JPH01299462A - Gene detector - Google Patents

Gene detector

Info

Publication number
JPH01299462A
JPH01299462A JP63128392A JP12839288A JPH01299462A JP H01299462 A JPH01299462 A JP H01299462A JP 63128392 A JP63128392 A JP 63128392A JP 12839288 A JP12839288 A JP 12839288A JP H01299462 A JPH01299462 A JP H01299462A
Authority
JP
Japan
Prior art keywords
gel
dna
gene
detection device
dna probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63128392A
Other languages
Japanese (ja)
Other versions
JP2702965B2 (en
Inventor
Hideki Kanbara
秀記 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63128392A priority Critical patent/JP2702965B2/en
Priority to CN 89104603 priority patent/CN1043432C/en
Priority to DE19893917436 priority patent/DE3917436C2/en
Publication of JPH01299462A publication Critical patent/JPH01299462A/en
Application granted granted Critical
Publication of JP2702965B2 publication Critical patent/JP2702965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means

Abstract

PURPOSE:To perform quantitative analysis by simple handling, by marking DNA probes with fluorescent light, hybridizing the probes with objective genes, thereafter separating unbonded probes with gel, and measuring the bonded DNA probes optically. CONSTITUTION:Cells 2 which are fixed to a holding plate 1 are filled with gel 3. Specimen is injected on the upper part of each cell. The cells 2 are immersed in upper and lower buffer liquids 4. When a voltage is applied across electrodes 5 and 5', the DNA specimen moves downward. The single body of the DNA probe flows into the lower buffer liquid 4. Meanwhile, the DNA which is marked with the fluorescent light and hybridized with the objective gene is hardly moved. Therefore, only the DNA probe which is not hybridized is extracted. Light which is emitted from a light source 6 is introduced from the upper part of each cell 2 and projected on the tube shaped gel. The fluorescent light which is emitted from the hybridized DNA probe in the gel is inputted into a photodetector 9 through a lens system 7. The output from the photodetector 9 is inputted into a detector circuit and a data processing part 10. Thus the quantitative analysis data are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はDNAあるいはRNAなどの遺伝子検出装置に
係り、特に定量性よく迅速な検出が可能な蛍光プローブ
を用いた遺伝子検出装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for detecting genes such as DNA or RNA, and particularly to a device for detecting genes using fluorescent probes capable of rapid detection with good quantitative properties. .

〔従来の技術〕[Conventional technology]

遺伝子病などの検査には病因となる遺伝子に相補的なり
NAを合成し、DNAプローブとして用いている。被検
体遺伝子をセルロースあるいはすイロンフィルターに固
定し、放射性amあるいは色素標識されたDNAプロー
ブをふりかけてフィルター上のDNAとハイブリダイス
(結合)させる、フィルター上の遺伝子の固定された所
に放射性元素あるいは色素標識されたDNAが選択的に
捕獲されるのでこれをオートラジオグラフィーあるいは
目視により検出して、目的とする病因遺伝子が存在する
か判断する。この様な従来技術については、ぶんせき、
1986.462頁〜468頁に記載がある。
For testing for genetic diseases, etc., DNA complementary to the gene causing the disease is synthesized and used as a DNA probe. The test gene is immobilized on a cellulose or Suilon filter, and a radioactive am or dye-labeled DNA probe is sprinkled on it to hybridize (bond) with the DNA on the filter. Since the dye-labeled DNA is selectively captured, it is detected by autoradiography or visual inspection to determine whether the target disease-causing gene is present. Regarding such conventional technology, please refer to
1986, pages 462 to 468.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は手間と時間がかかる上、定量性にも問題
があった。
The above-mentioned conventional techniques require a lot of effort and time, and also have problems in quantitative performance.

本発明の目的はこれら問題点を克服し、取扱いが簡単で
定量性のある手法を提供するものである。
The purpose of the present invention is to overcome these problems and provide a method that is easy to handle and has quantitative properties.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的はDNAプローブを蛍光標識し、目的遺伝子と
ハイブリダイズさせた後、ゲルを用いて目的遺伝子と結
合したDNAプローブと結合してないプローブを分離し
、結合したDNAプローブを光学的に計測することによ
り達成される。
The above purpose is to fluorescently label a DNA probe, hybridize it with the target gene, use a gel to separate the DNA probe bound to the target gene from the unbound probe, and optically measure the bound DNA probe. This is achieved by

〔作用〕[Effect]

蛍光標識プローブを用いることによりラジオアイソトー
プの使用が不用となり、また、ゲル中に残存している目
的遺伝子に付着したDNAプローブからの蛍光を検出す
るのでフィルターに転写するなどの手間が省け、操作能
率が上がる。
By using a fluorescently labeled probe, there is no need to use radioisotopes, and since the fluorescence from the DNA probe attached to the target gene remaining in the gel is detected, the hassle of transferring it to a filter is eliminated, increasing operational efficiency. goes up.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は試料分離セル2およびセル保持板1を上部から
見たもので、試料セル2が一列に並んでいる。第2図は
試料を泳動分離する装置の構成の1例の断面図である。
FIG. 1 shows the sample separation cell 2 and cell holding plate 1 viewed from above, and the sample cells 2 are lined up in a row. FIG. 2 is a sectional view of an example of the configuration of an apparatus for electrophoretically separating a sample.

保持板1に固定されたセル2の中にはゲル3が充填され
ている。試料はゲル3の上部に注入される。セル2は上
下のバッファー液4に浸る事になる。電極5と5′の間
に電圧(通常50 V / cxm程度)をかけるとD
NA試料は上方から下方へ移動する。DNAの移動速度
は塩基長N、泳動電界E、および温度Tにより異なる。
A gel 3 is filled in a cell 2 fixed to a holding plate 1. The sample is injected onto the top of gel 3. The cell 2 will be immersed in the upper and lower buffer solutions 4. When a voltage (usually around 50 V/cxm) is applied between electrodes 5 and 5', D
The NA sample moves from top to bottom. The migration speed of DNA varies depending on the base length N, the electrophoretic field E, and the temperature T.

第4図は種々長さの一本鎖DNAが25am泳動するの
に要する時間を示したものである。直線17゜18.1
9はそれぞれポリアクリルアミドゲル濃度が2%、4%
および6%に対応している。 DNAプローブの塩基長
は20程度であり目的DNAの塩基長は1000以上で
ある。短かいものでも300〜400程度である。そこ
で、代表例として、目的遺伝予断片長が1000の場合
を考える。
FIG. 4 shows the time required for single-stranded DNA of various lengths to migrate at 25 am. Straight line 17°18.1
9 has a polyacrylamide gel concentration of 2% and 4%, respectively.
and 6%. The length of the DNA probe is about 20 bases, and the length of the target DNA is 1000 or more bases. Even short ones are about 300 to 400. Therefore, as a representative example, consider a case where the target genetic predictor length is 1000.

実施例ではセル中のゲル部分の長さを2511IIlと
し。
In the example, the length of the gel portion in the cell is 2511IIl.

ポリアクリルアミドゲルの濃度を4%とした。検査する
遺伝子にDNAプローブをふりかけた試料をゲル上部か
ら注入し、泳動を始めるとDNAプローブ単体は約2分
後には下部バッファー槽中に流出してくる。流出の確認
はプローブからの蛍光を検出することで行なうことがで
きる。一方、目的遺伝子とハイブリダイズしたDNAは
30分経過してようやくゲル部を通り抜ける。そこで泳
動電界を5分程度かけてハイブリダイズしてないDNA
プローブだけを抜き取り、セル3を保持板につけたまま
検出部に移動する。検出部の構成例を第3図に示す。レ
ーザーあるいはランプなどの光源6から出た光11はセ
ル2に上方から入りチューブ状のゲルを照射する。ゲル
中にハイブリダイズしたDNAプローブがある時には蛍
光20が観測される。蛍光20はレンズ7で収光されフ
ィルター8を通過して受光素子9に入り検出器10で検
出される。直線上に配置されたセル2は自動送り機構に
より順次計測部に送られ測定される。
The concentration of polyacrylamide gel was 4%. A sample of the gene to be tested sprinkled with a DNA probe is injected from the top of the gel, and when electrophoresis begins, the DNA probe alone flows out into the lower buffer tank after about 2 minutes. Outflow can be confirmed by detecting fluorescence from the probe. On the other hand, the DNA hybridized with the target gene passes through the gel part only after 30 minutes have passed. Therefore, the electrophoresis electric field is applied for about 5 minutes to remove unhybridized DNA.
Only the probe is removed, and the cell 3 is moved to the detection section with the cell 3 attached to the holding plate. An example of the configuration of the detection section is shown in FIG. Light 11 emitted from a light source 6 such as a laser or a lamp enters the cell 2 from above and irradiates the tubular gel. Fluorescence 20 is observed when there is a hybridized DNA probe in the gel. Fluorescent light 20 is collected by a lens 7, passes through a filter 8, enters a light receiving element 9, and is detected by a detector 10. The cells 2 arranged on a straight line are sequentially sent to the measuring section by an automatic feeding mechanism and measured.

