1 was added to this, the entire mixture turned into a gel, and no powder could be obtained.

比較例2 実施例1において、ピリジンを用いないほかは実質的に
同様な方法で重合を行った。しかし、アセトンが溶解し
に<<、均一な溶液とするには約5時間の撹拌が必要で
あった。
Comparative Example 2 Polymerization was carried out in substantially the same manner as in Example 1, except that pyridine was not used. However, about 5 hours of stirring was required for the acetone to dissolve and to form a homogeneous solution.

こうして得られたポリアミド酸溶液を実施例1と同様な
方法でイミド閉環させたところ、ポリイミドの粉末が得
られたが、この粉末には粒径の大きな粗粒子(電子顕@
鏡で観察して20、tim以上)が混在しており、成形
後の特性も低かった。一方、実施例1で得られたポリイ
ミドの粉末は粒径1〜2μmの均質なものであった。
When the thus obtained polyamic acid solution was subjected to imide ring closure in the same manner as in Example 1, a polyimide powder was obtained.
When observed with a mirror, there was a mixture of particles (20, tim or higher), and the properties after molding were also poor. On the other hand, the polyimide powder obtained in Example 1 was homogeneous with a particle size of 1 to 2 μm.

比較例3 実施例1において使用する溶媒を各々、DMAc170
g、ピリジン1,680r、アセトン510gとして重
合を行い、ポリアミド酸溶液を得た。これを実施例1と
同様な方法でイミド閉環させたが、得られた粉末は全体
に粗粒子であり成形後の特性は極めて低かった。
Comparative Example 3 Each of the solvents used in Example 1 was DMAc170.
Polymerization was carried out using 1,680 g of pyridine, 510 g of acetone, and a polyamic acid solution was obtained. This was subjected to imide ring closure in the same manner as in Example 1, but the obtained powder had coarse particles as a whole and its properties after molding were extremely poor.

比較例4 実施例2においてアセトンを4.900gとするほかは
実質的に同様な方法で重合を行いポリアミド酸溶液を得
た。
Comparative Example 4 A polyamic acid solution was obtained by polymerizing in substantially the same manner as in Example 2, except that 4.900 g of acetone was used.

続いて、実施例2と同様な方法でイミド閉環させたが、
得られた粉末は全体に粗粒子であり、特性の悪いもので
あった。
Subsequently, imide ring closure was carried out in the same manner as in Example 2, but
The obtained powder had coarse particles as a whole and had poor characteristics.

比較例5 実施例2において使用する溶媒を各々、DMAc200
g、ピリジン130+r、アセトン220gとして重合
を行い、ポリアミド酸溶液を得た。しかし、粘度が高す
ぎて十分な撹拌ができないためか無水酢酸添加後、全体
が塊りとなってしまい、粉末を得ることはできなかった
Comparative Example 5 Each of the solvents used in Example 2 was DMAc200
Polymerization was carried out using 130g of pyridine, 130g of pyridine, and 220g of acetone to obtain a polyamic acid solution. However, perhaps because the viscosity was too high and sufficient stirring was not possible, the entire mixture turned into lumps after the addition of acetic anhydride, and a powder could not be obtained.

比較例6 実施例1において、アセトンのかわりにトルエン(溶解
度パラメーター値:8.9(cai/1/2 cd)   )を用いた。しかし、トルエンはポリアミ
ド酸溶液に均一に溶解せず、ポリアミド酸が椀状に沈澱
してしまったため、粉末状のポリイミドを得ることはで
きなかった。
Comparative Example 6 In Example 1, toluene (solubility parameter value: 8.9 (cai/1/2 cd)) was used instead of acetone. However, toluene did not dissolve uniformly in the polyamic acid solution, and the polyamic acid precipitated in a bowl shape, making it impossible to obtain powdered polyimide.

比較例7 実施例1において、アセトンのかわりにジメチルスルホ
キサイド(溶解度パラメーター値=12.0 (c a
j!/d) ”2)を用い均一なIJアミド酸溶液を得
た。しかし、このものに無水酢酸を添加したところ全体
がゲル化してしまい、粉末を取り出すことができなかっ
た。
Comparative Example 7 In Example 1, dimethyl sulfoxide (solubility parameter value = 12.0 (ca
j! /d) "A uniform IJ amic acid solution was obtained using 2). However, when acetic anhydride was added to this solution, the entire solution turned into a gel, and the powder could not be taken out.

実施例3 4.4−一ジアミノジフェニルメタン(DDM)39.
65gおよびメタフェニレンジアミン(MPDA)10
.81gを、N−メチルピロリドン(NMP) 1.3
00 gと3−メチルピリジン400gの混合液に溶解
させた。これに3.3− 。
Example 3 4.4-Monodiaminodiphenylmethane (DDM) 39.
65g and metaphenylenediamine (MPDA) 10
.. 81 g of N-methylpyrrolidone (NMP) 1.3
00 g and 400 g of 3-methylpyridine. 3.3- for this.

4.4゛−ビフェニルテトラカルボン酸二無水物(BP
DA)88.27 gを加え、1時間撹拌を続けたとこ
ろpinhが2.00のポリアミド酸溶液が得られた。
4.4'-Biphenyltetracarboxylic dianhydride (BP
When 88.27 g of DA) was added and stirring was continued for 1 hour, a polyamic acid solution with a pinh of 2.00 was obtained.

次にこれに、1,4−ジオキサン(溶解度バラ1/2 メーター値: 10.0 (c aj!/cal)  
 ) 3.570rを、加え、激しく撹拌したところ、
約20分で均一なポリアミド酸溶液が得られた。
Next, add 1,4-dioxane (solubility variation 1/2 meter value: 10.0 (c aj!/cal)
) 3.570r was added and stirred vigorously,
A uniform polyamic acid solution was obtained in about 20 minutes.

続いてこのポリアミド酸溶液を水浴で30℃に温調し、
無水酢酸100gを加えたところ、約30分後にポリイ
ミドの粉末が析出した。これを実施例1と同様な方法で
後処理したところ、120g (収率95%)のポリイ
ミド粉末が得られ、成形後の特性は表2に示すように優
れたものであった。
Subsequently, the temperature of this polyamic acid solution was adjusted to 30°C in a water bath,
When 100 g of acetic anhydride was added, polyimide powder was precipitated about 30 minutes later. When this was post-treated in the same manner as in Example 1, 120 g (yield: 95%) of polyimide powder was obtained, and the properties after molding were excellent as shown in Table 2.

比較例8 実施例3において、1.4−ジオキサンを1,000t
とするほかは実質的に同様な方法で重合を行い、ポリア
ミド酸溶液を得た。しかし、このものに無水酢酸を添加
したところ、全体がゲル化してしまい、粉末を得ること
はできなかった。
Comparative Example 8 In Example 3, 1,000 tons of 1,4-dioxane
Polymerization was carried out in substantially the same manner except that a polyamic acid solution was obtained. However, when acetic anhydride was added to this product, the entire product turned into a gel, and a powder could not be obtained.

表   2 a)ゲルイヒ 実施例4 MPに溶解させたのち、PMDA43.62gを加え、
さらに1時間撹拌を続けて、’/1nhl。
Table 2 a) Geruich Example 4 After dissolving in MP, 43.62 g of PMDA was added,
Continue stirring for an additional 1 hour, then add '/1nhl.

32のポリアミド酸溶液を得た。続いてここに、ピリジ
ン500r、酢酸エチル(溶解度バラン1/2 一ター値:9.1 (cab/cd)    )1.0
50gの混合液を加え、激しく撹拌したところ、約25
分で均一なポリアミド酸溶液が得られた。
A polyamic acid solution of No. 32 was obtained. Next, 500 r of pyridine, ethyl acetate (solubility balance 1/2 ter value: 9.1 (cab/cd)) 1.0
When I added 50g of the mixture and stirred it vigorously, it turned out to be about 25g.
A homogeneous polyamic acid solution was obtained in minutes.

(ポリアミド酸濃度=5.1重量%、NMP/ピリジン
=62/38、酢酸エチル/NMP=57/43 ’I
 、これを水浴で30℃に温調し、無水酢酸40gを加
えたところ、約20分でポリイミドの粉末が析出し、実
施例1と同様に後処理することにより、110g(収率
96%)のポリイミド粉末を得た。このものを成形後、
曲げ試験を行ったところ、強さ14.3 kg f /
 ma 2、弾性率352 kg f / rexr 
2と優れたものであった。
(Polyamic acid concentration = 5.1% by weight, NMP/pyridine = 62/38, ethyl acetate/NMP = 57/43 'I
When this was heated to 30°C in a water bath and 40 g of acetic anhydride was added, polyimide powder was precipitated in about 20 minutes, and by post-processing in the same manner as in Example 1, 110 g (yield 96%) was obtained. Polyimide powder was obtained. After molding this thing,
When a bending test was performed, the strength was 14.3 kg f /
ma 2, elastic modulus 352 kg f/rexr
2, which was excellent.

実施例5 DDE40.05gおよびパラフェニレンジアミン10
.81gをDHAcl、500gに溶解し、続いて3.
3− 、4.4−−ジフェニルスルホンテトラカルボン
酸二無水物107.48gを加えた。
Example 5 40.05 g DDE and 10 paraphenylenediamine
.. Dissolve 81 g in DHACl, 500 g, followed by 3.
107.48 g of 3-,4,4-diphenylsulfonetetracarboxylic dianhydride was added.

1時間撹拌を続けたところ、得られたポリアミド酸の7
inhは1.51であった。ここにイソキノリン500
r、メチルエチルゲトン(溶解度パラメーター値: 9
.3 (c a1/rm2 ) ”2)3.300fの
混合液を加え、激しく撹拌したところ、約20分で均一
なポリアミド酸溶液が得られた。(ポリアミド酸濃度:
2.9重量%、DMAc/イソキノリン=75/25、
メチルエチルゲトン/DMAc=69/31 )。
When stirring was continued for 1 hour, 7 of the obtained polyamic acid
inh was 1.51. Here is isoquinoline 500
r, methyl ethyl getone (solubility parameter value: 9
.. 3 (ca1/rm2) "2) 3. When the mixed solution of 300f was added and stirred vigorously, a uniform polyamic acid solution was obtained in about 20 minutes. (Polyamic acid concentration:
2.9% by weight, DMAc/isoquinoline = 75/25,
Methyl ethyl getone/DMAc = 69/31).

これを水浴で30℃に温調し、無水酢酸230gを加え
たところ、約30分でポリイミドの粉末が析出した。実
施例1と同様な方法で後処理することにより、ポリイミ
ド粉末137g(収率95%)を得た。また、成形後の
曲げ特性は、強さ13. Olqr f / trxr
 2 、弾性率390 kgf/關2と良好であった。
The temperature of this was adjusted to 30°C in a water bath, and 230 g of acetic anhydride was added, and polyimide powder was precipitated in about 30 minutes. By post-processing in the same manner as in Example 1, 137 g (yield: 95%) of polyimide powder was obtained. In addition, the bending properties after molding have a strength of 13. Olqr f/trxr
2, the elastic modulus was good at 390 kgf/2.

比較例9 特開昭61−234号公報に開示されている方法に従い
、次のようにして再沈法ポリイミド粉末を得た。
Comparative Example 9 A reprecipitation polyimide powder was obtained in the following manner according to the method disclosed in JP-A No. 61-234.

すなわち、DDE50.06rをDMAC1j!に溶解
したのち、PMDA54.53srを加え、さらに1時
間撹拌を続けて?inhが2.30のポリアミド酸溶液
を得た。これをアセトン21で希釈したのち、トルエン
101、無水酢酸0゜51ピリジン0.5j!を入れた
沈澱槽中に、エアースプレーガンで噴震した。得られた
粉末を濾過し、アセトンで洗浄したのち、空気中160
℃で5時間乾燥し、67+rのポリイミド粉末を得た(
収率70%)。収率が低いのは噴霧状に再沈する際、飛
散したう壁面に付着したりして、かなり損失するからで
ある。
That is, DDE50.06r is DMAC1j! After dissolving in the solution, add PMDA54.53sr and continue stirring for another hour. A polyamic acid solution with inh of 2.30 was obtained. After diluting this with 21 parts of acetone, 10 parts of toluene, 0.5 parts of acetic anhydride, 0.5 parts of pyridine! An air spray gun was used to erupt into a sedimentation tank containing water. The obtained powder was filtered, washed with acetone, and then dissolved in air at 160 °C.
It was dried at ℃ for 5 hours to obtain 67+r polyimide powder (
yield 70%). The reason for the low yield is that when reprecipitating in the form of a spray, the particles fly off and adhere to the walls of the walls, resulting in considerable losses.

