JPH01299439A - Controlling mechanism of flow rate of automatic pressure-reducing apparatus - Google Patents

Controlling mechanism of flow rate of automatic pressure-reducing apparatus

Info

Publication number
JPH01299439A
JPH01299439A JP12816088A JP12816088A JPH01299439A JP H01299439 A JPH01299439 A JP H01299439A JP 12816088 A JP12816088 A JP 12816088A JP 12816088 A JP12816088 A JP 12816088A JP H01299439 A JPH01299439 A JP H01299439A
Authority
JP
Japan
Prior art keywords
pressure
valve
sample water
piping
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12816088A
Other languages
Japanese (ja)
Other versions
JP2506148B2 (en
Inventor
Riichi Watabe
渡部 利一
Toshio Ichinose
一瀬 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP12816088A priority Critical patent/JP2506148B2/en
Publication of JPH01299439A publication Critical patent/JPH01299439A/en
Application granted granted Critical
Publication of JP2506148B2 publication Critical patent/JP2506148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To secure a prescribed quantity of sample water even when a main flow-rate regulating valve is put in an interrupted state with the reduction of pressure in an outlet piping, by providing a manifold in the outlet piping led out of a pressure- reducing mechanism, by supplying the reduced pressure sample water to a sample water analysis system from the manifold through a main flow-rate adjusting valve, and also by providing a bypass piping. CONSTITUTION:A manifold 30 is provided in a part of an outlet piping 18 so that the connections of a piping system branching in a complicated manner be simplified and made small in size, and a bypass piping 36 communicating with the downstream side of a flow-rate adjusting valve 22 of the piping 18 through a solenoid ON-OFF valve 32 and an auxiliary flow-rate adjusting valve 34 constructed of a needle valve is provided in a part of the manifold 30. When the water pressure of high-pressure sample water in an inlet piping 16 lowers and a pressure-reducing mechanism 10 turns to fail to operate in this condition, the pressure of the outlet piping 18 is detected by a pressure detector 26, the above valve 32 is put in an opened state by a controller 28, and thereby the sample water is made to flow in a prescribed quantity continuously to an analysis system through the bypass piping 36.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、自動減圧装置に係り、特に火力・原子力発
電所用試料採取装置において高圧の試料水を採取するに
際し、試料水元圧の変化に影響されることなく、減圧装
置の出口圧力を常に一定に保持すると共に、試料水元圧
が著しく低減して自動減圧機能が失われても所定流量の
試料水を継続的に採取することができる自動減圧装置の
流量制御殿構に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an automatic pressure reducing device, and in particular, when collecting high-pressure sample water in a sampling device for a thermal or nuclear power plant, it is possible to prevent changes in the source pressure of sample water. The outlet pressure of the pressure reducing device is always maintained constant without being affected, and even if the sample water source pressure drops significantly and the automatic pressure reduction function is lost, sample water at a predetermined flow rate can be continuously collected. This invention relates to a flow rate control structure of an automatic pressure reducing device.

〔従来の技術〕[Conventional technology]

火力・原子力発電所の設備において、ボイラ水の循環系
統の所定個所から高圧試料水を採取してこれを水質分析
計に導入するに際し、試料水の流量は一定であることが
望まれ、このため減圧機構が利用される。
In thermal and nuclear power plant equipment, when high-pressure sample water is collected from a predetermined point in the boiler water circulation system and introduced into a water quality analyzer, it is desirable that the flow rate of the sample water be constant. A decompression mechanism is utilized.

そこで、従来の減圧機構としては、減圧定数を固定した
ものが多用されている。しかし、この型式の減圧機構は
試料水元圧が変化した場合、減圧機構出口流量が変化す
る欠点がある。また、このような試料水元圧の変動に対
応し、自動的に減圧定数を変化させる目的で、減圧機構
に調節杆を挿通配置し、この調節杆の一端部をスプール
に連結した流体操作シリンダと、この操作シリンダを操
作する方向制御弁と、圧力検出器の接点動作信号に基づ
いて前記方向制御弁とを制御する装置が提案されている
(特公昭56−12806号公報)。しかしながら、こ
の種の自動減圧機構では、流体圧制御のため制御遅れを
生じるばかりでなく、位置決め精度も低く、さらには調
節杆のグランド部における漏洩により減圧定数に変動を
生じる等構造面においても種々の難点がある。
Therefore, as a conventional pressure reduction mechanism, one in which the pressure reduction constant is fixed is often used. However, this type of pressure reducing mechanism has the disadvantage that when the source pressure of the sample water changes, the flow rate at the outlet of the pressure reducing mechanism changes. In addition, in order to automatically change the pressure reduction constant in response to such fluctuations in the sample water source pressure, we have developed a fluid operation cylinder in which an adjustment rod is inserted through the pressure reduction mechanism and one end of this adjustment rod is connected to a spool. A device has been proposed (Japanese Patent Publication No. 12806/1983) that controls a directional control valve for operating this operating cylinder, and the directional control valve based on a contact operating signal from a pressure detector. However, this type of automatic pressure reduction mechanism not only causes a control delay due to fluid pressure control, but also has low positioning accuracy, and also has various structural issues such as fluctuations in the pressure reduction constant due to leakage in the gland of the adjustment rod. There is a drawback.

このような観点から、従来より、一端部に試料水配管と
接続する継手を設けると共に他端部に調整管と接続する
継手を設けた2本の圧力調整用細管と、前記調整管の内
部に挿通した送りねじによって前記細管中を進退移動す
る芯線と、前記送りねじを外部から操作する調整ハンド
ルとを備えたサンプリング装置用の減圧機構が提案され
ている(実公昭56−12592号公報)。
From this point of view, conventionally, two pressure regulating thin tubes are provided, one end of which is provided with a joint to connect to the sample water pipe, the other end of which is provided with a joint to connect to the adjustment tube, and the inside of the adjustment tube is provided with a joint to connect to the sample water pipe. A decompression mechanism for a sampling device has been proposed that includes a core wire that moves forward and backward in the thin tube by an inserted feed screw, and an adjustment handle that operates the feed screw from the outside (Japanese Utility Model Publication No. 56-12592).

しかし、このように構成された減圧機構において、圧力
調整用細管に挿通した芯線を送りねじ操作で制御するに
際し、漏洩等により減圧定数に変動を生じるような構造
的問題点はないが、これを自動化し、迅速かつ精度の高
い制御を行うには、従来の一般的な制御機構ではこれを
達成することができない難点がある。
However, in the pressure reduction mechanism configured in this way, there is no structural problem such as fluctuations in the pressure reduction constant due to leakage etc. when controlling the core wire inserted into the pressure regulating thin tube by operating the feed screw. Automation, rapid and highly accurate control is difficult to achieve with conventional general control mechanisms.

そこで、本出願人は、入口側圧力調整細管および出口測
圧力調整細管を備え、これらの圧力調整細管に一端部を
可動環で支持した芯線を挿入配置し、前記可動環にねじ
軸を螺合してこれを移動自在に支承した減圧機構を設け
、この減圧機構を試料水配管に接続してその出口側圧力
を検出すると共に前記ねし軸を調整して試料水の出口側
圧力を設定値に保持するよう構成し、減圧機構の出口側
試料水配管上に圧力信号を発生させる圧力変換器と、こ
の圧力信号と設定圧力とを比較しサーボモータへ作動信
号を与える比例制御器とを備え、前記サーボモータから
減速機を介して導出される回転軸に歯車を設けて、この
歯車と前記ねし軸の一端部に設けた歯車とを噛合させ、
さらにサーボモータの回転量を検出するポテンショメー
タを設けて芯線挿入表示を行うよう構成した自動減圧装
置を開発し、特許出願を行った(特開昭57−1003
36号公報)。
Therefore, the present applicant has provided an inlet pressure regulating capillary tube and an outlet pressure regulating capillary tube, inserting a core wire whose one end is supported by a movable ring into these pressure regulating capillary tubes, and screwing a screw shaft into the movable ring. A pressure reducing mechanism is provided which supports this in a movable manner, and this pressure reducing mechanism is connected to the sample water piping to detect the outlet side pressure and adjust the screw shaft to set the sample water outlet pressure to a set value. A pressure transducer that generates a pressure signal on the sample water pipe on the outlet side of the pressure reducing mechanism, and a proportional controller that compares this pressure signal with a set pressure and provides an operating signal to the servo motor. , a gear is provided on a rotating shaft led out from the servo motor via a reducer, and the gear is meshed with a gear provided at one end of the screw shaft;
Furthermore, he developed an automatic pressure reducing device equipped with a potentiometer to detect the amount of rotation of the servo motor and configured to display core wire insertion, and filed a patent application (Japanese Patent Laid-Open No. 57-1003
Publication No. 36).

前述した従来の2本の圧力調整用細管とこれら細管中を
進退移動する芯線を使用した減圧機構は、細管と芯線と
の間隙が極めて微小であるため、試料水に含まれる不純
物の堆積やスラッジの混入等により、通水が阻止された
り、芯線の移動を停止させる事態が発生し易い。そこで
、例えば芯線の移動が停止させられた場合、芯線は調整
管内において共通の移動部材に結合固定し、前記移動部
材にねじ孔を刻設してこのねじ孔に送りねじを螺合し、
この送りねじを外部操作によって回動することにより前
記移動部材と共に芯線を移動させるものであるから、移
動部材はねじ軸方向の移動が阻止される結果、送りねじ
と一体的に強制的に回動し、これにより平行する2本の
芯線をねじ曲げて破損したり、再使用不能とするばかり
でなく、圧力開整用細管にもtN (Mを及ぼす等の問
題点がある。また、圧力調整用細管に対する芯線の挿入
位置の調整は、回転駆動を往復移動に変換しているため
、送りねじの回転数から芯線の位置検出を行うので高精
度な位置決めを行うに際しては変換係数を厳密に設定す
る必要があるが、機差等の関係から誤差の発生は回避で
きず、従って高精度な位置決めは困難である。さらに、
従来の減圧装置は、圧力調整用細管と調整管と芯線とは
、常に一定の関係を持って予め設計され、これらは一体
構成的に製作されるため、これらの構成部材の〜部が破
損ないし損傷した場合に全体的に交換する必要があり、
また減圧条件の調整範囲を変更する場合も同様であるか
ら、保守並びに設計変更に際してのコストが極めて増大
する難点がある。しかも、このような減圧装置の交換作
業に際しては、高圧の試料水配管系を一時的に遮断して
装置の分離を行わなければならず、このための作業に多
大な時間と手間とを要する難点がある。
In the conventional pressure reduction mechanism described above, which uses two pressure adjustment thin tubes and a core wire that moves back and forth inside these thin tubes, the gap between the thin tubes and the core wire is extremely small. Contamination with water can easily cause water flow to be blocked or movement of the core wire to be stopped. Therefore, for example, when the movement of the core wire is stopped, the core wire is coupled and fixed to a common moving member within the adjustment pipe, a screw hole is carved in the moving member, and a feed screw is screwed into this screw hole.
By rotating this feed screw by external operation, the core wire is moved together with the movable member, so the movable member is prevented from moving in the direction of the screw axis, and as a result, the movable member is forced to rotate integrally with the feed screw. However, this not only twists and damages the two parallel core wires and makes them unusable, but also causes problems such as exerting tN (M) on the pressure regulating thin tube. Adjustment of the insertion position of the core wire into the thin tube converts rotational drive into reciprocating movement, so the position of the core wire is detected from the number of rotations of the feed screw, so when performing highly accurate positioning, the conversion coefficient must be set strictly. However, the occurrence of errors cannot be avoided due to machine differences, etc., and therefore, highly accurate positioning is difficult.Furthermore,
In conventional pressure reducing devices, the pressure regulating thin tube, regulating tube, and core wire are designed in advance so that they always have a certain relationship, and they are manufactured as an integral structure, so there is no risk of damage to parts of these components. Should be replaced entirely if damaged;
Furthermore, since the same applies when changing the adjustment range of the decompression conditions, there is a problem in that the cost for maintenance and design changes increases significantly. Moreover, when replacing such a pressure reducing device, the high-pressure sample water piping system must be temporarily shut off to separate the device, which is a disadvantage since it requires a great deal of time and effort. There is.

そこで、本出願人は、圧力調整用細管と芯線と調整管と
をそれぞれ分離可能な組立て構成とし、前記芯線の進退
位置調整も直線運動を行うリニヤ制御手段で位置検知を
行いながら操作するよう構成することによって、製作を
容易化すると共に芯線の位置決め精度を向上して厳密な
減圧調整を可能とし、保守の簡易化と制御性能の向上を
実現することができる自動減圧装置の減圧調整機構を開
発し、同時出願の特許前(1)として出願した。
Therefore, the present applicant constructed a configuration in which the pressure adjustment thin tube, the core wire, and the adjustment tube are assembled so that they can be separated, and the forward and backward positions of the core wires are also adjusted while detecting the position using linear control means that performs linear motion. By doing so, we have developed a depressurization adjustment mechanism for automatic depressurizers that facilitates manufacturing, improves core wire positioning accuracy, enables precise depressurization adjustment, and simplifies maintenance and improves control performance. The patent application was filed as a concurrent patent application (1).

すなわち、この自動減圧装置の減圧調整機構は、一対の
平行な圧力調整孔を穿設し、一端部に外部配管と接続す
るための前記圧力調整孔と連通ずるコネクタをそれぞれ
設け、他端部より前記圧力調整孔内に芯線を進退可能に
挿通してなる第1の圧力調整管と、 前記第1の圧力調整管の他端部に締結具を介して液密に
結合し、一端部に前記芯線を前説自在に取付けた結合部
材を設けた摺動杆を挿通配置すると共に該摺動杆の他端
部側をグランドパツキンで軸封してなる第2の圧力調整
管と、前記摺動杆と平行にラック杆を配置し、このラッ
ク杆の一端部と前記摺動杆の先端部とを連結部材により
結合し、前記ラック杆をモータ駆動して往復移動させる
ことにより前記摺動杆を介して芯線の圧力調整孔内にお
ける位置調整を行う制御手段とを設けることを特徴とす
るものである。
That is, the pressure reduction adjustment mechanism of this automatic pressure reduction device has a pair of parallel pressure adjustment holes, a connector at one end that communicates with the pressure adjustment hole for connection to external piping, and a a first pressure regulating tube having a core wire inserted into the pressure regulating hole so as to be movable back and forth; a first pressure regulating tube fluid-tightly coupled to the other end of the first pressure regulating tube via a fastener; a second pressure regulating pipe having a sliding rod provided with a coupling member to which a core wire is freely attached; A rack rod is arranged in parallel with the sliding rod, one end of this rack rod and the tip of the sliding rod are connected by a connecting member, and the rack rod is driven by a motor to move back and forth, so that the rack rod can be moved through the sliding rod. The invention is characterized in that it is provided with a control means for adjusting the position of the core wire within the pressure adjustment hole.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、従来の自動減圧装置において、高圧試料水の
試料水元圧の変動に対し分析計への供給に適した常に一
定の圧力と流量とを保持するように自動減圧制御を行う
必要があり、このため従来装置では、例えば第4図に示
す自動減圧制御方式が採用されている。すなわち、第4
図において、参照符号10は減圧機構、12はこの減圧
機構10を制御するための自動減圧制御部を示す。減圧
機構10には試料水供給口14aと試料水吐出口14b
とが設けられ、それぞれ供給口L4aおよび吐出口14
bには高圧試料水の入口配管16および減圧試料水の出
口配管18が接続されている。入口配管16には、一定
の圧力条件で自動的に開閉動作すると共に手動による開
閉指令信号によっても開閉動作する入口開閉弁20が設
けられている。また、出口配管18には、ニードル弁か
らなる流量調整弁22を設けて試料水分析系へ連通ずる
と共に、前記流N調整弁22の上流側に逃がし弁24お
よび圧力検出器26が接続配置されている。
However, in conventional automatic pressure reduction devices, it is necessary to perform automatic pressure reduction control to maintain a constant pressure and flow rate suitable for supplying high-pressure sample water to the analyzer despite fluctuations in the source pressure of the sample water. For this reason, conventional devices employ an automatic pressure reduction control system shown in FIG. 4, for example. That is, the fourth
In the figure, reference numeral 10 indicates a pressure reduction mechanism, and 12 indicates an automatic pressure reduction control section for controlling this pressure reduction mechanism 10. The decompression mechanism 10 has a sample water supply port 14a and a sample water discharge port 14b.
and a supply port L4a and a discharge port 14, respectively.
An inlet pipe 16 for high-pressure sample water and an outlet pipe 18 for reduced-pressure sample water are connected to b. The inlet piping 16 is provided with an inlet opening/closing valve 20 that opens and closes automatically under constant pressure conditions and also opens and closes in response to a manual opening/closing command signal. Further, the outlet piping 18 is provided with a flow rate adjustment valve 22 consisting of a needle valve to communicate with the sample water analysis system, and a relief valve 24 and a pressure detector 26 are connected and arranged upstream of the flow N adjustment valve 22. ing.

そして、この圧力検出器26で検出された圧力信号は、
コントローラ28へ転送し、コントローラ28では予め
設定した圧力設定値と圧力検出値とを比較してその偏差
を算出し、この偏差に応じた圧力調整を行うべく減圧機
構10に対し芯線の移動調整を行うための制御指令を自
動減圧制御部1−2へ送出するよう構成されている。
The pressure signal detected by this pressure detector 26 is
The pressure is transferred to the controller 28, and the controller 28 compares the preset pressure setting value and the detected pressure value, calculates the deviation, and instructs the pressure reducing mechanism 10 to adjust the movement of the core wire in order to adjust the pressure according to this deviation. It is configured to send a control command to the automatic pressure reduction control section 1-2.

このように構成された従来の減圧試料水の流量制御系に
おいて、自動モード指令により運転されている場合、高
圧試料水の入口配管16に対して許容範囲の圧力を有す
る高圧試料水が供給されている場合は、前述したコント
ローラ28を介して自動減圧制御部12では適正な減圧
フィードバック制御を実現することができる。しかしな
がら、例えば入口配管16に供給される高圧試料水の圧
力が許容範囲以下に低減した場合、減圧機構10が最低
減圧状態(減圧値が0)になると、ニードル弁からなる
流量調整弁22は出口配管18における試料水では充分
な圧力が得られず閉弁状態となり、分析系Δ、の試料水
供給が停止される。なお、入口配管16に供給される高
圧試料水の圧力低減によって、入口開閉弁20は自動的
に閉弁状態となるが、この場合に人口開閉弁20を手動
により開弁しても圧力低減状態が継続する限り、/fr
L量調整弁22は遮断状態となる。
In the conventional reduced-pressure sample water flow rate control system configured as described above, when operating according to an automatic mode command, high-pressure sample water having a pressure within an allowable range is supplied to the high-pressure sample water inlet piping 16. If so, the automatic pressure reduction control unit 12 can implement appropriate pressure reduction feedback control via the controller 28 described above. However, for example, if the pressure of the high-pressure sample water supplied to the inlet pipe 16 is reduced below the allowable range, and the pressure reduction mechanism 10 reaches the lowest pressure reduction state (reduction value is 0), the flow rate adjustment valve 22 consisting of a needle valve will be closed at the outlet. Sufficient pressure cannot be obtained with the sample water in the pipe 18, and the valve is closed, and the supply of sample water to the analysis system Δ is stopped. Note that due to the pressure reduction of the high-pressure sample water supplied to the inlet piping 16, the inlet on-off valve 20 is automatically closed, but even if the artificial on-off valve 20 is opened manually in this case, the pressure reduction state remains. As long as continues, /fr
The L amount adjustment valve 22 is in a cutoff state.

このように高圧試料水の試料水元圧が何らかの原因で圧
力が低減した場合、その原因をI碌明する意味において
も、試料水の継続的な分析は特に火力・原子力発電所の
安全な運転を行うために不可欠である。従って、前述し
たように、試料水元圧が著しく低減し、減圧機構での減
圧機能が失われても、圧力低減された試料水を分析系へ
供給することができる機構を備えた自動減圧装置の改良
が要望されている。
In this way, if the source pressure of the high-pressure sample water decreases for some reason, continuous analysis of the sample water is important in order to determine the cause, especially for the safe operation of thermal and nuclear power plants. It is essential to do this. Therefore, as mentioned above, even if the source pressure of the sample water is significantly reduced and the pressure reducing function is lost in the pressure reducing mechanism, an automatic pressure reducing device equipped with a mechanism that can supply sample water with reduced pressure to the analysis system. Improvements are requested.

そこで、本発明の目的は、減圧機構に接続される入口配
管における高圧試料水の圧力が著しく低減し、減圧機構
が機能しなくなる状態を圧力検出器で検出し、このよう
な場合に自動開弁原作を行って圧力低減された試料水を
出口配管に設けた流量調整弁に対しバイパスさせ、分析
系へ所定量の試料水を供給することができる簡単な構成
で制御操作の簡便な自動減圧装置の流量制御機構を提供
するにある。
Therefore, the purpose of the present invention is to use a pressure detector to detect a state in which the pressure of high-pressure sample water in the inlet pipe connected to the pressure reduction mechanism is significantly reduced and the pressure reduction mechanism stops functioning, and to automatically open the valve in such a case. An automatic pressure reducing device with a simple configuration and easy control operation that allows the sample water whose pressure has been reduced by performing the original design to bypass the flow rate adjustment valve installed in the outlet piping and supply a predetermined amount of sample water to the analysis system. to provide a flow control mechanism.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る自動減圧装置の流量制御機構は、平行する
一対の圧力調整孔を有し、これら一対の圧力調整孔の一
端部に高圧試料水の入口配管と減圧試料水の出口配管と
をそれぞれ接続し、前記圧力調整孔の他端部から減圧用
芯線を挿入してなる減圧機構と、前記圧力調整孔に対す
る減圧用芯線の挿入位置を自動的に制御する自動減圧制
御部と、前記出口配管の試料水圧力を検出して該圧力が
設定値となるよう自動減圧制御部へ制御指令を出力する
コントローラとを備える自動減圧装置において、 前記出口配管にマニホルドを設けると共にこのマニホル
ドの一部から主流181整弁を介して試料水分析系へ連
通ずる出口配管を導出し、前記マニホルドに圧力検出器
および逃がし弁を接続配置し、 さらに前記マニホルドの一部から電磁開閉弁および補助
流量調整弁を介して前記主流量調整弁を設けた出口配管
の下流側に連通接続するバイパス配管を設け、 出口配管の試料水圧力が低減して前記主/N、M調整弁
が遮断された際に前記電磁開閉弁を開弁する制御手段を
設けることを特徴とする。
The flow rate control mechanism of the automatic pressure reducing device according to the present invention has a pair of parallel pressure adjustment holes, and an inlet pipe for high-pressure sample water and an outlet pipe for reduced-pressure sample water are connected to one end of the pair of pressure adjustment holes, respectively. a pressure reduction mechanism configured by connecting a core wire for pressure reduction and inserting a core wire for pressure reduction from the other end of the pressure adjustment hole; an automatic pressure reduction control section that automatically controls the insertion position of the core wire for pressure reduction with respect to the pressure adjustment hole; and the outlet piping. In an automatic pressure reducing device equipped with a controller that detects sample water pressure and outputs a control command to an automatic pressure reduction control unit so that the pressure becomes a set value, a manifold is provided in the outlet piping, and a part of the manifold is connected to a main stream from a part of the manifold. A pressure detector and a relief valve are connected to the manifold, and an electromagnetic on-off valve and an auxiliary flow rate adjustment valve are connected to the manifold. A bypass pipe is provided to communicate with and connect to the downstream side of the outlet pipe provided with the main flow regulating valve, and when the sample water pressure in the outlet pipe is reduced and the main/N, M regulating valves are shut off, the electromagnetic opening/closing is performed. It is characterized by providing a control means for opening the valve.

前記の流量制御機構において、電磁開閉弁を開弁する制
御手段は、マニホルドに設けた圧力検出器とコントロー
ラとからなり、前記圧力検出器で出口配管の試料水圧力
を検出し、この圧力検出値がコントローラにおいて減圧
機構を最低減圧状態以下となる場合に該コントローラか
ら電磁開閉弁に対し開弁指令を出力するよう構成するこ
とができる。
In the above-mentioned flow rate control mechanism, the control means for opening the electromagnetic on-off valve consists of a pressure detector provided in the manifold and a controller, the pressure detector detects the sample water pressure in the outlet piping, and the detected pressure value is The pressure reducing mechanism can be configured such that the controller outputs a valve opening command to the electromagnetic on-off valve when the pressure in the pressure reducing mechanism becomes lower than the minimum pressure reducing state.

〔作用〕[Effect]

本発明に係る自1RIIJ減圧装置の流量制御機構によ
れば、減圧機構と自動減圧制御部とコントローラとから
なる自動減圧装置において、前記減圧機構から導出され
る出口配管にマニホルドを設け、このマニホルドより主
流量調整弁を介して試料水分析系へ減圧試料水を供給す
るようにし、この場合前記マニホルドに圧力検出器や逃
がし弁を適正配置すると共に電磁開閉弁と補助流量調整
弁を備えた前記主流量調整弁に対するバイパス配管を設
けることにより、入口配管における高圧試料水の試料水
元圧が著しく低減して減圧機構が機能しなくなった際に
、この状態を圧力検出器で検出して前記電磁開閉弁を開
弁じ、出口配管の圧力低減に伴う主流量調整弁の遮断状
態にも拘らず、前記バイパス配管を介して所定量の試料
水を継続的に試料水分析系へ供給することができる。
According to the flow rate control mechanism of the 1RIIJ pressure reducing device according to the present invention, in the automatic pressure reducing device comprising a pressure reducing mechanism, an automatic pressure reducing control section, and a controller, a manifold is provided in the outlet piping led out from the pressure reducing mechanism, and from this manifold Reduced pressure sample water is supplied to the sample water analysis system through a main flow regulating valve, and in this case, a pressure detector and a relief valve are appropriately arranged on the manifold, and the main flow control valve is equipped with an electromagnetic on-off valve and an auxiliary flow regulating valve. By providing a bypass piping for the flow rate adjustment valve, when the source pressure of the high-pressure sample water in the inlet piping drops significantly and the pressure reduction mechanism no longer functions, this condition is detected by the pressure detector and the electromagnetic opening/closing is activated. Even when the valve is opened and the main flow rate adjustment valve is shut off due to the pressure reduction in the outlet pipe, a predetermined amount of sample water can be continuously supplied to the sample water analysis system via the bypass pipe.

〔実施例〕〔Example〕

次に、本発明に係る自動減圧装置の流量制御機構の実施
例につき、添付図面を参照しながら以下詳細に説明する
Next, embodiments of the flow rate control mechanism of the automatic pressure reducing device according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明に係る流量制御機構の一実施例を示す自
動減圧制御系の系統図である。なお、説明の便宜上第4
図に示す従来の自動減圧制御系と同一の構成部分には同
一の参照符号を付し、その詳細な説明は省略する。第1
図において、本実施例における減圧機構10は、平行す
る一対の圧力調整孔を備え、これら一対の圧力調整孔の
一端部に高圧試料水の入口配管と減圧試料水の出口配管
とをそれぞれ接続し、前記圧力調整孔の他端部から減圧
用芯線を挿入してこれを位置調整自在に構成し、前記出
口配管における減圧試料水の圧力を設定値に保持するよ
う構成したものであって、これと同等の構成を有するも
のであれば、本出願人が先に提案した減圧機構は勿論の
こと従来の減圧機構にも有効に適用することができる。
FIG. 1 is a system diagram of an automatic pressure reduction control system showing an embodiment of the flow rate control mechanism according to the present invention. For convenience of explanation, please refer to the fourth
Components that are the same as those of the conventional automatic pressure reduction control system shown in the figure are given the same reference numerals, and detailed explanation thereof will be omitted. 1st
In the figure, the pressure reduction mechanism 10 in this embodiment includes a pair of parallel pressure adjustment holes, and an inlet pipe for high-pressure sample water and an outlet pipe for reduced-pressure sample water are connected to one end of the pair of pressure adjustment holes, respectively. , a core wire for depressurization is inserted from the other end of the pressure adjustment hole so that the position thereof can be adjusted freely, and the pressure of the depressurized sample water in the outlet piping is maintained at a set value, As long as it has a configuration equivalent to that of the present invention, it can be effectively applied not only to the pressure reduction mechanism previously proposed by the applicant but also to conventional pressure reduction mechanisms.

また、自動減圧制御部12は、前記減圧機構10の減圧
用芯線につきその挿入位置を電動モータ制御により自動
的に調整し得るよう構成した機構からなる。
The automatic pressure reduction control unit 12 is a mechanism configured to automatically adjust the insertion position of the pressure reduction core wire of the pressure reduction mechanism 10 by controlling an electric motor.

しかるに、本実施例において、前記減圧機構10の圧力
調整孔とそれぞれ連通ずるコネクタ14a、14bには
入口配管16と出口配管■8とが接続され、前記入口配
管16には従来装置と同様に入口開閉弁20が設けられ
ている。これに対し、出口配管18には所要容積のマニ
ホルド30を設け、このマニホルド30の一部から導出
した出口配管18にニードル弁からなる流量調整弁22
を設けて試料水分析系へ連通するよう構成する。また、
このマニホルド30には、逃がし弁24および圧力検出
器26をそれぞれ接続配置して、従来の自動減圧制御系
と同様の構成とする。すなわち、前記圧力検出!26で
検出される圧力信号は、コントローラ28へ転送し、コ
ントローラ28では予め設定した圧力設定値と圧力検出
値とを比較してその偏差を算出し、この偏差に応じた圧
力調整を行うべく減圧機構10に対し芯線の移動調整を
行うための制御指令を自動減圧制御部12へ送出するよ
う構成される。
However, in this embodiment, the inlet pipe 16 and the outlet pipe 8 are connected to the connectors 14a and 14b, which communicate with the pressure adjustment hole of the pressure reducing mechanism 10, respectively, and the inlet pipe 16 has an inlet and an outlet pipe 8, respectively, which communicate with the pressure adjustment hole of the pressure reducing mechanism 10. An on-off valve 20 is provided. On the other hand, the outlet piping 18 is provided with a manifold 30 having a required volume, and the outlet piping 18 led out from a part of the manifold 30 is provided with a flow rate regulating valve 22 made of a needle valve.
The system is configured so that it communicates with the sample water analysis system. Also,
A relief valve 24 and a pressure detector 26 are connected to the manifold 30, respectively, and the structure is similar to that of a conventional automatic pressure reduction control system. That is, said pressure detection! The pressure signal detected at 26 is transferred to the controller 28, and the controller 28 compares the preset pressure setting value and the detected pressure value, calculates the deviation, and reduces the pressure in order to adjust the pressure according to this deviation. It is configured to send a control command for adjusting the movement of the core wire to the mechanism 10 to the automatic pressure reduction control section 12.

以上述べた構成は、基本的に従来装置における自動減圧
制御系の構成と同じである。そこで、本発明においては
、出口配管18の一部にマニホルド30を設けて複雑に
分岐する配管系の接続構成を簡略化かつ小形化すると共
に、前記マニホルド30の一部から電磁開閉弁32およ
びニードル弁からなる補助流量調整弁34を介して前記
出口配管18の流vtli整弁22の下流側に連通接続
するバイパス配管36を設ける。この場合、電磁開閉弁
32は、入口配管16における高圧試料水の試料水元圧
が著しく低減し、減圧機構10が最低減圧状態すなわち
減圧機構が機能しなくなった状態における出口配管1日
の試料水圧力を圧力検出器26で検出した際、コントロ
ーラ28を介して前記電磁開閉弁32に開弁指令が送出
されることによって開弁される。また、補助流量調整弁
34は、出口配管I8に設けた流量調整弁22と同様ニ
ードル弁で構成されるが、その動作圧力は十分低圧に設
定される。このように構成されたバイパス配管36は、
前述したように、入口配管16における高圧試料水の試
料水元圧が著しく低減した場合に自動的にオープン配管
となり、出口配管18に設けた流量調整弁22が低圧の
ために遮断状態となっても、所定量の試料水を分析系へ
継続的に供給することができる。
The configuration described above is basically the same as the configuration of the automatic pressure reduction control system in the conventional device. Therefore, in the present invention, the manifold 30 is provided in a part of the outlet piping 18 to simplify and downsize the connection structure of the complicated branching piping system, and the electromagnetic shut-off valve 32 and the needle can be connected from a part of the manifold 30. A bypass pipe 36 is provided which communicates with the outlet pipe 18 on the downstream side of the flow control valve 22 via an auxiliary flow control valve 34 consisting of a valve. In this case, the electromagnetic on-off valve 32 is configured to operate the sample water at the outlet pipe for one day when the sample water source pressure of the high-pressure sample water in the inlet pipe 16 is significantly reduced and the pressure reducing mechanism 10 is in the lowest pressure reducing state, that is, in a state where the pressure reducing mechanism is no longer functioning. When pressure is detected by the pressure detector 26, a valve opening command is sent to the electromagnetic on-off valve 32 via the controller 28, so that the valve is opened. Further, the auxiliary flow rate regulating valve 34 is constituted by a needle valve like the flow rate regulating valve 22 provided in the outlet pipe I8, but its operating pressure is set to a sufficiently low pressure. The bypass piping 36 configured in this way is
As mentioned above, when the source pressure of the high-pressure sample water in the inlet pipe 16 decreases significantly, the pipe automatically becomes open, and the flow rate adjustment valve 22 provided in the outlet pipe 18 becomes shut off due to the low pressure. Also, a predetermined amount of sample water can be continuously supplied to the analysis system.

第2図は、第1図に示す出口配管18におけるマニホル
ド30とバイパス配管36との具体的な配管構成の一実
施例を示すものである。すなわち、第2図においては、
マニホルド3oを操作パネルPに対して水平に配置した
場合を示すものであって、マニホルド3oの一側面に試
料水の入口部を構成するコネクタ38が設けられ、マニ
ホルド30の上側面に圧力検出器26、逃がし弁24、
電磁開閉弁32がそれぞれ接続配置され、さらにマニホ
ルド30の他側部から流量調整弁22を介して出口配管
18が導出されている。また、前記電磁開閉弁32の一
側部よりバイパス配管36が導出され、このバイパス配
管36は補助流量調整弁34を介して前記マニホルド3
0から導出される出口配管18の下流1.1)に管継手
40を介して相互に連通接続した構成からなる。なお、
参照符号42は逃がし弁24に接続される逃がし管部で
ある。
FIG. 2 shows an example of a specific piping configuration of the manifold 30 and the bypass piping 36 in the outlet piping 18 shown in FIG. That is, in Figure 2,
This figure shows a case where the manifold 3o is arranged horizontally with respect to the operation panel P, and a connector 38 constituting the inlet of sample water is provided on one side of the manifold 3o, and a pressure detector is provided on the upper side of the manifold 30. 26, relief valve 24,
Electromagnetic on-off valves 32 are connected to each other, and an outlet pipe 18 is led out from the other side of the manifold 30 via a flow rate regulating valve 22. Further, a bypass pipe 36 is led out from one side of the electromagnetic on-off valve 32, and this bypass pipe 36 is connected to the manifold 3 via an auxiliary flow rate regulating valve 34.
The outlet piping 18 is connected to the downstream end 1.1) of the outlet pipe 18 led out from the outlet pipe 1.0 through a pipe joint 40. In addition,
Reference numeral 42 is a relief pipe section connected to the relief valve 24.

このように、本発明においては、出口配管の一部にマニ
ホルド30を設けて、このマニホルド30に制御機器お
よびバイパス配管36を接続配置することにより、複雑
となる配管構成を小形化しかつ省スペース化することが
できる。
As described above, in the present invention, by providing the manifold 30 in a part of the outlet piping and connecting and arranging the control equipment and the bypass piping 36 to this manifold 30, the complicated piping configuration can be downsized and space can be saved. can do.

第3図は、第2図と同様の配管構成の別の実施例を示す
ものである。すなわち、第3図においては、マニホルド
30を操作パネルPに対して垂直に配置した場合を示す
。本実施例も第2図に示す実施例と同様に小形で省スペ
ースな配管構成を達成することができる。従って、第2
図に示す実施例と同一の構成部分には同一の参照符号を
付してその詳細な説明は省略する。
FIG. 3 shows another embodiment of the same piping configuration as FIG. 2. That is, FIG. 3 shows a case where the manifold 30 is arranged perpendicularly to the operation panel P. Similar to the embodiment shown in FIG. 2, this embodiment can also achieve a small and space-saving piping configuration. Therefore, the second
Components that are the same as those in the embodiment shown in the drawings are given the same reference numerals, and detailed explanation thereof will be omitted.

なお、第2図および第3図に示す実施例においては、流
量調整弁22および補助流量調整弁34がそれぞれ操作
パネルPにおいて調整操作可能に構成配置されるため、
これらに接続される配管の状態がそれぞれ適正となるよ
う工夫されている。
In the embodiment shown in FIGS. 2 and 3, the flow rate adjustment valve 22 and the auxiliary flow rate adjustment valve 34 are configured and arranged so that they can be adjusted on the operation panel P, respectively.
Efforts have been made to ensure that the conditions of the piping connected to these are appropriate.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明によれば、
平行する一対の圧力調整孔を有し、これら一対の圧力調
整孔の一端部に高圧試料水の入口配管と減圧試料水の出
口配管とをそれぞれ接続し、前記圧力調整孔の他端部か
ら減圧用芯線を挿入してなる減圧機構と、前記圧力調整
孔に対する減圧用芯線の挿入位置を自動的に制御する自
動減圧制御部と、前記出口配管の試料水圧力を検出して
該圧力が設定値となるよう自動減圧制御部へ制御指令を
出力するコントローラとを備える自動減圧装置において
、前記出口配管にマニホルドを設け、このマニホルドを
中心として主流量調整弁を介する試料水分析系への配管
や圧力検出器および逃がし弁の接続、さらには電磁開閉
弁および補助流量調整弁を介して前記主流量調整弁に対
するバイパス配管を設けることにより、入口配管で著し
い圧力低減が生じて減圧機構が機能しなくなった際に、
前記電磁開閉弁を自動的に開弁することにより、圧力低
減のために遮断状態となる主流量調整弁に代えてバイパ
ス配管をオープンして所定量の試料水を継続的に試料水
分析系へ供給することができる。
As is clear from the embodiments described above, according to the present invention,
It has a pair of parallel pressure adjustment holes, and an inlet pipe for high-pressure sample water and an outlet pipe for reduced-pressure sample water are respectively connected to one end of the pair of pressure adjustment holes, and the pressure is reduced from the other end of the pressure adjustment hole. a pressure reduction mechanism formed by inserting a core wire; an automatic pressure reduction control unit that automatically controls the insertion position of the pressure reduction core wire with respect to the pressure adjustment hole; and a pressure reduction mechanism that detects the sample water pressure in the outlet piping and adjusts the pressure to a set value. In an automatic pressure reduction device equipped with a controller that outputs a control command to an automatic pressure reduction control unit so that By connecting the detector and relief valve, as well as providing a bypass piping to the main flow regulating valve via an electromagnetic on-off valve and an auxiliary flow regulating valve, a significant pressure reduction occurred in the inlet piping and the pressure reduction mechanism stopped functioning. Occasionally,
By automatically opening the electromagnetic on-off valve, the bypass piping is opened in place of the main flow adjustment valve, which is shut off to reduce pressure, and a predetermined amount of sample water is continuously supplied to the sample water analysis system. can be supplied.

なお、前記電磁開閉弁の自動開閉操作は、マニホルドに
設けた圧力検出器により出口配管の試料水圧力を検出し
、コントローラにおいてこの圧力検出値が減圧機構を最
低減圧状態以下の制御となる場合に該コントローラから
電磁開閉弁に対し開弁指令を出力するようにすれば、制
御操作を簡便かつ適正に行うことができる。
The automatic opening/closing operation of the electromagnetic on-off valve is performed by detecting the sample water pressure in the outlet piping with a pressure detector installed in the manifold, and controlling the pressure reducing mechanism below the minimum reduced pressure state in the controller. If the controller outputs a valve opening command to the electromagnetic on-off valve, control operations can be performed easily and appropriately.

さらに、本発明によれば、出口配管にマニホルドを設け
て種々の制御機器の接続並びに配管接続を行うことによ
り、複雑な構成を小形にしかも省スペースに達成するこ
とができる利点がある。
Further, according to the present invention, by providing a manifold in the outlet piping and connecting various control devices and piping, there is an advantage that a complicated configuration can be made compact and space-saving.

以上、本発明の好適な実施例について説明したが、本発
明は前述した実施例に固定されることな(、本発明の精
神を逸脱しない範囲内において種々の設計変更をなし得
ることは勿論である。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above (it goes without saying that various design changes can be made within the scope of the spirit of the present invention). be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る自動減圧装置の流量制御機構の一
実施例を示す制御系統図、第2図は第1図に示す制御系
を構成する流量制御機構の実施例を示す配管構成図、第
3図は本発明流量制御機構の別の実施例を示す配管構成
図、第4図は従来の自動減圧装置の流量制御機構の構成
例を示す制御系統図である。
FIG. 1 is a control system diagram showing an embodiment of the flow rate control mechanism of an automatic pressure reducing device according to the present invention, and FIG. 2 is a piping configuration diagram showing an embodiment of the flow rate control mechanism that constitutes the control system shown in FIG. 1. 3 is a piping configuration diagram showing another embodiment of the flow rate control mechanism of the present invention, and FIG. 4 is a control system diagram showing an example of the configuration of the flow rate control mechanism of a conventional automatic pressure reducing device.

Claims (2)

【特許請求の範囲】[Claims] (1)平行する一対の圧力調整孔を有し、これら一対の
圧力調整孔の一端部に高圧試料水の入口配管と減圧試料
水の出口配管とをそれぞれ接続し、前記圧力調整孔の他
端部から減圧用芯線を挿入してなる減圧機構と、前記圧
力調整孔に対する減圧用芯線の挿入位置を自動的に制御
する自動減圧制御部と、前記出口配管の試料水圧力を検
出して該圧力が設定値となるよう自動減圧制御部へ制御
指令を出力するコントローラとを備える自動減圧装置に
おいて、 前記出口配管にマニホルドを設けると共に このマニホルドの一部から主流量調整弁を介して試料水
分析系へ連通する出口配管を導出し、 前記マニホルドに圧力検出器および逃がし 弁を接続配置し、 さらに前記マニホルドの一部から電磁開閉 弁および補助流量調整弁を介して前記主流量調整弁を設
けた出口配管の下流側に連通接続するバイパス配管を設
け、 出口配管の試料水圧力が低減して前記主流 量調整弁が遮断された際に前記電磁開閉弁を開弁する制
御手段を設けることを特徴とする自動減圧装置の流量制
御機構。
(1) It has a pair of parallel pressure adjustment holes, and an inlet pipe for high-pressure sample water and an outlet pipe for reduced-pressure sample water are respectively connected to one end of the pair of pressure adjustment holes, and the other end of the pressure adjustment hole a decompression mechanism including a decompression core wire inserted from the pressure adjustment hole; an automatic depressurization control part that automatically controls the insertion position of the decompression core wire with respect to the pressure adjustment hole; In an automatic depressurization device equipped with a controller that outputs a control command to an automatic depressurization control unit so that an outlet that leads out an outlet pipe communicating with the manifold, connects and arranges a pressure detector and a relief valve to the manifold, and further provides the main flow rate adjustment valve from a part of the manifold via an electromagnetic on-off valve and an auxiliary flow rate adjustment valve. A bypass pipe connected downstream of the pipe is provided, and a control means is provided to open the electromagnetic on-off valve when the sample water pressure in the outlet pipe is reduced and the main flow rate adjustment valve is shut off. Flow rate control mechanism of automatic pressure reducing device.
(2)電磁開閉弁を開弁する制御手段は、マニホルドに
設けた圧力検出器とコントローラとからなり、前記圧力
検出器で出口配管の試料水圧力を検出し、この圧力検出
値がコントローラにおいて減圧機構を最低減圧状態以下
となる場合に該コントローラから電磁開閉弁に対し開弁
指令を出力するよう構成してなる請求項1記載の自動減
圧装置の流量制御機構。
(2) The control means for opening the electromagnetic on-off valve consists of a pressure detector provided in the manifold and a controller, the pressure detector detects the sample water pressure in the outlet piping, and this pressure detection value is used to reduce the pressure in the controller. 2. The flow rate control mechanism for an automatic pressure reducing device according to claim 1, wherein the controller outputs a valve opening command to the electromagnetic on-off valve when the pressure of the mechanism is lower than the minimum pressure reducing state.
JP12816088A 1988-05-27 1988-05-27 Flow control mechanism of automatic decompressor Expired - Fee Related JP2506148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12816088A JP2506148B2 (en) 1988-05-27 1988-05-27 Flow control mechanism of automatic decompressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12816088A JP2506148B2 (en) 1988-05-27 1988-05-27 Flow control mechanism of automatic decompressor

Publications (2)

Publication Number Publication Date
JPH01299439A true JPH01299439A (en) 1989-12-04
JP2506148B2 JP2506148B2 (en) 1996-06-12

Family

ID=14977872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12816088A Expired - Fee Related JP2506148B2 (en) 1988-05-27 1988-05-27 Flow control mechanism of automatic decompressor

Country Status (1)

Country Link
JP (1) JP2506148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201888A1 (en) * 2021-03-26 2022-09-29 横河電機株式会社 Control device and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201888A1 (en) * 2021-03-26 2022-09-29 横河電機株式会社 Control device and control method
JP2022151201A (en) * 2021-03-26 2022-10-07 横河電機株式会社 Control device and control method

Also Published As

Publication number Publication date
JP2506148B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US7517385B2 (en) Gas separation device and method of use
US4763874A (en) Control valve
US20070131282A1 (en) Pressure-insensitive mass flow controller
USRE42401E1 (en) Double diaphragm precision throttling valve
JP2652259B2 (en) Flow control valve
JPS6320603A (en) Automatic set reduction valve
JPH01299439A (en) Controlling mechanism of flow rate of automatic pressure-reducing apparatus
CN218543305U (en) Axial-flow type intelligent voltage regulator
US5074156A (en) Flow control mechanism for automatic pressure reducing equipment
KR100528169B1 (en) Opening rate control apparatus of globe valve using electrical air control valve
US5183072A (en) Automatic switchover valve
CN101701581A (en) Intelligent adjustable variable flow gear pump device
JPH01153878A (en) Gas governor device and gas piping system
JP2510244B2 (en) Decompression adjustment mechanism of automatic decompression device
JP2787392B2 (en) Automatic setting pressure reducing device
JPH01299438A (en) Controlling system of pressure reduction of automatic pressure-reducing apparatus
US20210216089A1 (en) Integrated variable pressure and flow regulator
CN220910479U (en) Flow regulating valve
EP0919897B1 (en) A pilot-operated gas pressure regulator with counterbalanced sleeve
CN210178961U (en) Flow regulating valve
CN211231717U (en) Air volume adjusting device with internal valve
CN114877254A (en) Pneumatic pressure controller and pneumatic regulating valve for valve
RU2276804C1 (en) Gas pressure adjuster
CN2643091Y (en) Fluid speed regulating valve
JPH0620164Y2 (en) Automatic pressure controller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees