JPH01298721A - Vacuum processor - Google Patents

Vacuum processor

Info

Publication number
JPH01298721A
JPH01298721A JP63129772A JP12977288A JPH01298721A JP H01298721 A JPH01298721 A JP H01298721A JP 63129772 A JP63129772 A JP 63129772A JP 12977288 A JP12977288 A JP 12977288A JP H01298721 A JPH01298721 A JP H01298721A
Authority
JP
Japan
Prior art keywords
sample
gas
electrostatic chuck
temperature
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63129772A
Other languages
Japanese (ja)
Inventor
Masashi Tezuka
雅士 手塚
Tadanobu Nagoshi
名越 忠信
Tsunemasa Tokura
戸倉 常正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuda Seisakusho Co Ltd
Original Assignee
Tokuda Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuda Seisakusho Co Ltd filed Critical Tokuda Seisakusho Co Ltd
Priority to JP63129772A priority Critical patent/JPH01298721A/en
Publication of JPH01298721A publication Critical patent/JPH01298721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a vacuum processor which can enhance thermal conductivity between a sample and an electrostatic chuck electrode for electrostatically attracting the sample and accurately control the temperature of the sample through a sample base by supplying gas through gas dispersing groove between both and diffusing it in a thin film state between both. CONSTITUTION:A vacuum vessel 1 is controlled therein to a predetermined pressure on the basis of the indication of a pressure gauge 14, and medium of predetermined temperature is supplied to the medium passage 3a of a sample base 3 to control the temperature of the base 3. Small amount of inert gas such as nitrogen gas is supplied by a gas pipe 15 to a gas dispersing groove 20 formed on the upper face of a first insulating layer 4b under the control of a gas flowrate control valve 17. This gas is diffused in a small gap between the first insulating layer 3b of an electrostatic chuck electrode 4 and a sample A in a thin film state. Since thermal conductivity between the sample A and the electrode 4 is remarkably enhanced by the presence of the gas of the thin film state, the temperature of the sample A preferably follows up the temperature of the base 3.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、真空中にてウェハーその他の各F1試料の加
工処理笠を行う真空処理装置において、試料を固定する
静電チャック電極を改良した真空処理装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention is directed to a vacuum processing apparatus that processes wafers and other F1 samples in vacuum. This invention relates to a vacuum processing apparatus with an improved chuck electrode.

(従来の技術) LSIその他の6種゛ト導体素子の製造に際しては、真
空処理装置やプラズマエツチング装置等の真空処理装置
が使用される。
(Prior Art) Vacuum processing equipment such as vacuum processing equipment and plasma etching equipment is used in the manufacture of LSI and other six types of conductor elements.

この真空処理装置においては、ウェーハその他の試料は
真空容器内の試料台上に載置され、ガス冷却あるいは試
料台を介したhk熱による温度制御の下で必要な処理を
施される。
In this vacuum processing apparatus, a wafer or other sample is placed on a sample stage within a vacuum container, and subjected to necessary processing under temperature control using gas cooling or hk heat via the sample stage.

試料台と試料との固定方法としては、試t4をrltに
試料台に載置しただけの自重設置法、静電チャックによ
り試料を試料台の電極に静電的に吸着させる静電チャッ
ク法、試料をクランプ等を用いて試料台に固定する機械
式チャック法などがある。
The methods of fixing the sample stage and sample include the self-weight installation method in which sample t4 is simply placed on the sample stage on the rlt, the electrostatic chuck method in which the sample is electrostatically attracted to the electrodes of the sample stage using an electrostatic chuck, There is a mechanical chuck method in which the sample is fixed on a sample stage using a clamp or the like.

(発明が解決しようとする課題) ところで、真空中では試料と試料台との間の熱伝導は両
者の接触面積に依(jするため、大きな熱伝導を得るこ
とか難しく、例えば真空処理装置において試料を200
℃に加熱するためには、試料台の温度を250℃に保っ
た上、10分間以上も待たなければならないという欠点
かあった。
(Problem to be Solved by the Invention) By the way, in a vacuum, heat conduction between the sample and the sample stage depends on the contact area between the two, so it is difficult to obtain large heat conduction. 200 samples
In order to heat the sample to 0.degree. C., the temperature of the sample stage must be kept at 250.degree. C. and the sample must be waited for more than 10 minutes.

また、プラズマ等を用いてスパッタ成膜試料のエツチン
グを行う場合には、プラズマからの吸熱によって試料が
300 ℃程度まで昇温しでしまうため、100℃以下
の低温にて処理することができなかった。特に、プラズ
マによるスパッタやエツチングでは、処理中の試料温度
によって膜質や密層性、あるいはエツチング形状やエツ
チングレートが大きく左右されるため、試料の処理温度
を精度よくコントロールすることか肝要であるが、従来
技術では、これに十分にλ・す応することができなかっ
た。
Furthermore, when etching a sputtered film sample using plasma, etc., the temperature of the sample rises to about 300°C due to heat absorption from the plasma, so it is not possible to process at a low temperature of 100°C or less. Ta. In particular, in sputtering and etching using plasma, the film quality, layer density, etching shape, and etching rate are greatly affected by the sample temperature during processing, so it is important to accurately control the processing temperature of the sample. In the conventional technology, it has not been possible to adequately respond to this problem.

また、従来の静電チャック法においては、静電チャック
電極の、試料に接する側の絶縁層(第1の絶縁層)はガ
ス導入配管に接する部分だけしかバターニングされてい
ないため、試料と静電チャックの間の熱抵抗が大きかっ
た。
In addition, in the conventional electrostatic chuck method, the insulating layer (first insulating layer) on the side of the electrostatic chuck electrode that contacts the sample is patterned only at the part that contacts the gas introduction pipe, so the sample Thermal resistance between the electric chucks was large.

本発明は従来技術における上述のごとき課題を解決すべ
くなされたもので、試料と試料台上の静電チャックとの
間の熱伝導度を高めることによって試料の温度を試料台
を介して精度よく制御し得る真空処理装置を提供するこ
とを目的とするものである。
The present invention was made to solve the above-mentioned problems in the prior art, and by increasing the thermal conductivity between the sample and the electrostatic chuck on the sample stand, the temperature of the sample can be controlled accurately through the sample stand. The object of the present invention is to provide a vacuum processing apparatus that can be controlled.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の真空処理装置は、真空容器と、これに絶縁的に
取付けられた試料台と、この試料台の温度を制御する温
度制御機構と、前記試料台上に固定され、試料を静電的
に吸着する静電チャック電極と、この静電チャック電極
の上面に開口するガス導入配管と、このガス導入配盾C
三ガスを供給するガス供給機構と、前記静電チャック電
極の第1の絶縁層に形成され、前記ガス導入配管に連な
り、それからO(給されるガスを前記第1の絶縁層と試
料との間に充拍させるガス分散溝とを具備することを特
徴とするものである。
(Means for Solving the Problems) The vacuum processing apparatus of the present invention includes a vacuum container, a sample stage insulatively attached to the vacuum vessel, a temperature control mechanism for controlling the temperature of the sample stage, and a temperature control mechanism that controls the temperature of the sample stage. An electrostatic chuck electrode that is fixed to the C and electrostatically attracts a sample, a gas introduction pipe that opens on the top surface of this electrostatic chuck electrode, and this gas introduction shield C.
A gas supply mechanism for supplying three gases, a gas supply mechanism formed on the first insulating layer of the electrostatic chuck electrode, connected to the gas introduction pipe, and then O The gas dispersion groove is characterized by having a gas dispersion groove in between.

(作 用) 上述のように構成した本発明の真空処理装置においては
、試料と、これを静電的に吸着する静電チャック電極と
の間に、ガス分散溝を介してガスが供給され、これが両
者間を薄膜状に拡散してゆくため、両者間の熱伝導度が
高くなり、試料の温度を試料台の温度制御によって、所
望の温度に精度よくコントロールすることかできる。
(Function) In the vacuum processing apparatus of the present invention configured as described above, gas is supplied through the gas dispersion groove between the sample and the electrostatic chuck electrode that electrostatically attracts the sample. Since this diffuses between the two in the form of a thin film, the thermal conductivity between the two becomes high, and the temperature of the sample can be precisely controlled to a desired temperature by controlling the temperature of the sample stage.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明装置の実施例を示すもので、真空容器1
には、その下端に絶縁部材2を介して試料台3が気密に
接続固定されている。この試料台は導電性の材料からな
り、電極部祠としても機能する。
FIG. 1 shows an embodiment of the apparatus of the present invention, in which a vacuum vessel 1
A sample stage 3 is airtightly connected and fixed to the lower end of the specimen via an insulating member 2. This sample stage is made of conductive material and also functions as an electrode shrine.

試料台3の上には静電チャック電極4か固定されており
、試料(例えば被処理基板)Aはこの静電チャック電極
に吸着されて固定される。真空容器1内の上方には、試
料台3と対向して対向電極5が設置されている。この対
向電極はリード線6および真空容器1を介して接地され
、また、試料台3は整合回路7を介して高周波電源8に
接続されている。
An electrostatic chuck electrode 4 is fixed on the sample stage 3, and a sample (for example, a substrate to be processed) A is attracted and fixed to this electrostatic chuck electrode. A counter electrode 5 is installed above the vacuum container 1 so as to face the sample stage 3 . This counter electrode is grounded via a lead wire 6 and a vacuum container 1, and the sample stage 3 is connected to a high frequency power source 8 via a matching circuit 7.

静電チャック電極4は、電極本体4aと、その上下面を
被覆する第1の絶縁層4bおよび第2の絶縁層4Cから
なり、電極本体4aは高周波遮断回路9を介して直流電
源10に接続されている。
The electrostatic chuck electrode 4 consists of an electrode body 4a, a first insulating layer 4b and a second insulating layer 4C covering the upper and lower surfaces of the electrode body 4a, and the electrode body 4a is connected to a DC power source 10 via a high frequency cutoff circuit 9. has been done.

また、静電チャック電極4は第2の絶縁層4Cを試料台
3上面に接着剤を用いて接着することにより試料台3に
固定されている。
Further, the electrostatic chuck electrode 4 is fixed to the sample stage 3 by bonding the second insulating layer 4C to the upper surface of the sample stage 3 using an adhesive.

試料台3の内部には温度制御機構の一部を(h成する媒
体通路3aが形成されており、そこには温度調整された
冷却水等の媒体が媒体配管11a。
A medium passage 3a, which forms part of the temperature control mechanism, is formed inside the sample stage 3, and a medium such as temperature-controlled cooling water is passed through the medium pipe 11a.

11bを通して導入または排出される。また、対向電融
5にはガス導入管12を通して処理ガスが導入され、対
向電極5の表面に設けた放出孔(図示せず)からhk出
される。なお、第1図中、13は排気管を、14は真空
容器]内の圧力を検出する圧力計を示す。
11b. Further, a processing gas is introduced into the counter electrode 5 through a gas introduction pipe 12, and is discharged from a discharge hole (not shown) provided on the surface of the counter electrode 5. In FIG. 1, 13 indicates an exhaust pipe, and 14 indicates a pressure gauge for detecting the pressure inside the vacuum vessel.

ガス導入配管15の上端は試料台3および静電チャック
電極4を貫通し、静電チャック電極4の上面に開口して
いる。ガス導入配管15の途中にはガス供給機構の一部
を構成する圧力に116とガス流】コントローラバルブ
17が設けられ、またガス導入配管15のガス流量コン
トローラバルブ17よりも下流から分岐するガス排出配
管18にはiiJ変バルブ19が設けられている。
The upper end of the gas introduction pipe 15 passes through the sample stage 3 and the electrostatic chuck electrode 4 and is open to the upper surface of the electrostatic chuck electrode 4. A pressure control valve 116 and a gas flow controller valve 17 which form part of the gas supply mechanism are provided in the middle of the gas introduction pipe 15, and a gas discharge valve branching from the downstream side of the gas flow rate controller valve 17 of the gas introduction pipe 15 is provided. The pipe 18 is provided with an iiJ variable valve 19.

第2図は静電チャック電極付近の詳細を示している。こ
の図において、電極本体4aとしては厚さ0.05〜0
.2mm程度の銅シートが使用されており、また、第1
の絶縁層4bおよび第2の絶縁層4Cとしては、フレキ
シブルな厚さ0.05〜[:)、2n+n程度のポリイ
ミド樹脂フィルムが使用されている。これらのフィルム
の周縁部分は互いに接希され、電極本体4aのエツジ部
分を覆っている。第1の絶縁層4bの上面には、バター
ニングによってガス分散溝20か形成されている。
FIG. 2 shows details around the electrostatic chuck electrode. In this figure, the electrode body 4a has a thickness of 0.05 to 0.
.. A copper sheet of about 2 mm is used, and the first
As the insulating layer 4b and the second insulating layer 4C, a flexible polyimide resin film having a thickness of about 0.05 to [:) and about 2n+n is used. The peripheral portions of these films are grafted together and cover the edge portions of the electrode body 4a. Gas dispersion grooves 20 are formed on the upper surface of the first insulating layer 4b by patterning.

第3図はガス分散溝20の形状の一例を示すらので、ガ
ス導入配管15の上端に連なり、そこを中心として放射
状方向に伸びる4本の放射状溝21a、21b、21c
、21dと、これらの放射状溝の外端に連なり、そこか
ら円周h゛向に伸びる円弧状溝22a、  221)、
22C,22dからfM成されている。これらのガス分
散溝の外径は、ガス漏れを防ぐため試料Aの外径よりも
小径とされている。
FIG. 3 shows an example of the shape of the gas distribution groove 20, so four radial grooves 21a, 21b, 21c are connected to the upper end of the gas introduction pipe 15 and extend radially around the upper end.
, 21d, and arcuate grooves 22a, 221) connected to the outer ends of these radial grooves and extending from there in the circumferential direction h.
fM is formed from 22C and 22d. The outer diameters of these gas dispersion grooves are smaller than the outer diameter of sample A to prevent gas leakage.

なお、ガス分散溝20は第4図ないし第7図に例示する
ような形状としてもよい。即ち第4図は第3図に示した
ガス分散溝パターンの大小2個を45°ずらせて2重に
組合わせたガス分散溝30を、第5図は多数本の直線状
の溝をツリー状に配置したガス分散溝31を、第6図は
渦巻き状としたガス分散溝32を、第7図は多数本の直
線状の溝を放射状に配置したガス分散溝33を、それぞ
れスケルトン的に示している。
Note that the gas dispersion groove 20 may have a shape as illustrated in FIGS. 4 to 7. That is, Fig. 4 shows a gas dispersion groove 30 in which the two large and small gas dispersion groove patterns shown in Fig. 3 are shifted by 45 degrees and combined in a double manner, and Fig. 5 shows a tree-like structure in which many linear grooves are combined. 6 shows a spiral gas dispersion groove 32, and FIG. 7 shows a skeleton of a gas dispersion groove 33 having a large number of linear grooves arranged radially. ing.

次に、上述のように構成された本発明の真空処理装置の
作動を説明する。
Next, the operation of the vacuum processing apparatus of the present invention configured as described above will be explained.

第1図において、先ず、試料台3上の静電チャック電極
4の上面に試料Aを載置し、真空容器1内を排気管13
を通して真空にvト気すると共に、静電チャック電極の
電極本体4aに、直流電源10より電圧を印加し、試料
Aを静電的に試料台3上に固定する。
In FIG. 1, first, a sample A is placed on the upper surface of the electrostatic chuck electrode 4 on the sample stage 3, and the inside of the vacuum container 1 is passed through the exhaust pipe 13.
At the same time, a voltage is applied from the DC power supply 10 to the electrode main body 4a of the electrostatic chuck electrode, and the sample A is electrostatically fixed on the sample stage 3.

次に、処理ガス導入装置(図示せず)より、ガス導入管
を通して処理ガスを真空容器1内に導入し、その圧力か
所定の値に達したら、高周波電源8より高周波電圧を試
料台3に印加して試料Aのエツチングを行う。
Next, a processing gas is introduced into the vacuum container 1 through a gas introduction pipe from a processing gas introduction device (not shown), and when the pressure reaches a predetermined value, a high frequency voltage is applied to the sample stage 3 from a high frequency power supply 8. Sample A is etched by applying this voltage.

この時、真空容器1内は圧力計14の指示に基づき所定
の電力に制御され、また、試料台゛3の媒体通路3aに
は所定温度の媒体が供給されて試料台′3の温度を制御
する。一方、第1の絶縁層4bの1曲に形成したガス分
散溝20には、ガス流量コントローラバルブ17の制御
のもとで、ガス導入配管15より微量の不活性ガス、例
えば窒素ガスが供給される。このガスは静電チャック電
極4の第1の絶縁層3bと試料Aとの間の微小へ隙間を
薄膜状に拡散してゆく。この薄膜状のガスの介(1によ
って試料Aと静電チャック電極4間の熱伝導性はとしく
高まるので、試料Aの温度は試料台3の温度によく追従
するようになる。
At this time, the inside of the vacuum container 1 is controlled to a predetermined electric power based on the instruction from the pressure gauge 14, and a medium at a predetermined temperature is supplied to the medium passage 3a of the sample stage '3 to control the temperature of the sample stage '3. do. On the other hand, a trace amount of inert gas, such as nitrogen gas, is supplied from the gas introduction pipe 15 to the gas distribution groove 20 formed in one curve of the first insulating layer 4b under the control of the gas flow rate controller valve 17. Ru. This gas diffuses into the minute gap between the first insulating layer 3b of the electrostatic chuck electrode 4 and the sample A in the form of a thin film. The thermal conductivity between the sample A and the electrostatic chuck electrode 4 is greatly increased by this thin film of gas (1), so that the temperature of the sample A closely follows the temperature of the sample stage 3.

下記表は、上記装置を高速RI E (REACTIV
EION IE’rGIIING ) ’A置に適用し
て、処理中の試料Aの温度をサーモラベルによってM1
定した結果を示す。この別表は、高周波電源8から試料
台3に供給される電力を電極+11−位面積当りのパワ
ー強度(W / cd )に換算し、これを10分間印
加した後の試料面の上昇温度を示すもので、(A)はガ
ス分散溝のない従来の静電チャック電極をIIILIて
試料Aを静電的にチャックし、ガス導入配管15から窒
素ガスを導入した場合を、(B)は静電チャック電極を
使用せずに、試料台3上に直接、試料Aを載置して自重
のみにて固定した場合を、(C)は従来タイプの静電チ
ャック電極を用い、ガス導入配管15からガスを流さな
かった場合を、(D)は静電チャック電極を使用せずに
、試料台3上に直接、試料Aを載置して機械的に試料A
をクランプした場合を、また(E)は上述した本発明の
実施例の場合をそれぞれ示している。
The table below shows how the above equipment can be used for high speed RI E (REACTIV).
EION IE'rGIIIING)' applied to position A to set the temperature of sample A during processing to M1 using the thermolabel.
The results are shown below. This table converts the power supplied from the high-frequency power source 8 to the sample stage 3 into power intensity (W/cd) per electrode +11-position area, and shows the temperature rise on the sample surface after applying this for 10 minutes. (A) shows the case where sample A is electrostatically chucked using a conventional electrostatic chuck electrode without gas dispersion grooves, and nitrogen gas is introduced from the gas introduction pipe 15, and (B) shows the case where the sample A is electrostatically chucked using a conventional electrostatic chuck electrode without gas dispersion grooves. (C) shows the case where the sample A is placed directly on the sample stage 3 and fixed only by its own weight without using a chuck electrode. (D) shows the case where no gas is flowed, and sample A is placed directly on the sample stage 3 without using an electrostatic chuck electrode.
(E) shows the case of clamping, and (E) shows the case of the above-mentioned embodiment of the present invention.

表1  温度測定結果 また、第8図は、連続処理時間に対する試料温度の変化
の測定結果を、上述の本発明実施例装置による場合と、
従来装置による場合につき示すものである。
Table 1 Temperature measurement results FIG. 8 shows the measurement results of changes in sample temperature with respect to continuous processing time, in the case of the above-mentioned apparatus according to the present invention, and
This example is based on a conventional device.

これらの結果から、本発明による場合には、従来装置に
比べて冷却効果か著しく向上していること、および処理
時間に対する温度安定性が高く、温度制御能力が向上し
ていることが分る。その理由は、静電チャック電極と試
料との間に必然的に形成されるミクロな隙間にガス導入
配管からの不活性ガスが充填され、両者間の熱伝導率か
向上するためと考えられる。
These results show that in the case of the present invention, the cooling effect is significantly improved compared to the conventional apparatus, the temperature stability with respect to processing time is high, and the temperature control ability is improved. The reason for this is thought to be that the microscopic gap inevitably formed between the electrostatic chuck electrode and the sample is filled with inert gas from the gas introduction pipe, improving the thermal conductivity between the two.

また、上記実施例においては、ガス分散溝20を静電チ
ャック電I5!4の第1の絶縁層4bの上面のみに形成
した例につき述べたか、本発明はこれに限定されるもの
ではなく、例えば、静電チャック電極4の第2の絶縁層
4cの下面、即ち試料台3との境界面にも形成するよう
にしてもよく、その場合には、冷却効果や温度制御性は
一層向上する。
Further, in the above embodiment, an example was described in which the gas dispersion groove 20 was formed only on the upper surface of the first insulating layer 4b of the electrostatic chuck electrode I5!4, but the present invention is not limited to this. For example, it may be formed on the lower surface of the second insulating layer 4c of the electrostatic chuck electrode 4, that is, on the interface with the sample stage 3. In that case, the cooling effect and temperature controllability are further improved. .

なお、この場合には、静電チャック電極の耐久性を保つ
ため、第1の絶縁層側のガス分散溝20と、第2の絶縁
層側のガス分散溝とは、異なる形状のものを組合わせて
使用することが望ましい。
In this case, in order to maintain the durability of the electrostatic chuck electrode, the gas dispersion grooves 20 on the first insulating layer side and the gas dispersion grooves on the second insulating layer side are assembled with different shapes. It is desirable to use them together.

また、上記実施例においては、第1の絶縁層および第2
の絶縁層としてポリイミド樹脂フィルムからなるフレキ
シブルシート材を用いたが、その理由は不活性ガスか真
空容器1中に流れ出さないよう、試料Aと静電チャック
電I5!4との密着を計るためである。従って、これら
の面が均一に平坦化されている場合には、第1の絶縁層
をフレキシブルにする必要はなく、例えば固体質のアル
ミナや窒化けい素等のファインセラミックスで構成して
もよい。
Further, in the above embodiment, the first insulating layer and the second insulating layer
A flexible sheet material made of polyimide resin film was used as the insulating layer for the purpose of ensuring close contact between sample A and electrostatic chuck electrode I5!4 to prevent inert gas from flowing into the vacuum container 1. It is. Therefore, if these surfaces are uniformly planarized, the first insulating layer does not need to be flexible, and may be made of fine ceramics such as solid alumina or silicon nitride, for example.

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明においては、静電チャック電画と
試料との間に必然的に形成されるミクロな隙間にガス導
入配管からの不活性ガスか均等に充填されるので、試料
台と試料との間の熱抵抗が低減し、試料の温度を粘度よ
く制御でき、また、従来よりも低い温度で試料を処理す
ることかできる。
As mentioned above, in the present invention, the microscopic gap inevitably formed between the electrostatic chuck image and the sample is evenly filled with inert gas from the gas introduction pipe, so that the sample stage and Thermal resistance between the sample and the sample is reduced, the temperature of the sample can be controlled with good viscosity, and the sample can be processed at a lower temperature than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の真空処理装置の実施例を示す概略図、
第2図は第1図における静電チャック電極近傍の縦断面
図、第3図はその平面図、第4図ないし第7図は本発明
において使用される静電チャック電極におけるガス分散
溝の他の実施例を示すスケルトン図、第8図は本発明装
置と従来装置における試料温度の変化の様子を示すグラ
フである。 1・・・真空容器、2・・・絶縁部材、3・・・試料台
、3a・・・媒体通路、4・・・静電チャック電極、4
a・・・電極本体、4b・・・第1の絶縁層、4C・・
・第2の絶縁層、5・・・対向電極、6・・・リード線
、7・・・整合回路、8・・・高周波電源、9・・・高
周波遮断回路、10・・・直流電源、lla、llb・
・・媒体配管、1゛3・・・排気管、14.16・・・
圧力計、15・・・ガス導入配管、17・・・ガス流量
コントローラバルブ、18・・・ガスIJト出配管、1
9・・・可変バルブ、2(1,30,31,32,33
・・ガス分散溝。 出願人代理人   佐 藤 −雄 第1図 千2図 第3図 第4図    第5図 第6図    粥7図 連続処理時間 ↑ 、  第80
FIG. 1 is a schematic diagram showing an embodiment of the vacuum processing apparatus of the present invention,
FIG. 2 is a longitudinal cross-sectional view of the vicinity of the electrostatic chuck electrode in FIG. 1, FIG. 3 is a plan view thereof, and FIGS. FIG. 8 is a graph showing changes in sample temperature in the apparatus of the present invention and the conventional apparatus. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Insulating member, 3... Sample stage, 3a... Medium path, 4... Electrostatic chuck electrode, 4
a... Electrode body, 4b... First insulating layer, 4C...
- Second insulating layer, 5... Counter electrode, 6... Lead wire, 7... Matching circuit, 8... High frequency power supply, 9... High frequency cutoff circuit, 10... DC power supply, lla, llb・
...Medium piping, 1゛3...Exhaust pipe, 14.16...
Pressure gauge, 15... Gas introduction piping, 17... Gas flow rate controller valve, 18... Gas IJ outlet piping, 1
9...Variable valve, 2 (1, 30, 31, 32, 33
...Gas dispersion groove. Applicant's agent Mr. Sato Figure 1, 1,2, 3, 4, 5, 6 Continuous processing time ↑, 80

Claims (1)

【特許請求の範囲】 1、真空容器と、これに絶縁的に取付けられた試料台と
、この試料台の温度を制御する温度制御機構と、前記試
料台上に固定され、試料を静電的に吸着する静電チャッ
ク機構と、この静電チャック機構の上面に開口するガス
導入配管と、このガス導入配管にガスを供給するガス供
給機構と、前記静電チャック機構の第1の絶縁層に形成
され、前記ガス導入配管に連なり、それから供給される
ガスを前記第1の絶縁層と試料との間に充填させるガス
分散溝とを具備することを特徴とする真空処理装置。 2、前記静電チャック機構は第1の絶縁層と、第2の絶
縁層と前記第1、第2の絶縁層との間に電気的浮游の状
態で形状された電極層からなることを特徴とする請求項
1に記載の真空処理装置。 3、前記分散溝が第1の絶縁層と、第2の絶縁層を貫通
して形成されていることを特徴とする請求項1に記載の
真空処理装置。 4、前記静電チャック機構が前記試料台に粘着剤あるい
は接着剤で密着固定されていることを特徴とする請求項
1に記載の真空処理装置。
[Claims] 1. A vacuum container, a sample stage insulatively attached to the vacuum vessel, a temperature control mechanism for controlling the temperature of the sample stage, and a temperature control mechanism fixed on the sample stage for electrostatically controlling the sample. an electrostatic chuck mechanism that attracts the electrostatic chuck mechanism, a gas introduction pipe that opens on the top surface of the electrostatic chuck mechanism, a gas supply mechanism that supplies gas to the gas introduction pipe, and a first insulating layer of the electrostatic chuck mechanism. A vacuum processing apparatus comprising: a gas dispersion groove that is formed and connected to the gas introduction pipe, and that fills a space between the first insulating layer and the sample with gas supplied from the groove. 2. The electrostatic chuck mechanism is characterized by comprising a first insulating layer, a second insulating layer, and an electrode layer formed in an electrically floating state between the first and second insulating layers. The vacuum processing apparatus according to claim 1. 3. The vacuum processing apparatus according to claim 1, wherein the dispersion groove is formed to penetrate the first insulating layer and the second insulating layer. 4. The vacuum processing apparatus according to claim 1, wherein the electrostatic chuck mechanism is closely fixed to the sample stage with an adhesive or an adhesive.
JP63129772A 1988-05-27 1988-05-27 Vacuum processor Pending JPH01298721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129772A JPH01298721A (en) 1988-05-27 1988-05-27 Vacuum processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129772A JPH01298721A (en) 1988-05-27 1988-05-27 Vacuum processor

Publications (1)

Publication Number Publication Date
JPH01298721A true JPH01298721A (en) 1989-12-01

Family

ID=15017831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129772A Pending JPH01298721A (en) 1988-05-27 1988-05-27 Vacuum processor

Country Status (1)

Country Link
JP (1) JPH01298721A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234944A (en) * 1992-02-19 1993-09-10 Hitachi Ltd Wafer temperature control method and equipment
JPH05251544A (en) * 1992-03-05 1993-09-28 Fujitsu Ltd Conveyor
JPH06318566A (en) * 1992-12-02 1994-11-15 Applied Materials Inc Electrostatic chuck available in high density plasma
US5486975A (en) * 1994-01-31 1996-01-23 Applied Materials, Inc. Corrosion resistant electrostatic chuck
US5528451A (en) * 1994-11-02 1996-06-18 Applied Materials, Inc Erosion resistant electrostatic chuck
US5592358A (en) * 1994-07-18 1997-01-07 Applied Materials, Inc. Electrostatic chuck for magnetic flux processing
US5606485A (en) * 1994-07-18 1997-02-25 Applied Materials, Inc. Electrostatic chuck having improved erosion resistance
US5631803A (en) * 1995-01-06 1997-05-20 Applied Materials, Inc. Erosion resistant electrostatic chuck with improved cooling system
US5646814A (en) * 1994-07-15 1997-07-08 Applied Materials, Inc. Multi-electrode electrostatic chuck
US5729423A (en) * 1994-01-31 1998-03-17 Applied Materials, Inc. Puncture resistant electrostatic chuck
US5745331A (en) * 1994-01-31 1998-04-28 Applied Materials, Inc. Electrostatic chuck with conformal insulator film
US5801915A (en) * 1994-01-31 1998-09-01 Applied Materials, Inc. Electrostatic chuck having a unidirectionally conducting coupler layer
US5870271A (en) * 1997-02-19 1999-02-09 Applied Materials, Inc. Pressure actuated sealing diaphragm for chucks
US5880924A (en) * 1997-12-01 1999-03-09 Applied Materials, Inc. Electrostatic chuck capable of rapidly dechucking a substrate
US6023405A (en) * 1994-02-22 2000-02-08 Applied Materials, Inc. Electrostatic chuck with improved erosion resistance
US6273958B2 (en) 1999-06-09 2001-08-14 Applied Materials, Inc. Substrate support for plasma processing
US6278600B1 (en) 1994-01-31 2001-08-21 Applied Materials, Inc. Electrostatic chuck with improved temperature control and puncture resistance
US6478924B1 (en) 2000-03-07 2002-11-12 Applied Materials, Inc. Plasma chamber support having dual electrodes
US6598559B1 (en) 2000-03-24 2003-07-29 Applied Materials, Inc. Temperature controlled chamber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115226A (en) * 1983-11-28 1985-06-21 Hitachi Ltd Substrate temperature control method
JPS632324A (en) * 1986-06-20 1988-01-07 Fujitsu Ltd Dry etching apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115226A (en) * 1983-11-28 1985-06-21 Hitachi Ltd Substrate temperature control method
JPS632324A (en) * 1986-06-20 1988-01-07 Fujitsu Ltd Dry etching apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234944A (en) * 1992-02-19 1993-09-10 Hitachi Ltd Wafer temperature control method and equipment
JPH05251544A (en) * 1992-03-05 1993-09-28 Fujitsu Ltd Conveyor
JPH06318566A (en) * 1992-12-02 1994-11-15 Applied Materials Inc Electrostatic chuck available in high density plasma
US5986875A (en) * 1994-01-31 1999-11-16 Applied Materials, Inc. Puncture resistant electrostatic chuck
US5801915A (en) * 1994-01-31 1998-09-01 Applied Materials, Inc. Electrostatic chuck having a unidirectionally conducting coupler layer
US6278600B1 (en) 1994-01-31 2001-08-21 Applied Materials, Inc. Electrostatic chuck with improved temperature control and puncture resistance
US5486975A (en) * 1994-01-31 1996-01-23 Applied Materials, Inc. Corrosion resistant electrostatic chuck
US5729423A (en) * 1994-01-31 1998-03-17 Applied Materials, Inc. Puncture resistant electrostatic chuck
US5745331A (en) * 1994-01-31 1998-04-28 Applied Materials, Inc. Electrostatic chuck with conformal insulator film
US5753132A (en) * 1994-01-31 1998-05-19 Applied Materials, Inc. Method of making electrostatic chuck with conformal insulator film
US6557248B1 (en) * 1994-02-22 2003-05-06 Applied Materials Inc. Method of fabricating an electrostatic chuck
US6023405A (en) * 1994-02-22 2000-02-08 Applied Materials, Inc. Electrostatic chuck with improved erosion resistance
US5646814A (en) * 1994-07-15 1997-07-08 Applied Materials, Inc. Multi-electrode electrostatic chuck
US5996218A (en) * 1994-07-18 1999-12-07 Applied Materials Inc. Method of forming an electrostatic chuck suitable for magnetic flux processing
US5606485A (en) * 1994-07-18 1997-02-25 Applied Materials, Inc. Electrostatic chuck having improved erosion resistance
US5592358A (en) * 1994-07-18 1997-01-07 Applied Materials, Inc. Electrostatic chuck for magnetic flux processing
US5528451A (en) * 1994-11-02 1996-06-18 Applied Materials, Inc Erosion resistant electrostatic chuck
US5631803A (en) * 1995-01-06 1997-05-20 Applied Materials, Inc. Erosion resistant electrostatic chuck with improved cooling system
US5870271A (en) * 1997-02-19 1999-02-09 Applied Materials, Inc. Pressure actuated sealing diaphragm for chucks
US5880924A (en) * 1997-12-01 1999-03-09 Applied Materials, Inc. Electrostatic chuck capable of rapidly dechucking a substrate
US6273958B2 (en) 1999-06-09 2001-08-14 Applied Materials, Inc. Substrate support for plasma processing
US6478924B1 (en) 2000-03-07 2002-11-12 Applied Materials, Inc. Plasma chamber support having dual electrodes
US6598559B1 (en) 2000-03-24 2003-07-29 Applied Materials, Inc. Temperature controlled chamber

Similar Documents

Publication Publication Date Title
JPH01298721A (en) Vacuum processor
EP0871843B1 (en) Mounting member and method for clamping a flat thin conductive workpiece
US4384918A (en) Method and apparatus for dry etching and electrostatic chucking device used therein
JP4463416B2 (en) Method for forming semiconductor device
JP4881319B2 (en) Device for temperature control of a substrate spatially and temporally
US5325052A (en) Probe apparatus
EP0260150A2 (en) Vacuum processing apparatus wherein temperature can be controlled
JP2878144B2 (en) Apparatus and method for coating an electrostatic chuck surface with a layer of dielectric material
KR20170127724A (en) Plasma processing apparatus
SG176059A1 (en) Electrostatic chuck with polymer protrusions
KR19980063671A (en) Substrate support member for uniform heating of the substrate
JP2004342704A (en) Upper electrode and plasma treatment device
JPH08335567A (en) Plasma treatment apparatus
JP2009302508A (en) Substrate holding apparatus
JPH11330215A (en) Method and device for controlling temperature of substrate
TWI751340B (en) Plasma processing method
US20200176230A1 (en) Plasma processing apparatus and method of manufacturing semiconductor device using the same
JP2000124299A (en) Manufacture of semiconductor device and semiconductor manufacturing apparatus
JP3225850B2 (en) Electrostatic attraction electrode and method of manufacturing the same
JPH05243191A (en) Dry etching device
JPH09289201A (en) Plasma treating apparatus
JP3446772B2 (en) Mounting table and decompression device
JPH02135753A (en) Sample holding device
KR100964132B1 (en) Wafer support apparatus for electroplating process and method for using the same
JPH01200625A (en) Semiconductor wafer processing equipment