粉末を加圧成形後、特性を測定したところ、引張強さ1
0.0に+rf10n2、M’び9.8%、曲げ性さ1
3.4 ht f / fi2であった。
After pressure molding the powder, we measured its properties and found that the tensile strength was 1.
0.0 + rf10n2, M' 9.8%, bendability 1
It was 3.4 ht f/fi2.

この方法は、成形品の特性は優れているものの、多量の
溶媒を必要とし、収率も低いという欠点があることがわ
かった。また、再沈槽を別比較例10 特公昭3’1l−30060号公報に開示されている方
法に従い、次のようにして熱イミド化を行った。
It has been found that this method has the drawbacks that, although the properties of the molded article are excellent, it requires a large amount of solvent and the yield is low. Further, the reprecipitation tank was subjected to thermal imidization in the following manner according to the method disclosed in Comparative Example 10 Japanese Patent Publication No. 3'11-30060.

すなわち、DDE50.06gをDMAc 11に溶解
したのち、PMDA54.53gを加え、さらに1時間
撹拌を続けて、Ql inhが2.30のポリアミド酸
溶液を得た。これにピリジン60a]1を添加後、油浴
で150℃に加熱し、1時間撹拌した。冷却後、沈澱を
沢過し、アセトンで洗浄したのち、空気中160℃で5
時間乾燥して、90+rのポリイミド粉末を得た。(収
率95%)、この粉末を加圧成形したのち、特性を測定
しようとしたが、手で簡単に折れるようなもろいもので
あったので、測定できなかった。
That is, after dissolving 50.06 g of DDE in DMAc 11, 54.53 g of PMDA was added and stirring was continued for an additional hour to obtain a polyamic acid solution having a Qlinh of 2.30. After adding pyridine 60a]1 to this, the mixture was heated to 150°C in an oil bath and stirred for 1 hour. After cooling, the precipitate was filtered, washed with acetone, and heated in air at 160℃ for 5 minutes.
After drying for an hour, a 90+r polyimide powder was obtained. (Yield: 95%). After press-molding this powder, we tried to measure its properties, but it was so brittle that it could be easily broken by hand, so we could not measure it.

原因を調べるため、X線回折により粉末の結晶化度を調
べたところ、約40%であり、高結晶性であることがわ
かった。
In order to investigate the cause, the crystallinity of the powder was examined by X-ray diffraction, and it was found to be approximately 40%, indicating high crystallinity.

一方、実施例1で得た粉末の結晶化度は、約5%と低か
った。
On the other hand, the crystallinity of the powder obtained in Example 1 was as low as about 5%.

この方法は、イ史用する溶媒量が少なく、操作が簡単で
収率も高いという点では優れているが、生成するポリイ
ミド粉末が高結晶性となってしまうため、成形ができな
いという本質的な問題を有していることがわかった。
Although this method is superior in that it requires a small amount of solvent, is easy to operate, and has a high yield, it has the inherent disadvantage that it cannot be molded because the polyimide powder produced is highly crystalline. It turned out that there was a problem.

〈発明の効果〉 実施例および比較例により明らかなように、本発明によ
るポリアミド酸溶液からは、極めそ簡便な操作により、
成形性に優れたm細なポリイミドの粉末を、収率よく得
ることができる。
<Effects of the Invention> As is clear from the Examples and Comparative Examples, the polyamic acid solution according to the present invention can be used with extremely simple operations.
Fine polyimide powder with excellent moldability can be obtained in good yield.

これはポリアミド酸に対する3種類の溶媒の比率をコン
トロールすることにより、ポリマー−溶媒間の相互作用
力が適性範囲内に調節された結果と考えられる。
This is considered to be the result of controlling the interaction force between the polymer and the solvent within an appropriate range by controlling the ratio of the three types of solvents to the polyamic acid.

こうして得られたポリイミド成形品は、優れた耐熱性、
機械特性、摺動特性などを有しており、電気・電子機器
部品、自動車部品、事務機部品、航空機部品などに有用
である。
The polyimide molded product thus obtained has excellent heat resistance,
It has mechanical properties, sliding properties, etc., and is useful for electrical/electronic equipment parts, automobile parts, business machine parts, aircraft parts, etc.

Claims (3)

【特許請求の範囲】[Claims] (1)A、a、下記一般式( I )で表わされる繰り返
し単位を主要構造単位とするポリアミド酸1〜20重量
%、 B、b、アミド系溶媒、c、3級アミンおよびd、溶解
度パラメーターが9.0〜1 0.0(cal/cm^2)^1^/^2であるポリア
ミド酸の貧溶媒の合計量99〜80重量% からなり、かつ、重量比でb/c=99/1〜10/9
0、d/b=80/20〜50/50の範囲にあること
を特徴とするポリアミド酸溶液。 ▲数式、化学式、表等があります▼( I ) (式中、Arは少なくとも一つの炭素6員環を含む4価
の芳香族残基、Ar^−は2価の芳香族あるいは脂肪族
残基を示す。)
(1) A, a, 1 to 20% by weight of polyamic acid whose main structural unit is a repeating unit represented by the following general formula (I), B, b, amide solvent, c, tertiary amine and d, solubility parameter The total amount of poor solvent for polyamic acid is 99 to 80% by weight, and the weight ratio b/c is 99. /1~10/9
0, d/b=80/20 to 50/50. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) (In the formula, Ar is a tetravalent aromatic residue containing at least one 6-membered carbon ring, and Ar^- is a divalent aromatic or aliphatic residue. )
(2)請求項(1)の溶液中のポリアミド酸と脂肪族酸
無水物が反応して得られた下記一般式(II)で示される
繰り返し単位を主要構造単位とするポリイミドの粉末。 ▲数式、化学式、表等があります▼(II) (式中、ArおよびAr^−は式( I )の場合と同じ
ものを示す。)
(2) A polyimide powder whose main structural unit is a repeating unit represented by the following general formula (II) obtained by reacting the polyamic acid in the solution of claim (1) with an aliphatic acid anhydride. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, Ar and Ar^- indicate the same thing as in formula (I).)
(3)請求項(1)の溶液に脂肪族酸無水物を加えポリ
アミド酸を脱水閉環させることにより下記一般式(II)
で示される繰り返し単位を主要構造単位とするポリイミ
ドの粉末を析出させることを特徴とするポリイミドの粉
末の製造方法。 ▲数式、化学式、表等があります▼(II) (式中、ArおよびAr^−は式( I )の場合と同じ
ものを示す。)
(3) The following general formula (II) is obtained by adding an aliphatic acid anhydride to the solution of claim (1) and dehydrating and ring-closing the polyamic acid.
1. A method for producing polyimide powder, which comprises precipitating polyimide powder having a repeating unit represented by the following as a main structural unit. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, Ar and Ar^- indicate the same thing as in formula (I).)
JP63128646A 1988-05-26 1988-05-26 Polyamic acid solution and method for producing powder of polyimide Expired - Fee Related JP2900367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128646A JP2900367B2 (en) 1988-05-26 1988-05-26 Polyamic acid solution and method for producing powder of polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128646A JP2900367B2 (en) 1988-05-26 1988-05-26 Polyamic acid solution and method for producing powder of polyimide

Publications (2)

Publication Number Publication Date
JPH01299871A true JPH01299871A (en) 1989-12-04
JP2900367B2 JP2900367B2 (en) 1999-06-02

Family

ID=14989963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128646A Expired - Fee Related JP2900367B2 (en) 1988-05-26 1988-05-26 Polyamic acid solution and method for producing powder of polyimide

Country Status (1)

Country Link
JP (1) JP2900367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131442A1 (en) * 2009-05-12 2010-11-18 株式会社カネカ Process for producing polyamic acid solution, and polyimide film
JP2012122065A (en) * 2010-11-18 2012-06-28 Sekisui Chem Co Ltd Method for producing polyamic acid particle, method for producing polyimide particle, polyimide particle and bonding material for electronic component
JP2014142526A (en) * 2013-01-25 2014-08-07 Konica Minolta Inc Manufacturing method for semiconductive polyimide intermediate transfer body
JPWO2019142703A1 (en) * 2018-01-18 2020-11-19 東レ株式会社 Resin compositions for display substrates, resin films for display substrates and laminates containing them, image display devices, organic EL displays, and methods for manufacturing them.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644738B1 (en) * 2021-06-29 2024-03-07 한국화학연구원 Manufacturing method of polyimide powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122921A (en) * 1982-01-08 1983-07-21 Kanegafuchi Chem Ind Co Ltd Production of polyimide
JPS6015426A (en) * 1983-07-08 1985-01-26 Mitsubishi Chem Ind Ltd Chemical ring closure of polyamic acid
JPS6195029A (en) * 1984-10-15 1986-05-13 Mitsui Toatsu Chem Inc Production of polyimide resin powder, bonding method and film-forming method using polyimide resin powder
JPS62253966A (en) * 1986-04-26 1987-11-05 Toshiba Corp Stationary operation of variable speed hydraulic machinery
JPH0196219A (en) * 1987-10-08 1989-04-14 Mitsubishi Petrochem Co Ltd Aromatic polyimide copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122921A (en) * 1982-01-08 1983-07-21 Kanegafuchi Chem Ind Co Ltd Production of polyimide
JPS6015426A (en) * 1983-07-08 1985-01-26 Mitsubishi Chem Ind Ltd Chemical ring closure of polyamic acid
JPS6195029A (en) * 1984-10-15 1986-05-13 Mitsui Toatsu Chem Inc Production of polyimide resin powder, bonding method and film-forming method using polyimide resin powder
JPS62253966A (en) * 1986-04-26 1987-11-05 Toshiba Corp Stationary operation of variable speed hydraulic machinery
JPH0196219A (en) * 1987-10-08 1989-04-14 Mitsubishi Petrochem Co Ltd Aromatic polyimide copolymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131442A1 (en) * 2009-05-12 2010-11-18 株式会社カネカ Process for producing polyamic acid solution, and polyimide film
JP2012122065A (en) * 2010-11-18 2012-06-28 Sekisui Chem Co Ltd Method for producing polyamic acid particle, method for producing polyimide particle, polyimide particle and bonding material for electronic component
JP2014142526A (en) * 2013-01-25 2014-08-07 Konica Minolta Inc Manufacturing method for semiconductive polyimide intermediate transfer body
JPWO2019142703A1 (en) * 2018-01-18 2020-11-19 東レ株式会社 Resin compositions for display substrates, resin films for display substrates and laminates containing them, image display devices, organic EL displays, and methods for manufacturing them.

Also Published As

Publication number Publication date
JP2900367B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP3478977B2 (en) Polyamide acid fine particles and polyimide fine particles, and methods for producing them
JP4461606B2 (en) Polyimide powder manufacturing method, polyimide powder, polyimide powder molded body and manufacturing method thereof
JP2951484B2 (en) Powder and granules of polyimide precursor, mixture thereof and production method thereof
CN109666143B (en) Preparation method of polyamic acid solution
JPH01299871A (en) Polyamic acid solution, polyimide powder and production thereof
JPS62205124A (en) Polyimide
US4360657A (en) Tricyclo[6.4.0.02,7 ]-dodecane-1,8,2,7-tetracarboxylic acid dianhydride and polyimides therefrom
JP2860987B2 (en) Method for producing polyimide powder
JPS61163937A (en) Production of polyimide molding
US5162454A (en) Polyamide-polyimide block copolymers
JPH0413724A (en) Soluble polyimide, it&#39;s production and coating liquid for liquid crystal oriented film
JPH01122A (en) Manufacturing method of polyimide powder
JPH0218420A (en) Production of spherical polyimide powder
JP3507943B2 (en) Thermosetting amic acid microparticles, thermosetting imide microparticles, crosslinked imide microparticles, and methods for producing them
JP2862173B2 (en) Method for producing polyimide powder composition
JP2020164734A (en) Particulate imide oligomer and method for producing the same
JPS61195128A (en) Production of polyamide imide copolymer for molding
US4358582A (en) Novel nonaromatic dianhydride and polyimides from tricyclo [4.2.1.02,5 ] nonane-3,4 dimethyl-3,4,7,8-tetracarboxylic acid dianhydride
JP3386856B2 (en) Method for producing powdery polyimide precursor
JPH01149830A (en) Thermoplastic aromatic polyimide polymer
JPH0350234A (en) Production of polyimide powder
JPH11140185A (en) Wholly aromatic polyimide precursor powder and its production
JPH0496934A (en) Production of maleimide resin having ether group
JPH02279726A (en) Polyamide, polyamide-imide, and polyimide which have non-reactive terminal group
US4362859A (en) Polyimides from bicyclo[4.2.0]octane-7,8-dimethyl-3,4,7,8-tetracarboxylic acid dianhydride (I) and bicyclo [4.2.0]octane-2,5 diphenyl-7,8-dimethyl-3,4,7,8-tetracarboxylic dianhydride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees