JPH01299495A - Operation control of nuclear reactor - Google Patents

Operation control of nuclear reactor

Info

Publication number
JPH01299495A
JPH01299495A JP63129846A JP12984688A JPH01299495A JP H01299495 A JPH01299495 A JP H01299495A JP 63129846 A JP63129846 A JP 63129846A JP 12984688 A JP12984688 A JP 12984688A JP H01299495 A JPH01299495 A JP H01299495A
Authority
JP
Japan
Prior art keywords
control rod
deviation
absorption control
rods
control rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63129846A
Other languages
Japanese (ja)
Other versions
JPH0687079B2 (en
Inventor
Akio Tamura
明男 田村
Hiroyuki Dan
壇 博之
Yoshinobu Takahashi
義信 高橋
Takashi Kanekawa
孝 金川
Ryoji Yoshiki
吉木 良治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Kansai Electric Power Co Inc, Kyushu Electric Power Co Inc, Japan Atomic Power Co Ltd, Shikoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP63129846A priority Critical patent/JPH0687079B2/en
Publication of JPH01299495A publication Critical patent/JPH01299495A/en
Publication of JPH0687079B2 publication Critical patent/JPH0687079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To keep a load following capability with a rather small number of control rods, by providing both low absorption control rods and high absorption control rods and by selecting one of both kinds of the rods according to a received signal of an averaged temperature deviation of a nuclear reactor coolant with a consideration of a deviation signal of an axial output distribution. CONSTITUTION:By this particular method, a low absorption control rod GR is selected by a deviation signal from a standard value of an averaged temperature of a primary coolant, otherwise, a high absorption control rod D is selected according to a deviation DELTAI of an axial output distribution shown as an equation I. In case that a deviation from a standard value of an averaged primary coolant temperature, that is, a temperature deviation DELTAT, is negative, which means a case of a withdrawal demand, the deviation DELTAI of an axial output distribution moves towards a positive side. With this reason, in case that the DELTAI is more negative than a certain value compared to a control target, the high absorption control rod D is selected and otherwise the low absorption control rod GR is selected, alternatively. With this sort of procedure, the reactor can be controlled, neglecting a meaningless movement of control rods and a mutual interfere of both kinds of the control rods.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、例えば加圧水型原子炉において、出力変化を
伴う運転に対し適用される原子炉の運転制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the operation of a nuclear reactor, which is applied to operations involving changes in output, for example, in a pressurized water nuclear reactor.

[従来の技術] 例えば加圧水型原子炉において、負荷の変化に対応した
原子炉の出力変化を伴う運転は、次の3種類の基本モー
ドに分けられ、それらを単独、あるいはそれらを重ね合
わせて運転される。
[Prior art] For example, in a pressurized water reactor, operation that involves changes in reactor output in response to changes in load can be divided into the following three basic modes, and these modes can be operated singly or in combination. be done.

(1)予め、決められた出力変化パターンに基づく運転
モード (2)外部からの要求に応じてランダムに出力を変化さ
せる運転モード (3)周波数調整等のため、外部からの要求、あるいは
負荷の変化に応じ自動的に出力を変化させる運転モード である。
(1) Operation mode based on a predetermined output change pattern (2) Operation mode that randomly changes output according to external requests (3) Frequency adjustment, etc. due to external requests or load changes This is an operation mode that automatically changes output according to changes.

一般に、原子炉の出力変化幅に対する要求は、前記(1
)、(2)、(3)の順で高く、出力変化に対する要求
頻度は前記(3)、(2)、(1)の順で高い。
In general, the requirements for the power variation range of a nuclear reactor are as follows (1)
), (2), and (3), and the frequency of requests for output changes is highest in the order of (3), (2), and (1).

従来は、これらの運転に対し、複数の群を持つ一種類の
制御棒グループの移動と、−次冷却材中のほう素濃度の
手動調整により、反応度調整を行っていたが、この方法
では出力変化率が大きい場合、出力分布、歪を制限値内
にするという観点から出力変化幅の小さいのものに限定
されてしまい、前記(1)の運転モードに対して制限が
加えられる。
Conventionally, reactivity was adjusted for these operations by moving one type of control rod group with multiple groups and manually adjusting the boron concentration in the secondary coolant. When the output change rate is large, the output change width is limited to a small one from the viewpoint of keeping the output distribution and distortion within the limit values, and restrictions are added to the operation mode (1).

そこで、この点を解消するため、出力分布に対する影響
程度の異なる2種類の制御棒グループを用いる方法が提
案されている。
Therefore, in order to solve this problem, a method has been proposed that uses two types of control rod groups that have different degrees of influence on the output distribution.

この具体的な例として、特公昭58−34795号公報
に示すように、出力分布に対する影響の小さい方の制御
棒グループ(以下、弱吸収制御棒と称す)の挿入度をタ
ービン要求出力の関数として一意的に決定するとともに
、出力分布に対する影響の大きい方の制御棒グループ(
以下、強吸収制御棒と称す)は、−次冷却材平均温度の
基準値からの偏差に応じて移動し、かつ軸方向出力分布
偏差に応じて行なわれるほう素の調整による平均温度の
変化を通して軸方向出力分布偏差を所定の範囲に収める
方法(以下、F法と称す)である。
As a specific example of this, as shown in Japanese Patent Publication No. 58-34795, the degree of insertion of the control rod group that has a smaller effect on the power distribution (hereinafter referred to as weak absorption control rods) is determined as a function of the required turbine output. The control rod group (
The strong absorption control rod (hereinafter referred to as a strong absorption control rod) moves according to the deviation of the average temperature of the -order coolant from the reference value, and changes the average temperature by adjusting the boron according to the deviation of the axial power distribution. This is a method (hereinafter referred to as F method) of keeping the axial power distribution deviation within a predetermined range.

またこのF法とは別に、特願昭61−206836号明
細書に示すように、強吸収制御棒を出力変化時や、それ
に伴って生じる一次冷却材平均温度の基準値からの偏差
に応じて移動し、弱吸収制御棒は軸方向出力分布偏差に
応じて移動させ、それによる平均温度偏差を通じて強吸
収制御棒の移動により、軸方向出力分布偏差偏差を所定
の範囲に収め、はう索漠度の調整は、もっばら弱吸収制
御棒の補助として用いる方法(以下、M法)である。
In addition to this F method, as shown in Japanese Patent Application No. 61-206836, strong absorption control rods are used to adjust the control rods to control rods when the output changes or according to the deviation of the average temperature of the primary coolant from the reference value that occurs along with the change in output. The weak absorption control rod is moved according to the axial power distribution deviation, and the strong absorption control rod is moved through the resulting average temperature deviation to keep the axial power distribution deviation within a predetermined range. The adjustment of the intensity is a method (hereinafter referred to as the M method) that is mainly used as an auxiliary for weak absorption control rods.

以上述べたF法とM法では、それぞれ性能に次のような
差がある。一般に、前記(1)〜(3)のごとき運転に
対する性能は、主に次の点で評価される。
The F method and M method described above have the following differences in performance. Generally, the performance for the operations (1) to (3) above is evaluated mainly based on the following points.

(4)負荷パターンに対する任意性すなわち、急激な負
荷変化や予定外のランダムな負荷変化に対する追従性 (5)水処理量 はう索漠度調整に伴う排出水を処理する必要があるが、
プラントの処理水量は、はう索漠度の調整幅が大きいと
多くなる。また、調整幅が同程度であっても、−次冷却
材中のほう索漠度の低下に伴って水処理量は増加する。
(4) Arbitrarity with load patterns, that is, ability to follow sudden load changes and unplanned random load changes. (5) Water treatment amount: Although it is necessary to treat wastewater associated with desert level adjustment,
The amount of water treated by the plant increases as the range of adjustment of the degree of desertification increases. Further, even if the adjustment range is the same, the amount of water treated increases as the degree of desertification in the secondary coolant decreases.

従って、はう索漠度調整への依存度の高い運転方法の場
合、炉心寿命末期において、負荷追従運転が制限される
Therefore, in the case of an operating method that is highly dependent on crawling degree adjustment, load following operation is limited at the end of the core life.

(6)機器への負担 出力変化を伴う種々のパラメータ変動により、各制御機
器の動作回数が増加するが、特に制御棒駆動機構は、取
替えが困難なため、制御棒移動量が過多とならないこと
が必要である。
(6) Burden on equipment The number of operations of each control equipment increases due to various parameter fluctuations accompanied by changes in output, but the control rod drive mechanism in particular is difficult to replace, so the amount of control rod movement must not become excessive. is necessary.

(7)設備コスト 負荷追従運転を行うための必要な設備コストである。(7) Equipment costs This is the equipment cost required to perform load following operation.

[発明が解決しようする課ffiコ ところが、前記(1)〜(3)のように出力変化を含む
原子炉の運転においては、一般に制御棒、はう素等の制
御要素は、燃料の燃焼に伴う、長期的な炉心反応度の調
整の他に次の2つの反応変化を補償する必要がある。
[Issues to be Solved by the Invention] However, in the operation of a nuclear reactor that includes changes in output as described in (1) to (3) above, control elements such as control rods and boron generally do not control the combustion of fuel. In addition to the accompanying long-term adjustment of core reactivity, it is necessary to compensate for the following two reaction changes.

(8)出力変化に伴う減速材と燃料の温度変化によって
生じる反応度変化(以下、出力欠損と称す)。
(8) Changes in reactivity caused by temperature changes in the moderator and fuel accompanying changes in output (hereinafter referred to as output loss).

(9)出力変化によって生じる炉心内のキセノン(以下
、xeと称す)の量の変化による反応度変化(以下、X
e欠損と称す)。
(9) Changes in reactivity (hereinafter referred to as Xe) due to changes in the amount of xenon (hereinafter referred to as
(referred to as e-deficiency).

前記Fの方法では、弱吸収制御棒は実質的には、前記出
力欠損のみを補償するように挿入されるため、いかなる
時点でも急速に全出力復帰ができ、前記(2)の如き、
ランダムな出力変化要求に対しての適応性がある反面前
記Xe欠損の補償は、実質的にはほう索漠度の調整のみ
によっているため、前記(5)で述べた水処理量が多く
なり好ましくない。また、前記(3)の運転を行う場合
、非常に頻繁な出力変化があるが、この方法のよ、うに
弱吸収制御棒位置が、出力の一意的な関数として制御さ
れる場合、前記(3)の運転に伴う出力欠損は、弱吸収
制御棒のみで補償されることとなり、その反応度価値の
小ささにより、制御棒移動量が過多となり、前記(6)
のような問題がある。
In method F, the weak absorption control rod is inserted to substantially compensate only for the output loss, so full output can be quickly restored at any time, and as in (2) above,
While it is adaptable to random output change requests, compensation for the Xe deficiency is essentially only by adjusting the degree of desertification, so the amount of water to be treated as described in (5) increases, which is preferable. do not have. In addition, when performing the operation described in (3) above, there are very frequent changes in output, but when the weak absorption control rod position is controlled as a unique function of output as in this method, ) operation will be compensated for only by the weakly absorbing control rods, and due to their small reactivity value, the control rod movement will be excessive, resulting in the above (6)
There are problems like this.

前記Mの方法では、以上述べたFの方法の問題点は解決
できるが、軸方向出力分布偏差を、弱吸収制御棒の移動
による一次冷却材平均温度の変化を通じて強吸収制御棒
により修正する関係上、両グループの制御棒の相互干渉
を避けるため、弱吸収制御棒の出力分布に与える影響を
前記Fの方法に比べて大幅に小さくする必要があり、必
然的に必要な制御棒の体数が増加し、前記(7)の間居
点が生じる。
Method M can solve the problems of method F described above, but it does not require a relationship in which the axial power distribution deviation is corrected by a strong absorption control rod through a change in the average primary coolant temperature caused by the movement of the weak absorption control rod. First, in order to avoid mutual interference between the control rods of both groups, it is necessary to significantly reduce the influence on the power distribution of the weakly absorbing control rods compared to method F above, which inevitably reduces the number of control rods required. increases, and the gap point in (7) above occurs.

そこで、本発明は比較的少数体の制御棒で要求される負
荷追従能力を確保でき、水処理量を削減できる原子炉の
運転制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a nuclear reactor operation control method that can ensure the required load following ability with a relatively small number of control rods and can reduce the amount of water to be treated.

〔課題を解決するための手段] 本発明は、前記目的を達成するため、原子炉容器の炉心
に挿脱される制御棒として弱吸収制御棒と強吸収制御棒
とをもち、原子炉冷却材循環系に連絡したほう索漠度制
御装置を有する原子炉を運転するに際し、原子炉冷却材
の平均温度偏差信号を受け、軸方向出力分布偏差信号(
ΔI)を加味して前記両制御棒の一方を選択し、炉内反
応度を調節する原子炉の運転制御方法である。
[Means for Solving the Problem] In order to achieve the above object, the present invention has a weak absorption control rod and a strong absorption control rod as control rods inserted into and removed from the core of a reactor vessel, and has a reactor coolant. When operating a nuclear reactor equipped with a thermal desertification control device connected to the circulation system, an average temperature deviation signal of the reactor coolant is received, and an axial power distribution deviation signal (
This is a nuclear reactor operation control method in which one of the two control rods is selected taking into account ΔI) and the in-reactor reactivity is adjusted.

[作用] 前記のように強吸収制御棒と弱吸収制御棒を平均温度の
偏差に応じていずれかを選択して移動させることにより
、比較的少数体の制御棒で要求される負荷追従能力を確
保でき、かつ水処理量を削減できる。
[Function] As described above, by selecting and moving either the strong absorption control rod or the weak absorption control rod according to the deviation of the average temperature, the load following ability required by a relatively small number of control rods can be achieved. can be secured, and the amount of water to be treated can be reduced.

[実施例コ 以下、本発明の実施例について図面を参照して説明する
が、初めに第1図により本発明の運転制御方法の概念に
ついて説明する。−次冷却材平均温度の基準値からの偏
差信号によって弱吸収制御棒GR,あるいは強吸収!制
御棒りが次式で示す軸方向出力分布偏差ΔIに応じて選
択され、がっ駆動される。この選択は、その時点におけ
る軸方向出力分布偏差ΔIの制御目標値からの偏差が、
その制御棒移動が強吸収制御棒りで行なわれた場合に、
温度偏差と同時に修正される場合には、強吸収制御棒り
が選択され、それ以外の場合や目標値からの偏差が、強
吸収制御棒を移動した場合により大きくなる場合には、
軸方向出力分布偏差Δ!への影響の少ない弱吸収制御棒
GRが選択されるように行う。
[Example 7] Examples of the present invention will be described below with reference to the drawings. First, the concept of the operation control method of the present invention will be explained with reference to FIG. - Weak absorption control rod GR or strong absorption depending on the deviation signal of the average coolant temperature from the reference value! The control rod is selected and driven according to the axial power distribution deviation ΔI shown by the following equation. This selection means that the deviation of the axial output distribution deviation ΔI from the control target value at that point is
If the control rod movement is performed by a strongly absorbing control rod,
If the temperature deviation is corrected at the same time, the strong absorption control rod is selected; otherwise, or if the deviation from the target value becomes larger when the strong absorption control rod is moved.
Axial output distribution deviation Δ! This is done so that the weak absorption control rod GR that has less influence on the control rod GR is selected.

ΔI−mP、−P8 PT:炉心上半分の出力の炉心定格出力に対する比(%
) PB:炉心下半分の出力の炉心定格出力に対する比(%
) 次に、第2図により、前記軸方向出力分布偏差ΔIによ
る駆動制御棒選択の概念について説明する。−次冷却材
平均温度の基準値との偏差つまり温度偏差ΔTが負の場
合すなわち引き抜き要求の場合は、強吸収制御棒りを引
抜くと、軸方向出力分布偏差Δ■は正側に移行するため
、第2図(a)に示すごとく、ΔIが制御目標に対しあ
る程度(例えば2%)以上負側となっている場合[第2
図(a)の斜線部]には強吸収制御棒りが選択され、そ
れ以外の場合には弱吸収制御棒GRが選択される。同様
に、温度偏差ΔTが正で、制御棒を挿入する場合には全
く逆であり、第2図(b)のごとくΔIが制御目標に対
し、ある程度(例えば2%)以上正側の偏差を持ってい
る場合[第2図(b)の斜線部]には、強吸収制御棒り
が選択され、かつ挿入され、それ以外の場合には、弱吸
収制御棒GRが選択され、がっ挿入される。
ΔI-mP, -P8 PT: Ratio of the power of the upper half of the core to the core rated power (%
) PB: Ratio of the power of the lower half of the core to the core rated power (%
) Next, the concept of drive control rod selection based on the axial power distribution deviation ΔI will be explained with reference to FIG. - If the deviation of the average temperature of the next coolant from the reference value, that is, the temperature deviation ΔT, is negative, that is, in the case of a withdrawal request, when the strong absorption control rod is withdrawn, the axial power distribution deviation Δ■ shifts to the positive side. Therefore, as shown in Fig. 2(a), if ΔI is on the negative side to a certain extent (for example, 2%) or more with respect to the control target [second
The strong absorption control rod is selected in the shaded area in Figure (a), and the weak absorption control rod GR is selected in other cases. Similarly, when the temperature deviation ΔT is positive and a control rod is inserted, the opposite is true, and as shown in Figure 2 (b), ΔI has a positive deviation of more than a certain degree (for example, 2%) from the control target. If the strong absorption control rod is present [the shaded area in Fig. 2 (b)], the strong absorption control rod is selected and inserted; otherwise, the weak absorption control rod GR is selected and inserted. be done.

このような方法により、制御棒の移動は、その時点での
出力分布から見て最良の方が駆動されることになり、制
御棒の無駄な動きを無視し、かつ2種類の制御棒の相互
干渉を無視して制御できる。また、第2図のごとき選択
指標の場合で、前記(3)の運転に際し、弱吸収制御棒
GRが選択駆動される場合が多く、結果として、弱吸収
制御棒GRの移動量が多くなり、前記(6)の問題が生
じる場合には、第2図中の制御目標に対する制御棒選択
の境界線(図の実線)の位置を変え、例えば設定値を変
更することにより対処できる。
With this method, the movement of the control rods is driven by the best option considering the power distribution at that time, ignoring unnecessary movement of the control rods, and controlling the interaction between the two types of control rods. Can be controlled by ignoring interference. In addition, in the case of the selection index as shown in FIG. 2, the weak absorption control rod GR is often selectively driven during the operation in (3) above, and as a result, the amount of movement of the weak absorption control rod GR increases. If the above problem (6) occurs, it can be dealt with by changing the position of the control rod selection boundary line (solid line in the figure) with respect to the control target in FIG. 2, for example, by changing the set value.

すなわち、第2図(a)に対しては、境界線をΔI正側
(図の右側)に、第2図(b)に対してはΔ■負側(図
の左側)へずらしていくに従い、弱吸収制御棒移動量は
減少し、強吸収制御棒移動量は増加する。
In other words, as the boundary line is shifted to the positive side of ΔI (to the right side of the diagram) for Figure 2 (a), and to the negative side of Δ■ (to the left side of the diagram) for Figure 2 (b), , the weak absorption control rod movement decreases and the strong absorption control rod movement increases.

なお、この場合、その制御棒価値の差により強吸収制御
棒移動量の増加分は、弱吸収制御棒移動量の減少分より
も少なくなる。第3図は第2図において、弱吸収制御棒
移動量を少なくするために、境界線をずらした場合で、
第3図(a)は温度偏差が負すなわち引き抜き要求の場
合であり、第3図(b)は温度偏差が正すなわち挿入要
求の場合である。
In this case, due to the difference in control rod values, the amount of increase in the amount of movement of the strong absorption control rod is smaller than the amount of decrease in the amount of movement of the weak absorption control rod. Figure 3 shows a case where the boundary lines in Figure 2 have been shifted to reduce the amount of movement of the weak absorption control rods.
FIG. 3(a) shows a case where the temperature deviation is negative, that is, a withdrawal request is made, and FIG. 3(b) shows a case where the temperature deviation is positive, that is, an insertion request.

次に、本発明の実施例について説明するが、ここで制御
の対象としているのは、4ループの加圧水型原子炉に対
するものであり、弱吸収制御棒としてはその中性子吸収
能力が上下軸方向で下半分が小さく、上半分が大きく設
定されたものを4本を1群とし、2群構成で用いている
Next, an embodiment of the present invention will be described, but the control target here is a four-loop pressurized water reactor, and as a weak absorption control rod, its neutron absorption capacity is in the vertical axis direction. The lower half is small and the upper half is large, and each group consists of four lenses, and is used in a two-group configuration.

第4図は弱吸収制御棒移動範囲の例を示すもので、横軸
は相対出力を示し、縦軸は弱吸収制御棒挿入度を示して
いる。図の実線の引き抜き制限と破線の挿入限界とで囲
まれる範囲内であれば、弱吸収制御棒は、−次冷却材平
均温度偏差に応じて、軸方向出力分布偏差の値により、
弱吸収制御棒が選択される場合に駆動され、出力欠損の
みならずXe欠損の一部又は全部を補償することにより
、水処理量の削減が図かれる。即ち、弱吸収制御棒の典
型的な動きは次の通りである。
FIG. 4 shows an example of the weak absorption control rod movement range, where the horizontal axis shows the relative output and the vertical axis shows the degree of insertion of the weak absorption control rod. Within the range surrounded by the withdrawal limit shown by the solid line and the insertion limit shown by the broken line in the figure, the weak absorption control rod will be able to:
It is activated when a weak absorption control rod is selected, and reduces the amount of water to be treated by compensating for part or all of the Xe deficiency as well as the output loss. That is, the typical movement of a weak absorption control rod is as follows.

(a)出力低下時、平均温度の正側偏差の増大により順
次挿入−(b)出力低下完了後、Xeの蓄積に伴う負側
の温度偏差により引抜き−(c)引抜き制限まで引き抜
かれた場合は停止→(d)部分出力状態が長い場合、X
cの崩壊に伴う正側の温度偏差により挿入−(e)出力
上昇時、負側の温度偏差により引抜き。
(a) When the output decreases, the average temperature is sequentially inserted due to an increase in the positive deviation of the temperature - (b) After the output decrease is completed, it is withdrawn due to the negative temperature deviation due to the accumulation of Xe - (c) When it is pulled out to the withdrawal limit is stopped → (d) If the partial output state is long,
Inserted due to the temperature deviation on the positive side due to the collapse of c - (e) Withdrawal due to the temperature deviation on the negative side when the output increases.

一般に、第4図に示す挿入限界は、停止余裕の確保等の
炉心の安全性上の観点から必要に応じて設定すればよく
、引き抜き制限は運用上そのプラントに要求される部分
出力状態からの急速出力復帰能力によって決定される。
In general, the insertion limit shown in Figure 4 can be set as necessary from the viewpoint of core safety, such as securing shutdown margin, and the withdrawal limit can be set based on the partial power state required for the plant for operation. Determined by rapid output recovery ability.

すなわち、第4図の引き抜き制限ラインを図の下方に設
定すれば、急速出力復帰能力が向上し、上方に設定すれ
ば、はう索漠度に対する要求量すなわち水処理量が減少
する。
That is, if the withdrawal limit line in FIG. 4 is set at the lower part of the figure, the rapid output return ability will be improved, and if it is set at the upper part, the amount required for the crawling degree, that is, the amount of water to be treated will be reduced.

第5図は第4図に示した弱吸収制御棒移動範囲を用いた
前記(1)の運転に対する模擬計算結果を示すものであ
る。図中Gl、G2はそれぞれ弱吸収制御棒の第1群、
第2群であり、50%出力で第2群G2を全引抜きまで
許されており、またDは強吸収制御棒である。この図か
ら明らかなように、全出力から1時間で50%出力まで
出力低下し、50%出力を8時間保持した後1時間で全
出力に復帰している。そして、弱吸収制御棒は前記のよ
うに移動し、かつΔIの変動もわずかな範囲に制御され
ている。
FIG. 5 shows simulation calculation results for the operation (1) above using the weak absorption control rod movement range shown in FIG. 4. In the figure, Gl and G2 are the first group of weak absorption control rods, respectively.
It is the second group, and the second group G2 is allowed to be fully withdrawn at 50% output, and D is a strong absorption control rod. As is clear from this figure, the output decreased from full output to 50% output in 1 hour, and after maintaining 50% output for 8 hours, returned to full output in 1 hour. The weak absorption control rod moves as described above, and the variation in ΔI is controlled within a small range.

第6図は、はう索漠度変化に対する効果を明らかにする
ため、弱吸収制御棒挿入度を出力の関数とした場合に対
する計算結果を示している。
FIG. 6 shows the calculation results for the case where the insertion degree of the weak absorption control rod is made a function of the output in order to clarify the effect on the change in the degree of crawling.

第5図に示した本発明による運転制御方法によりほう索
漠度変化幅、すなわち水処理量が大幅に削減されている
ことがわかる。
It can be seen that by the operation control method according to the present invention shown in FIG. 5, the range of variation in the degree of desertification, that is, the amount of water to be treated is significantly reduced.

第7図は本発明による制御系の基本構成を示すもので、
制御棒駆動要求信号■、選択のための信号ΔI■による
制御棒駆動系とともに、ΔI偏差によるほう索漠度変化
要求■、制御棒位置がその限界に達した際のほう索漠度
変化要求■によるほう索漠度制御系により制御する。
FIG. 7 shows the basic configuration of the control system according to the present invention.
Control rod drive request signal ■, control rod drive system based on selection signal ΔI■, request for change in heading vagueness due to ΔI deviation■, request for change in heading vagueness when the control rod position reaches its limit■ It is controlled by the distance control system.

以上述べた本発明による実施例によれば、弱吸収制御棒
GRが一定出力の下でも自由に移動し得る範囲を設定し
、この範囲内で一次冷却材平均温度の基準値からの温度
偏差ΔTに応じて移動させることにより、弱吸収制御棒
GRによって出力欠損のみならず、Xe欠損の少なくと
も一部を補償できる。また、強吸収制御棒りと弱吸収制
御棒GRを平均温度の偏差に応じてどちらかを選択して
移動させる方法をとり、かつその選択の指標として軸方
向出力分布の制御を良好なものとし、かつ片方の制御棒
移動量のみが増大しないように軸方向出力分布偏差信号
を用いていることから、比較的少数体の制御棒で要求さ
れる負荷追従能力を確保でき、水処理量を削減できる。
According to the embodiment of the present invention described above, a range in which the weak absorption control rod GR can freely move even under a constant output is set, and within this range, the temperature deviation ΔT of the average primary coolant temperature from the reference value By moving the weak absorption control rod GR in accordance with the above, it is possible to compensate for not only the output loss but also at least a portion of the Xe loss. In addition, a method is adopted in which either the strong absorption control rod or the weak absorption control rod GR is selected and moved according to the deviation of the average temperature, and good control of the axial power distribution is used as an indicator for the selection. , and uses an axial power distribution deviation signal to prevent the travel amount of only one control rod from increasing, so it is possible to secure the required load following ability with a relatively small number of control rods, and reduce the amount of water treated. can.

[発明の効果コ 以上述べた本発明によれば、比較的少数体の制御棒で要
求される負荷追従能力を確保でき、水処理量を削減でき
る原子炉の運転制御方法を提供できる。
[Effects of the Invention] According to the present invention described above, it is possible to provide a nuclear reactor operation control method that can ensure the required load following ability with a relatively small number of control rods and can reduce the amount of water to be treated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原子炉の運転制御方法の概念を説明す
るための図、第2図は第1図において軸方向出力分布偏
差ΔIによる制御棒選択の概念を説明するための図、第
3図は第2図における弱吸収制御棒移動量を少なくする
方法を説明するための図、第4図は本発明による弱吸収
制御棒移動範囲の設定例を示す図、第5図は本発明によ
る運転制御方法を用いた場合の負荷値追従運転時のパラ
メータ変化を示す図、第6図は従来の運転方法による負
荷追従運転時のパラメータ変化を示す図、第7図は本発
明における制御系の基本構成を示す図である。 GR・・・弱吸収制御棒、D・・・強吸収制御棒、Δ■
・・・軸方向出力分布偏差、Δ■・・・−次冷却材平均
温度偏差。 出願人代理人  弁理士 鈴江武彦 ■ 第1図 制御目標 第二 制御目標 (a) 第 制御目標 (b) 2図 3図 0.5    0.6     0.7     0R
Oj      t。 相対出力 第4図
FIG. 1 is a diagram for explaining the concept of the nuclear reactor operation control method of the present invention, FIG. 2 is a diagram for explaining the concept of control rod selection based on the axial power distribution deviation ΔI in FIG. 3 is a diagram for explaining a method for reducing the amount of movement of the weak absorption control rod in FIG. 2, FIG. 4 is a diagram showing an example of setting the movement range of the weak absorption control rod according to the present invention, and FIG. Figure 6 is a diagram showing parameter changes during load value follow-up operation when using the operation control method according to the present invention, Figure 6 is a diagram showing parameter changes during load follow-up operation using the conventional operation method, and Figure 7 is a diagram showing the control system according to the present invention. It is a figure showing the basic composition of. GR...Weak absorption control rod, D...Strong absorption control rod, Δ■
...Axial power distribution deviation, Δ■...-Next coolant average temperature deviation. Applicant's agent Patent attorney Takehiko Suzue ■ Figure 1 Control target Second control target (a) Second control target (b) Figure 2 Figure 3 0.5 0.6 0.7 0R
Ojt. Relative output figure 4

Claims (1)

【特許請求の範囲】[Claims] 原子炉容器の炉心に挿脱される制御棒として弱吸収制御
棒と強吸収制御棒とをもち、原子炉冷却材循環系に連絡
したほう素濃度制御装置を有する原子炉を運転するに際
し、原子炉冷却材の平均温度偏差信号を受け、軸方向出
力分布偏差信号(ΔI)を加味して前記両制御棒の一方
を選択し、炉内反応度を調節する原子炉の運転制御方法
When operating a nuclear reactor that has weak absorption control rods and strong absorption control rods as control rods that are inserted into and removed from the core of the reactor vessel, and has a boron concentration control device connected to the reactor coolant circulation system, it is necessary to A nuclear reactor operation control method that receives an average temperature deviation signal of a reactor coolant, selects one of the control rods in consideration of an axial power distribution deviation signal (ΔI), and adjusts the reactivity in the reactor.
JP63129846A 1988-05-27 1988-05-27 Reactor operation control method Expired - Fee Related JPH0687079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129846A JPH0687079B2 (en) 1988-05-27 1988-05-27 Reactor operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129846A JPH0687079B2 (en) 1988-05-27 1988-05-27 Reactor operation control method

Publications (2)

Publication Number Publication Date
JPH01299495A true JPH01299495A (en) 1989-12-04
JPH0687079B2 JPH0687079B2 (en) 1994-11-02

Family

ID=15019685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129846A Expired - Fee Related JPH0687079B2 (en) 1988-05-27 1988-05-27 Reactor operation control method

Country Status (1)

Country Link
JP (1) JPH0687079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534431A (en) * 2011-10-24 2014-12-18 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Automatic control method of axial output distribution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038076U (en) * 1996-11-21 1997-06-06 育子 工藤 Car side mirror
KR101642083B1 (en) * 2015-01-05 2016-07-22 한국수력원자력 주식회사 Monitoring method for axial zone flux tilt of heavy water reactor and apparatus using the monitoring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534431A (en) * 2011-10-24 2014-12-18 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Automatic control method of axial output distribution

Also Published As

Publication number Publication date
JPH0687079B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JP2915200B2 (en) Fuel loading method and reactor core
US5158738A (en) Method of controlling a pressurized water nuclear reactor
US4470949A (en) Method of control of a nuclear reactor by movement within the core of this reactor, of groups of control rods
US4240874A (en) Process for controlling the reactivity effects due to the power variations in PWR nuclear reactors
JPS5829878B2 (en) fuel assembly
JPS61193094A (en) Controller for nuclear reactor
US4108720A (en) Control system for boiling-water reactor
KR930005580B1 (en) Anticipatory control of xenon in a pressurized water reactor
JPH0212099A (en) Method of determining and calculating output return capacity for pressurized water type nuclear reactor
JPH01299495A (en) Operation control of nuclear reactor
KR910000920B1 (en) Method of automatically controlling soluble boron content incoolant of pwr type reactor
JPS6146799B2 (en)
EP0540951B1 (en) Method and apparatus for controlling a nuclear reactor to minimize boron concentration adjustment during load follow operation
GB1075361A (en) Improvements in and relating to nuclear reactors
US4248667A (en) Method of operating nuclear reactors
CA1044383A (en) Core control system for nuclear reactors
US4713211A (en) High temperature pebble bed reactor and process for shut-down
JP2988731B2 (en) Reactor fuel assembly
JPS6228437B2 (en)
US4386048A (en) Variable overlap control
RU2102797C1 (en) Method for control of power emission of nuclear reactor
JP2960457B2 (en) Reactor power control method and its control device
JP2753065B2 (en) Core control method for fast breeder reactor
JPS6032427B2 (en) System operation allocation method
JP3085715B2 (en) Reactor operation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees