JPH01299413A - Sensor for angular velocity of rotation - Google Patents

Sensor for angular velocity of rotation

Info

Publication number
JPH01299413A
JPH01299413A JP12850188A JP12850188A JPH01299413A JP H01299413 A JPH01299413 A JP H01299413A JP 12850188 A JP12850188 A JP 12850188A JP 12850188 A JP12850188 A JP 12850188A JP H01299413 A JPH01299413 A JP H01299413A
Authority
JP
Japan
Prior art keywords
angular velocity
loop
optical fiber
rotational angular
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12850188A
Other languages
Japanese (ja)
Inventor
Tatsuya Kumagai
達也 熊谷
Hiroshi Kajioka
博 梶岡
Yoshimi Motohashi
本橋 義美
Noribumi Shiina
則文 椎名
Takeyoshi Takuma
詫摩 勇悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12850188A priority Critical patent/JPH01299413A/en
Publication of JPH01299413A publication Critical patent/JPH01299413A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details
    • G01C19/722Details of the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H55/00Wound packages of filamentary material
    • B65H55/04Wound packages of filamentary material characterised by method of winding

Abstract

PURPOSE:To obtain a sensor for an angular velocity of rotation which causes little noise in relation to a change in temperature and is stable, by a method wherein a sensing loop formed of an optical fiber is wound on bobbins by prescribed lengths from the center of the loop alternately so as to form symmetrical coils. CONSTITUTION:An optical fiber 7 to be manufactured is wound on bobbins 8a and 8b for rewind by the same length from the opposite end sides thereof to be divided in two. Beginning with the center of this optical fiber 7, the bobbin 8a side thereof is wound in one layer on a bobbin 9 for a sensing coil, and next the bobbin 8b side thereof is wound thereon in one layer as a second layer. This winding is repeated alternately and thereby a symmetrically-coiled sensing loop is obtained. By forming the loop in symmetrical coils in this way, a part of a change in temperature is made to exist symmetrically on the opposite sides of the center of the loop even when the change in temperature is given partially. Accordingly, the optical path lengths of a left-turn light and a right-turn light become the same, the lights undergo the same history, and thus noise is prevented from occurring.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は回転角速度センサ、特にそのセンシングループ
ないしセンシングコイルの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotational angular velocity sensor, and particularly to the structure of its sensing loop or sensing coil.

[従来の技術] 回転角速度センサは、サグナック効果を応用して、回転
角速度を検出するものであり、基本的には、第5図に示
すように、光源1.偏光子32位相変調器4.センシン
グコイル5.ディテクタ6を各1台、光カプラ2を2台
使用して構成される。この場合、センシングコイルは下
−層目から順次巻かれて構成される。
[Prior Art] A rotational angular velocity sensor detects rotational angular velocity by applying the Sagnac effect, and basically, as shown in FIG. 5, a light source 1. Polarizer 32 Phase modulator 4. Sensing coil5. It is constructed using one detector 6 and two optical couplers 2. In this case, the sensing coil is wound sequentially from the bottom layer.

第7図に他の構成例を示す、この回転角速度センサも、
光源21、光カプラ23、光ファイバ偏光子24、光カ
プラ30、センシングコイル25、位相変調器26、受
光器27よりなる。光源21よりの出射光は、光カプラ
23.光ファイバ偏光子24を通り、光カプラ30によ
り左回り光、右回り光に分岐され、センシングコイル2
5に入射される。センシングコイル25を通った左回り
光、右回り光は、光カプラ30で合成され、その干渉光
は再び光ファ・イパ偏光子24.光カプラ23を通り、
受光器27で検出される。これらの光部品は融着接続さ
れ、その接続部22a、22b、22c、22d、22
eには、補強のため銅線入り熱収縮チューブを施してい
る。
This rotational angular velocity sensor, another configuration example of which is shown in FIG.
It consists of a light source 21, an optical coupler 23, an optical fiber polarizer 24, an optical coupler 30, a sensing coil 25, a phase modulator 26, and a light receiver 27. The light emitted from the light source 21 is transmitted to an optical coupler 23. Passes through the optical fiber polarizer 24 and is split into a left-handed light and a right-handed light by an optical coupler 30, and sent to the sensing coil 2.
5. The left-handed light and right-handed light that have passed through the sensing coil 25 are combined by an optical coupler 30, and the interference light is sent back to the optical fiber IPA polarizer 24. Pass through the optical coupler 23,
It is detected by the light receiver 27. These optical components are fusion spliced, and their connecting portions 22a, 22b, 22c, 22d, 22
A heat-shrinkable tube containing copper wire is used for reinforcement.

[発明が解決しようとする課題] 上記交渉型回転角速度は、左右両回り光の干渉による光
強度変化から回転角速度を検出する。このため、センシ
ングコイルに結合又はセンシングコイルから出射する光
は同一偏波でなければならず、更に、左右両回り光は同
一の光路長を伝搬しなければならないという制約を受け
る。
[Problems to be Solved by the Invention] The above-mentioned negotiated rotational angular velocity detects the rotational angular velocity from a change in light intensity due to interference between left and right lights. Therefore, the light coupled to or emitted from the sensing coil must have the same polarization, and furthermore, the light in both left and right directions must propagate along the same optical path length.

前者の制約は、同一偏波でない場合には、回転角度セン
サ出力の零点ドリフト又はノイズとなって現れることか
ら生ずるものである。この点に関しては、直交偏波モー
ドに減衰量の差がある複屈折(ASP)ファイバ、例え
ば偏波面保存光ファイz<(SPF)を、偏光子とセン
シングコイルに使用することで、解決できる。
The former restriction arises from the fact that if the polarizations are not the same, it appears as zero point drift or noise in the rotation angle sensor output. This point can be solved by using a birefringent (ASP) fiber with different attenuation amounts in orthogonal polarization modes, such as a polarization-maintaining optical fiber z<(SPF), for the polarizer and sensing coil.

他方、後者の同一の光路長を伝搬しなければならないと
いう制約に関しては特に対策がなされておらず、従来、
センシングコイルは下−層目から順次巻かれていた。し
かし、この巻き方では、センシングコイルに温度変化が
加わった場合、光ファイバの伸び縮みのためにノイズが
大きくなるという問題がある。
On the other hand, no particular measures have been taken regarding the latter constraint that propagation must take the same optical path length, and conventionally,
The sensing coils were wound sequentially from the bottom layer. However, this winding method has a problem in that when a temperature change is applied to the sensing coil, noise increases due to expansion and contraction of the optical fiber.

第5図にその様子を示す0巻き方が温度変化点に対して
対称でないため、右回り光の到達時間に差が生じ、左回
り光は高温(伸び)、右回り光は低温(縮み)の履歴を
受ける。第5図では、右回り光がその到達時刻t1で2
5℃の履歴を受け、左回り光がその到達時刻t2で25
℃の履歴を受ける場合を示している0両光は、光カプラ
で合成されるが、異なった光路長を経ているため、干渉
による光強度が変化しノイズとなる。従って、従来はセ
ンシングコイルを恒温槽に入れるなどの対策をとってい
た。
This situation is shown in Figure 5. Since the zero winding direction is not symmetrical with respect to the temperature change point, there is a difference in the arrival time of the clockwise light, and the counterclockwise light has a high temperature (extension) and the clockwise light has a low temperature (shrinkage). Receive the history of. In Fig. 5, the clockwise light reaches 2 at the arrival time t1.
After receiving a history of 5°C, the counterclockwise light reaches 25°C at the arrival time t2.
The two lights, which show the case of receiving a history of 0°C, are combined by an optical coupler, but because they pass through different optical path lengths, the light intensity changes due to interference, resulting in noise. Therefore, conventional measures have been taken such as placing the sensing coil in a constant temperature bath.

一方、回転角速度センサには、軽量化、小型化が要求さ
れている。しかし、第7図の従来技術では、接続部22
a〜22eの全部に熱収縮チューブを施している。この
チューブのサイズは約70 mlI+と長いものである
。従って、回転角速度センサのシステム全体を小型化、
軽量化することに問題があった。
On the other hand, rotational angular velocity sensors are required to be lighter and smaller. However, in the prior art shown in FIG.
A to 22e are all covered with heat-shrinkable tubes. This tube is long, approximately 70 mlI+ in size. Therefore, the entire rotational angular velocity sensor system can be miniaturized.
There was a problem with making it lighter.

最も重要な問題は、光ファイバ偏光子24の収納方法で
ある。従来、偏光子24はセンシングコイル25上に巻
き、その両端末部を約50cm出して光カプラ23.3
0と接続し、熱収縮チューブ22b、22cにより補強
している。
The most important issue is how to store the optical fiber polarizer 24. Conventionally, the polarizer 24 is wound on the sensing coil 25, and both ends of the polarizer 24 are exposed by about 50 cm and connected to the optical coupler 23.3.
0 and reinforced with heat shrink tubes 22b and 22c.

光ファイバ偏光子24は、その偏波面保存光ファイバS
PFの構造パラメータをある条件に設定することで、S
PFの固有偏光モードの曲げ損失特性に差をもたせたも
ので、楕円の短軸方向に偏波したモード(Y偏波)は高
損失、長軸方向に偏波したモード(X偏波)は低損失と
なる。しかし、現状の光ファイバ偏光子では、朱だX偏
波の曲げ損失特性が通常のSPFの曲げ損失特性と同等
になっていない(曲げに弱い)ために、組込み実装の際
に小さな曲がり等で損失増となることが多かった。その
ため光学系を小さな空間に密に収納することができない
という問題があった。
The optical fiber polarizer 24 is a polarization maintaining optical fiber S.
By setting the structural parameters of PF to certain conditions, S
The bending loss characteristics of the PF's eigenpolarization modes are different; the mode polarized in the direction of the short axis of the ellipse (Y polarization) has a high loss, and the mode polarized in the direction of the long axis (X polarization) has a high loss. Low loss. However, with current optical fiber polarizers, the bending loss characteristics of vermilion This often resulted in increased losses. Therefore, there was a problem in that the optical system could not be tightly housed in a small space.

本発明の目的は、前記した従来技術の欠点を解消し、温
度変化に対してノイズの少ない回転角速度センサを提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a rotational angular velocity sensor with less noise in response to temperature changes.

本発明の他の目的は、熱収縮チューブを用いた接続補強
部の数を減らし、また光ファイバ偏光子が実装の際に小
さな曲がり等で損失増とならない小型、軽量な回転角速
度センサを提供することにある。
Another object of the present invention is to provide a small and lightweight rotational angular velocity sensor that reduces the number of connection reinforcing parts using heat-shrinkable tubes and that does not cause increased loss due to small bends in the optical fiber polarizer during mounting. There is a particular thing.

[課題を解決するための手段] 本発明の回転角速度センサは、光ファイバから成るセン
シングループをそのループの中央から一定の長さ分だけ
交互にボビンに巻いて対称巻きとし、このセンシングル
ープの両端に分岐・結合光学系を構成し、該ループに互
いに反対方向に光を伝搬させ、これらの位相差から回転
角速度を検出する構成としたものである。この対称巻き
する−定の長さは、ポビンの単層または一層巻分に相当
するようにすることが好ましい。
[Means for Solving the Problems] The rotational angular velocity sensor of the present invention has a sensing loop made of an optical fiber that is alternately wound around a bobbin by a certain length from the center of the loop to achieve symmetrical winding. A branching/combining optical system is constructed in the loop, light is propagated in mutually opposite directions through the loop, and the rotational angular velocity is detected from the phase difference between them. Preferably, the length of this symmetrical winding corresponds to a single layer or one layer of winding of the pobbin.

他の形態としては1位相変調器式の回転角速度センサに
おいて、センシングコイル上に巻かれた光ファイバ偏光
子を光カプラと融着接続した後、その接続部までセンシ
ングコイルに巻いてセンシングコイル全体をシリコーン
等の樹脂で覆った構成とする。
Another example is a one-phase modulator-type rotational angular velocity sensor in which an optical fiber polarizer wound on a sensing coil is fusion-spliced to an optical coupler, and then wrapped around the sensing coil up to the connection point to complete the entire sensing coil. The structure is covered with resin such as silicone.

[作用] センシングループは、そのループの中央から一定の長さ
分だけ交互に巻いて対称巻きとしであるため、センシン
グループに部分的に温度変化が加わった場合でも、その
温度変化部分はループの中央から対称的に存在すること
になる。このため左回り光と右回り光の光路長が同じに
なり、同じ履歴を受けるため、温度変化に起因するノイ
ズを生じなくなる。
[Function] Since the sensing loop is symmetrically wound by winding alternately by a certain length from the center of the loop, even if a temperature change is applied to a part of the sensing loop, the temperature change part will be affected by the temperature change part of the loop. It will exist symmetrically from the center. Therefore, the optical path lengths of the counterclockwise light and the clockwise light become the same, and they receive the same history, so that noise due to temperature changes is not generated.

一方、光カプラと光ファイバ偏光子との接続部までセン
シングコイルに巻き、コイル全体ヲシリコーン等の樹脂
で覆う構成とすると、光ファイバ偏光子のリード部(端
末)が外部に出なくなる。
On the other hand, if the sensing coil is wound up to the connecting portion between the optical coupler and the optical fiber polarizer and the entire coil is covered with a resin such as silicone, the lead portion (terminal) of the optical fiber polarizer will not come out.

従って、実装の際、光ファイバ偏光子の端部が曲げ等を
受けて損失増を招くという事態が生じなくなる。また、
接続部に補強用の銅線入り熱収縮チューブを用いないた
め、全体が小型、軽量化する。
Therefore, during mounting, the end portion of the optical fiber polarizer is not bent or otherwise caused to increase loss. Also,
Since heat-shrinkable tubes with copper wire for reinforcement are not used in the connections, the overall structure is smaller and lighter.

し実施例] 以下、図示の実施例について述べる。Examples] The illustrated embodiment will be described below.

第1図に回転角速度センサのセンシングループを対称巻
きする方法の一実施例を示す。
FIG. 1 shows an embodiment of a method for symmetrically winding a sensing loop of a rotational angular velocity sensor.

先ず、製造された光ファイバ7(第1図(d))を、そ
の両端側から巻替用ポビン8a、8bに同じ長さで巻き
取り52つに分ける(第1図(b))。
First, the manufactured optical fiber 7 (FIG. 1(d)) is wound into 52 equal lengths from both ends onto rewinding pobbins 8a and 8b (FIG. 1(b)).

次に、センシングコイル用ポビン9に、この光ファイバ
7の中央から1巻替用ボビン8a側を一層巻付ける0次
に、第2層目として巻替用ポビン8b側を一層巻付け、
これを交互に繰返して第3層目以降を巻き、対称巻きセ
ンシングループを得る(第1図(c))。
Next, the first rewinding bobbin 8a side is wound one layer from the center of the optical fiber 7 around the sensing coil pobbin 9. Next, the rewinding bobbin 8b side is further wound as a second layer.
This process is repeated alternately to wind the third and subsequent layers to obtain a symmetrical winding sensing loop (FIG. 1(c)).

本方法を用いてセンシングループを試作し、その特性を
測定した。第2図はその測定系の構成示すもので、1は
光源、2は光カプラ、3は偏光子、4は位相変調器、5
はセンシングコイル、6はディテクタ、10はロックイ
ンアンプ、11はレコーダ、12はシンセサイザである
。位相変調方式の回転角速度センサとしての構成であり
、シンセサイザー12で位相変調器を駆動し、ロックイ
ンアンプで出力信号を検出した。
A sensing loop was prototyped using this method and its characteristics were measured. Figure 2 shows the configuration of the measurement system, where 1 is a light source, 2 is an optical coupler, 3 is a polarizer, 4 is a phase modulator, and 5
1 is a sensing coil, 6 is a detector, 10 is a lock-in amplifier, 11 is a recorder, and 12 is a synthesizer. It is configured as a rotational angular velocity sensor using a phase modulation method, and a synthesizer 12 drives a phase modulator, and a lock-in amplifier detects an output signal.

第3図に、本光学系をターンテーブルに乗せ。Figure 3 shows this optical system mounted on a turntable.

0.01度/Sで1時間左右に回転させた時の出力例を
示す、第5図から分るように、恒温槽を使用しなくとも
、零点変動及びノイズが少ない特性が得られる。
As can be seen from FIG. 5, which shows an example of the output when rotated left and right at 0.01 degrees/S for 1 hour, characteristics with less zero point fluctuation and noise can be obtained without using a constant temperature oven.

第4図は、センシングループにドライヤーで温度変化(
約50℃)を加えた時の零点変動及びノイズ特性を示し
た0図中、(0(′■は温度変化(約50°C)を加え
た時点を示しており、この2回の温度変化に対して、安
定な特性が得られている。
Figure 4 shows the temperature change (
In Figure 0, which shows the zero point fluctuation and noise characteristics when a temperature change (approximately 50°C) is applied, (0('■) indicates the time point when a temperature change (approximately 50°C) However, stable characteristics have been obtained.

尚、上記構成のセンシングループは、干渉型回転角速度
センサのみならず、リング共振型回転角速度センサにも
有効である。
Note that the sensing loop having the above configuration is effective not only for an interference type rotational angular velocity sensor but also for a ring resonance type rotational angular velocity sensor.

次に、第7図の形態において、小型軽値な回転角速度セ
ンサを得る手段について述べる。
Next, a means for obtaining a small and inexpensive rotational angular velocity sensor in the form shown in FIG. 7 will be described.

センシングコイル25上に巻かれた光ファイバ偏光子2
4の端末を、約30cmに切る。同様に光カプラ23の
接続すべき端末を、約30cmに切る。この偏光子24
の片方の端末と光カプラ23の接続すべき端末とを、両
者の固有偏光軸を合せて融着接続した後、偏光子24の
端末部を全てセンシングコイル25に巻込む、その際、
接続部22bも巻込む、偏光子24のもう片方の端末と
光カプラ30との接続部22cについても、同様に処理
する。
Optical fiber polarizer 2 wound on sensing coil 25
Cut the terminal from step 4 into approximately 30cm long. Similarly, the terminal to which the optical coupler 23 is to be connected is cut to about 30 cm. This polarizer 24
After fusion-splicing one terminal of the optical coupler 23 and the terminal to be connected to the optical coupler 23 by aligning their inherent polarization axes, the entire terminal part of the polarizer 24 is wound around the sensing coil 25. At this time,
The connecting portion 22c between the other terminal of the polarizer 24 and the optical coupler 30, which also involves the connecting portion 22b, is processed in the same manner.

上記処理を行なった後、接続部22b 、22cの信頼
性向上のため、センシングコイル25全体をシリコーン
等の樹脂で覆う。
After performing the above-mentioned processing, the entire sensing coil 25 is covered with a resin such as silicone in order to improve the reliability of the connecting portions 22b and 22c.

このように接続部22b 、22cに銅線入り熱収縮チ
ューブを使わず、接続部22b、22cも含めて、偏光
子24の端末部をセンシングコイル25に巻込むことに
より、実装の際、曲り等が加わる部分は通常の単一偏波
光ファイバSPFの部分までとなり、光ファイバ偏光子
24には曲がり等が加わらなくなる。
In this way, by wrapping the terminal portion of the polarizer 24, including the connecting portions 22b and 22c, around the sensing coil 25, without using heat-shrinkable tubes containing copper wire for the connecting portions 22b and 22c, it is possible to avoid bending during mounting. The portion to which this is applied is up to the portion of the normal single polarization optical fiber SPF, and the optical fiber polarizer 24 is not subjected to bending or the like.

実際に試作した結果、回転角速度センサの光学系全体を
小さな空間に密に納めることができ3従来の問題点が解
決できた。
As a result of actually making a prototype, the entire optical system of the rotational angular velocity sensor could be tightly packed into a small space, and three problems of the conventional system could be solved.

尚、その他の接続部22d、22eについても、銅線入
り熱収縮チューブを使わず、上記実施例と同様にセンシ
ングコイル部に巻くこともできる。
Note that the other connecting parts 22d and 22e can also be wound around the sensing coil part in the same manner as in the above embodiment, without using the heat shrink tube containing copper wire.

[発明の効果] 本発明の回転角速度センサは、センシングループを対称
巻きにしたため、温度変化に対して、安定な回転角速度
センサ出力が得られる。従って、センシングループの温
度を一定に保つための恒温槽も不要になる。
[Effects of the Invention] In the rotational angular velocity sensor of the present invention, since the sensing loop is wound symmetrically, a stable rotational angular velocity sensor output can be obtained against temperature changes. Therefore, there is no need for a constant temperature bath to keep the temperature of the sensing loop constant.

また、光ファイバ偏光子のリード部(端末)が出ないた
め、実装の際、曲げ等による損失増という問題がない、
そのため1回転角速度センサの光学系全体を小さな空間
に密に収納することが可使となる。また接続部に補強用
の銅線入り熱収縮チューブを用いないため、回転角速度
センサの光学系全体を小型化、軽量化することが可能と
なる。従って、小型、軽量回転角速度センサが実現でき
る。
In addition, since the lead part (terminal) of the optical fiber polarizer does not come out, there is no problem of increased loss due to bending etc. during mounting.
Therefore, it is possible to tightly house the entire optical system of the one-rotation angular velocity sensor in a small space. Furthermore, since a heat-shrink tube containing reinforcing copper wire is not used in the connection portion, the entire optical system of the rotational angular velocity sensor can be made smaller and lighter. Therefore, a small and lightweight rotational angular velocity sensor can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセンシングループ対称巻きの方法の一実施例を
示す図、第2図はセンシングループの評価に用いた測定
系の構成図、第3図は第2図の光学系をターンテーブル
に乗せ0,01度/Sで1時間左右に回転させた時の出
力を示す図、第4図はセンシングループに温度変化を加
えた時の出力を示す図、第5図は回転角速度センサの基
本構成図2第6図はセンシングコイルに温度変化が加わ
った時の様子を示す図、第7図は位相変調方式の回転角
速度センサの光学系を示す図である。 図中、1は光源、2は光カプラ、3は偏光子。 4は位相変調器、5はセンシングコイル、6はディテク
タ、7は製造された光ファイバ、21は光源、22は接
続補強部、23は光カプラ、2は光ファイ/へ偏光子、
25はセンシングコイル、26はディテクタ、27は受
光器、8a。 8bは巻替用ポビン、9はセンシングコイル用ボビン、
10はロックインアンプ、11はレコーダ、12はシン
セサイザ、30は光カプラを示す。
Figure 1 is a diagram showing an example of a method for symmetrically winding a sensing loop, Figure 2 is a configuration diagram of the measurement system used to evaluate the sensing loop, and Figure 3 is a diagram showing the optical system shown in Figure 2 mounted on a turntable. Figure 4 shows the output when rotating left and right at 0.01 degrees/S for 1 hour. Figure 4 shows the output when temperature changes are applied to the sensing loop. Figure 5 shows the basic configuration of the rotational angular velocity sensor. FIG. 2 is a diagram showing a situation when a temperature change is applied to the sensing coil, and FIG. 7 is a diagram showing an optical system of a phase modulation type rotational angular velocity sensor. In the figure, 1 is a light source, 2 is an optical coupler, and 3 is a polarizer. 4 is a phase modulator, 5 is a sensing coil, 6 is a detector, 7 is a manufactured optical fiber, 21 is a light source, 22 is a connection reinforcement part, 23 is an optical coupler, 2 is an optical fiber / polarizer,
25 is a sensing coil, 26 is a detector, 27 is a light receiver, and 8a. 8b is a rewinding pobbin, 9 is a sensing coil bobbin,
10 is a lock-in amplifier, 11 is a recorder, 12 is a synthesizer, and 30 is an optical coupler.

Claims (3)

【特許請求の範囲】[Claims] 1. 光ファイバから成るセンシングループをそのルー
プの中央から一定の長さ分だけ交互にボビンに巻いて対
称巻きとし、このセンシングループの両端に分岐・結合
光学系を構成し、該ループに互いに反対方向に光を伝搬
させ、これらの位相差から回転角速度を検出することを
特徴とする回転角速度センサ。
1. A sensing loop consisting of an optical fiber is wound symmetrically around a bobbin alternately by a certain length from the center of the loop, and a branching/coupling optical system is configured at both ends of this sensing loop, and windings are connected to the loop in opposite directions. A rotational angular velocity sensor characterized by propagating light and detecting rotational angular velocity from the phase difference between them.
2. 上記対称巻きする一定の長さをボビンの半層また
は一層巻分に相当するようにした請求項1記載の回転角
速度センサ。
2. 2. The rotational angular velocity sensor according to claim 1, wherein the fixed length of said symmetrical winding corresponds to a half-layer or one-layer winding of the bobbin.
3. 位相変調方式の回転角速度センサにおいて、セン
シングコイル上に巻かれた光ファイバ偏光子を光カプラ
と融着接続した後、その接続部までセンシングコイルに
巻いてセンシングコイル全体をシリコーン等の樹脂で覆
ったことを特徴とする回転角速度センサ。
3. In a phase modulation type rotational angular velocity sensor, an optical fiber polarizer wound on a sensing coil is fusion-spliced to an optical coupler, then wrapped around the sensing coil up to the connection point, and the entire sensing coil is covered with resin such as silicone. A rotational angular velocity sensor characterized by:
JP12850188A 1988-05-27 1988-05-27 Sensor for angular velocity of rotation Pending JPH01299413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12850188A JPH01299413A (en) 1988-05-27 1988-05-27 Sensor for angular velocity of rotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12850188A JPH01299413A (en) 1988-05-27 1988-05-27 Sensor for angular velocity of rotation

Publications (1)

Publication Number Publication Date
JPH01299413A true JPH01299413A (en) 1989-12-04

Family

ID=14986305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12850188A Pending JPH01299413A (en) 1988-05-27 1988-05-27 Sensor for angular velocity of rotation

Country Status (1)

Country Link
JP (1) JPH01299413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488255A2 (en) * 1990-11-28 1992-06-03 Matsushita Electric Industrial Co., Ltd. Fiber-optic coil and method of manufacturing same
JPH04112204U (en) * 1991-03-20 1992-09-30 日本航空電子工業株式会社 fiber optic coil
WO2008003071A2 (en) 2006-06-29 2008-01-03 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a bragg fiber
US7738109B2 (en) 2002-08-20 2010-06-15 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a Bragg fiber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488255A2 (en) * 1990-11-28 1992-06-03 Matsushita Electric Industrial Co., Ltd. Fiber-optic coil and method of manufacturing same
JPH04112204U (en) * 1991-03-20 1992-09-30 日本航空電子工業株式会社 fiber optic coil
JPH0750723Y2 (en) * 1991-03-20 1995-11-15 日本航空電子工業株式会社 Optical fiber coil
US7738109B2 (en) 2002-08-20 2010-06-15 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a Bragg fiber
US8068231B2 (en) 2002-08-20 2011-11-29 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a Bragg fiber
US8233151B2 (en) 2002-08-20 2012-07-31 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a hollow core fiber
US8427651B2 (en) 2002-08-20 2013-04-23 The Board Of Trustees Of The Leland Stanford Junior University Optical sensor using a hollow core waveguide
WO2008003071A2 (en) 2006-06-29 2008-01-03 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a bragg fiber
WO2008003071A3 (en) * 2006-06-29 2008-02-14 Univ Leland Stanford Junior Fiber optic sensor using a bragg fiber
US7619743B2 (en) 2006-06-29 2009-11-17 The Board Of Trustees Of The Leland Stanford Junior University Optical sensor utilizing hollow-core photonic bandgap fiber with low phase thermal constant
JP2009543065A (en) * 2006-06-29 2009-12-03 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ Optical fiber sensor using Bragg fiber
US7911620B2 (en) 2006-06-29 2011-03-22 The Board Of Trustees Of The Leland Stanford Junior University Optical sensor utilizing hollow-core photonic bandgap fiber with low phase thermal constant

Similar Documents

Publication Publication Date Title
JP5424805B2 (en) Two-wind fiber optic housing for fiber optic gyroscope
US4856900A (en) Quadrupole-wound fiber optic sensing coil and method of manufacture thereof
US20020167673A1 (en) System and method of winding a fog coil
US5074665A (en) Fiber optic gyroscope using dual-section counter-wound coil
JP2935635B2 (en) Adjustment method of fiber type optical sensor coil
US20020027659A1 (en) Current sensor
JP2939412B2 (en) Optical fiber coil and method for winding optical fiber around sensor spool
JP2759381B2 (en) Depolarized fiber optic rotation sensor with low Faraday effect drift
JPH01299413A (en) Sensor for angular velocity of rotation
JP2004534942A5 (en)
JP2004534942A (en) Optical fiber winding system and method
US6539134B1 (en) Polarization transformer
JPH11352158A (en) Optical fiber measuring instrument
CA2362140C (en) Polarization transformer and current sensor using the same
JP2514530B2 (en) Fiber optic gyro
JP2627134B2 (en) Fiber optic gyro
JP2001227957A (en) Optical fiber gyroscope
JP2514482B2 (en) Fiber optic gyro
JP2648226B2 (en) Optical fiber sensor and its system
JP2616231B2 (en) Optical fiber coil
US20020001426A1 (en) Current sensor
US7369246B2 (en) Method for winding sensing coils and sensing coil for fiber optic gyroscopes
JPH06167628A (en) Fiber type polarizer and its manufacture
JP2006030007A (en) Fiber-optic current sensor
JPH08145696A (en) Optical fiber gyroscope