もちろん、セルを移動する代わりに光源と検出器を移動
させる事もできる。
Of course, instead of moving the cell, the light source and detector can also be moved.

上記実施例では試料毎に異なるセルを用いたが、板状ゲ
ルを用いることもできる。第5図はその例である。ゲル
の溝の中に試料を注入し、板状ゲル3中に複数のセル1
2をつくり、前の例と同様にして遊離しているDNAプ
ローブを抜き取り、光11を照射して蛍光を測定する。
Although different cells were used for each sample in the above embodiments, plate-shaped gels may also be used. FIG. 5 is an example. A sample is injected into the groove of the gel, and a plurality of cells 1 are injected into the gel plate 3.
2, extract the free DNA probe in the same manner as in the previous example, irradiate it with light 11, and measure the fluorescence.

この板状ゲル3に横方向からレーザ11を照射した例を
第6図に示す。この例ではすべてのセルを同時に照射し
走査することで高感度ラインセンサー15により複数個
のセルからの情報を同時に検出することができる。更に
多量の試料を処理する場合には平面上に分布した第7図
に示したセル付プレートを用いる事もできる。この場合
の検出は1つのセル毎に行なう、1つのライン毎に行な
う、あるいは光を全面照射して二次元検品器を用いて行
なうなどが考えられる。
FIG. 6 shows an example in which the plate-shaped gel 3 is irradiated with the laser 11 from the lateral direction. In this example, by irradiating and scanning all cells simultaneously, the highly sensitive line sensor 15 can detect information from a plurality of cells simultaneously. When processing a larger amount of samples, a plate with cells distributed on a plane as shown in FIG. 7 can also be used. In this case, detection may be performed for each cell, for each line, or by irradiating the entire surface with light and using a two-dimensional inspection device.

これまでの例では分離と計測を別に行なっているが、装
置構成を1つにまとめることもできる。
In the examples so far, separation and measurement are performed separately, but the device configuration can also be combined into one.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ラジオアイソトープ標識を使用せず、
フィルターに目的DNAを固定化する手間も必要としな
いで短時間で目的遺伝子の検出ができる。更に蛍光強度
を定量的に計測できる利点がある。
According to the present invention, without using a radioisotope label,
The target gene can be detected in a short time without the need to immobilize the target DNA on a filter. Another advantage is that the fluorescence intensity can be measured quantitatively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のセル部の平面図、第2図は
本発明の一実施例の泳動分離を行なう装置の断面図、第
3図は本発明の一実施例の蛍光計測を行なう装置を示す
構成図、第4図はDNAの塩基の長さと泳動時間の関係
を示したグラフ、第5図は板状ゲルを用いて各セル毎に
光照射する本発明の一実施例の構成図、第6図は光を側
面から入射させて全てのセルを同時に照射し計測する本
発明の一実施例の構成図、第7図は二次元に分布したセ
ルの構成概略図である。 1・・・セル保持板、2・・・試料セル、3・・・ゲル
、4・・・バッファー液、5,5′・・・電極、6・・
・光源、7・・・レンズ、8・・・フィルター、9・・
・光検出器、1o・・・検出回路およびデータ処理部、
11・・・照射光、12・・・試料セル、13・・・ゲ
ル保持器、14・・・フィルター、レンズ系、15・・
・ラインセンサーあるいは二次元センサー、16・・・
データ処理機、17・・・叉立シ 乎4図 塩り最 第 6 口 第 7 図
FIG. 1 is a plan view of a cell section according to an embodiment of the present invention, FIG. 2 is a sectional view of an apparatus for electrophoretic separation according to an embodiment of the present invention, and FIG. 3 is a fluorescence measurement according to an embodiment of the present invention. Fig. 4 is a graph showing the relationship between the length of DNA bases and migration time, and Fig. 5 is an embodiment of the present invention in which each cell is irradiated with light using a plate-shaped gel. Fig. 6 is a block diagram of an embodiment of the present invention in which light is incident from the side and all cells are simultaneously irradiated and measured, and Fig. 7 is a schematic diagram of the structure of two-dimensionally distributed cells. . DESCRIPTION OF SYMBOLS 1... Cell holding plate, 2... Sample cell, 3... Gel, 4... Buffer solution, 5,5'... Electrode, 6...
・Light source, 7... Lens, 8... Filter, 9...
・Photodetector, 1o...detection circuit and data processing section,
DESCRIPTION OF SYMBOLS 11... Irradiation light, 12... Sample cell, 13... Gel holder, 14... Filter, lens system, 15...
・Line sensor or two-dimensional sensor, 16...
Data processing machine, 17... Figure 4 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、光学的手法により特定遺伝子を検出する装置におい
て、遊離したDNAプローブと被験体遺伝子にハイブリ
ダイズしたDNAプローブとをゲルを用いて分離し、前
者をバッファー液中に流出させ、後者をゲル中に保持し
た状態とし、後者あるいは前者を検出することを特徴と
する遺伝子検出装置。 2、請求項1記載の装置において、分離用ゲルを短かい
筒状物中に保持した事を特徴とする遺伝子検出装置。 3、請求項1記載の装置において、分離用ゲルを棒状ゲ
ルで構成し、そのゲルの上部に試料注入用の複数個の井
戸を設けた事を特徴とする遺伝子検出装置。 4、請求項1記載の装置において、分離用ゲルを平板型
ゲルで構成し、試料注入井戸を二次元的に分布させた事
を特徴とする遺伝子検出装置。 5、請求項1〜4項記載のうちいずれかの装置において
、遺伝子を保持したゲル部分あるいは分離セルを光照射
部に順次送る機構を有する事を特徴とする遺伝子検出装
置。 6、請求項1および3〜4項記載のうちいずれかの装置
において、縦に配列した複数の遺伝子保持部をレーザー
で同時照射し、横方向に順次ずらしていく機能を持つこ
とを特徴とする遺伝子検出装置。
[Claims] 1. In an apparatus for detecting a specific gene by an optical method, a free DNA probe and a DNA probe hybridized to a subject gene are separated using a gel, and the former is drained into a buffer solution. A gene detection device characterized in that the latter is retained in a gel and the latter or the former is detected. 2. The gene detection device according to claim 1, wherein the separation gel is held in a short cylindrical member. 3. The gene detection device according to claim 1, wherein the separation gel is constituted by a rod-shaped gel, and a plurality of wells for sample injection are provided above the gel. 4. The gene detection device according to claim 1, wherein the separation gel is composed of a flat gel, and the sample injection wells are distributed two-dimensionally. 5. A gene detection device according to any one of claims 1 to 4, characterized in that it has a mechanism for sequentially sending gel portions or separated cells holding genes to a light irradiation section. 6. The device according to any one of claims 1 and 3 to 4, characterized by having the function of simultaneously irradiating a plurality of gene holding regions arranged vertically with a laser and sequentially shifting them in the horizontal direction. Gene detection device.
JP63128392A 1988-05-27 1988-05-27 Gene detection apparatus and gene detection method Expired - Fee Related JP2702965B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63128392A JP2702965B2 (en) 1988-05-27 1988-05-27 Gene detection apparatus and gene detection method
CN 89104603 CN1043432C (en) 1988-05-27 1989-05-27 Gene detecting method and apparatus therefor
DE19893917436 DE3917436C2 (en) 1988-05-27 1989-05-29 Method for gene detection and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128392A JP2702965B2 (en) 1988-05-27 1988-05-27 Gene detection apparatus and gene detection method

Publications (2)

Publication Number Publication Date
JPH01299462A true JPH01299462A (en) 1989-12-04
JP2702965B2 JP2702965B2 (en) 1998-01-26

Family

ID=14983674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128392A Expired - Fee Related JP2702965B2 (en) 1988-05-27 1988-05-27 Gene detection apparatus and gene detection method

Country Status (3)

Country Link
JP (1) JP2702965B2 (en)
CN (1) CN1043432C (en)
DE (1) DE3917436C2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062018C (en) * 1992-04-14 2001-02-14 复旦大学 Detecting technique for human haemoglobin (globin) a* gene and gene a*
US5482832A (en) * 1992-07-08 1996-01-09 Akzo Nobel N.V. Hybridization assays using enzyme-linked probes
EP0582256A3 (en) * 1992-08-06 1997-09-17 Hitachi Ltd Polynucleotide detecting method and apparatus
JPH09149799A (en) * 1995-11-30 1997-06-10 Hitachi Ltd Analysis or detection of nucleic acid and analyser or inspection device of nucleic acid
NL1010012C2 (en) * 1998-09-04 2000-03-07 Alexander Adrianus Moen Method for detecting nucleotide sequences and / or nucleotide binding proteins.
CN1415761A (en) * 2002-11-29 2003-05-07 东南大学 Detection method of DNA methylation
CN100420943C (en) * 2005-06-23 2008-09-24 李卫 Method for detecting DNA intra-molecularly hybridization with known point mutation - polyacrylamide gel electrophoresis
CN100381579C (en) * 2005-08-17 2008-04-16 东南大学 Nonspecific bonding probe removal method through electrophoresis in biological chip hybridization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3642939A1 (en) * 1986-06-03 1987-12-10 Europ Lab Molekularbiolog METHOD FOR DNA MARKING

Also Published As

Publication number Publication date
CN1043432C (en) 1999-05-19
DE3917436A1 (en) 1989-12-07
CN1038309A (en) 1989-12-27
JP2702965B2 (en) 1998-01-26
DE3917436C2 (en) 1995-12-07

Similar Documents

Publication Publication Date Title
JP3467995B2 (en) Capillary electrophoresis device
US6017765A (en) Fluorescence detection capillary array electrophoresis analyzer
US6660147B1 (en) High density electrophoresis device and method
JP2853745B2 (en) Light detection electrophoresis device
CA2128317A1 (en) Differential separation assay
EP0628164A1 (en) Capillary array confocal fluorescence scanner and method
JPH11505015A (en) Multi-capillary fluorescence detection system
JP2000227415A (en) Very-large-number-of-capillary array electrophoretic scanner
JPH07209251A (en) Electrophoretic device
JPH08101164A (en) Capillary type electrophoresis device
JPH01299462A (en) Gene detector
JP2776208B2 (en) Electrophoresis device
US6290831B1 (en) Electrophoretic system for real time detection of multiple electrophoresed biopolymers
JP2000346828A (en) Electrophoresis device
JP2974495B2 (en) Electrophoresis apparatus and electrophoresis method
JP3570425B2 (en) Capillary electrophoresis device
JP3186269B2 (en) DNA separation detector
JPH06294796A (en) Method for analyzing nucleic acid
Kamahori et al. Capillary array electrophoresis analyzer
JPH01299463A (en) Gene diagnosing apparatus
JPH05223778A (en) Electrophoretic device
WO2019043277A1 (en) Method and device for analysing nucleic acids
JPH08261988A (en) Stacked migration medium and light detecting electrophoretic device
JPH0658341B2 (en) DNA nucleotide sequencer
JP2008267925A (en) Electrophoresis method, electrophoretic member and electrophoretic apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees