JPH01298158A - Sputtering device - Google Patents
Sputtering deviceInfo
- Publication number
- JPH01298158A JPH01298158A JP13078888A JP13078888A JPH01298158A JP H01298158 A JPH01298158 A JP H01298158A JP 13078888 A JP13078888 A JP 13078888A JP 13078888 A JP13078888 A JP 13078888A JP H01298158 A JPH01298158 A JP H01298158A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- target
- window
- chamber
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004544 sputter deposition Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000005477 sputtering target Methods 0.000 claims abstract description 8
- 230000005284 excitation Effects 0.000 claims description 32
- 238000000605 extraction Methods 0.000 claims description 16
- 230000005684 electric field Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 7
- 230000002093 peripheral effect Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はマイクロ波を利用した電子サイクロトロン共鳴
励起により生成させたプラズマを用いるスパッタリング
装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sputtering apparatus that uses plasma generated by electron cyclotron resonance excitation using microwaves.
一般に半導体集積回路等の電子デバイスの製造過程で試
料基板上に薄ロタを形成する方法として、シリコン系薄
膜の形成には主として高周波放電により生成させたプラ
ズマを用いる化学蒸着(CVD:Chemical V
apor Deposttion)法が、また金属又は
金属化合物の薄膜形成には主としてスバンタ法が用いら
れてきた。Generally, chemical vapor deposition (CVD), which uses plasma generated by high-frequency discharge, is used to form silicon-based thin films as a method for forming thin rotors on sample substrates in the manufacturing process of electronic devices such as semiconductor integrated circuits.
The apor deposition method has been used, and the Svanta method has been mainly used for forming thin films of metals or metal compounds.
しかし高周波プラズマCVD法は試料基板を250°C
〜400 ”Cに加熱する必要があり、また膜の緻密性
の点で膜質に問題がある。However, in the high-frequency plasma CVD method, the sample substrate is heated to 250°C.
It is necessary to heat the film to ~400''C, and there is a problem with film quality in terms of film density.
この対策として電子サイクロトロン共鳴(ECR:El
ectron CyclotronResonance
)を利用して生成させたプラズマを用いるCVD法が提
案されている。As a countermeasure to this problem, electron cyclotron resonance (ECR: El
ectron Cyclotron Resonance
) has been proposed.
この方法は試料基板を加熱する必要がなく、しかも高7
icvo法に匹敵する緻密な膜質が得られる利点を有す
る。−カスバッタ法は金属原子を容易に供給できる反面
、膜制御が難しく、また膜の緻密性にも問題があった。This method does not require heating the sample substrate, and
It has the advantage of providing dense film quality comparable to the icvo method. - Although the Kasbatta method can easily supply metal atoms, it is difficult to control the film, and there are also problems with the density of the film.
そこでこれを解消する方法としてECRプラズマ技術と
スパッタ法とを組み合せたECRC式スパッタ法案され
ている(特開昭59−47728号)。Therefore, as a method to solve this problem, an ECRC sputtering method combining ECR plasma technology and sputtering method has been proposed (Japanese Patent Laid-Open No. 47728/1989).
第4図は従来におけるECRC式スパッタ法施する装置
の模式的縦断面図であり、図中1はプラズマ生成室、2
はマイクロ波導波管、3は試料室、4は励磁コイルを示
している。FIG. 4 is a schematic vertical sectional view of a conventional ECRC sputtering apparatus, in which 1 is a plasma generation chamber, 2 is a plasma generation chamber, and 2 is a plasma generation chamber.
3 indicates a microwave waveguide, 3 a sample chamber, and 4 an excitation coil.
プラズマ生成室1の上部壁中央には石英ガラス1aにて
閉鎖したマイクロ波導入窓1bを、またこれと対向する
下部壁中央にはプラズマ引出窓1cを備えており、マイ
クロ波導入窓1bにはマイクロ波導波管2の一端部が連
結され、またプラズマ引出窓1cに面して試料室3が配
設され、更に周囲にはプラズマ生成室1及びこれに接続
されたマイクロ波導波管2の一端部にわたってこれらを
囲繞する態様で励磁コイル4が周設されている。The plasma generation chamber 1 is equipped with a microwave introduction window 1b closed with quartz glass 1a at the center of the upper wall, and a plasma extraction window 1c at the center of the lower wall opposite to this. One end of the microwave waveguide 2 is connected, and a sample chamber 3 is arranged facing the plasma extraction window 1c, and furthermore, a plasma generation chamber 1 and one end of the microwave waveguide 2 connected thereto are arranged around the plasma generation chamber 1. An excitation coil 4 is disposed around the parts so as to surround them.
試料室3内には前記プラズマ引出窓1cに面して試料基
板Sを載置する試料台5が、また試料室3内におけるプ
ラズマ引出窓ICの開口部直下の周縁に臨ませてスパッ
タ用のターゲット6がシールドケース6aに包持されて
配設されている。ターゲット6は、短い円筒形に形成さ
れ、その内周面を除く、上2下端面及び外周面をシール
ドケース6aにて被覆されており、これにはシールドケ
ース6aを貫通して直流電源7の負極が接続せしめられ
ている。In the sample chamber 3, there is a sample stage 5 on which a sample substrate S is placed facing the plasma extraction window 1c, and a sample stage 5 for sputtering facing the periphery immediately below the opening of the plasma extraction window IC in the sample chamber 3. A target 6 is disposed surrounded by a shield case 6a. The target 6 is formed into a short cylindrical shape, and the upper and lower end surfaces and the outer peripheral surface except for the inner peripheral surface are covered with a shield case 6a. The negative electrode is connected.
而してこのような従来装置にあっては、プラズマ生成室
1、試料室3内を、所定値にまで減圧した後、図示しな
いガス供給系を通じてこれらにガスを供給し、またマイ
クロ波導波管2を通じてプラズマ生成室1内にマイクロ
波を導入すると共に励磁コイル4に通電して磁界を形成
し、プラズマ生成室1内に電子サイクロトロン共鳴条件
を成立させてプラズマを生成せしめる。プラズマは励磁
コイル4にて形成される発散磁界により第5図に示す如
くプラズマ引出窓1cを通じて試料室3内に導入される
。In such a conventional device, after the pressure inside the plasma generation chamber 1 and the sample chamber 3 is reduced to a predetermined value, gas is supplied to these through a gas supply system (not shown), and a microwave waveguide is Microwaves are introduced into the plasma generation chamber 1 through the plasma generator 2, and the excitation coil 4 is energized to form a magnetic field, thereby establishing an electron cyclotron resonance condition within the plasma generation chamber 1 and generating plasma. Plasma is introduced into the sample chamber 3 through the plasma extraction window 1c as shown in FIG. 5 by a divergent magnetic field formed by the excitation coil 4.
第5図は発散磁界の磁力線の説明図であり、プラズマ中
のイオンはプラズマ引出芯1cを経て試料室3内に導入
される際に、ターゲット6に印加された負電圧によって
加速された状態でターゲット6表面に入射してこれに衝
撃を与え、ターゲット6の原子がスパッタされてプラズ
マ流中に飛び出し、そのまま、また一部はプラズマ中で
電子を失った状態で試料基板Sに入射し成膜がなされる
。FIG. 5 is an explanatory diagram of the lines of magnetic force of the diverging magnetic field. When ions in the plasma are introduced into the sample chamber 3 through the plasma extraction core 1c, they are accelerated by the negative voltage applied to the target 6. The atoms of the target 6 are sputtered into the surface of the target 6 and impact it, and the atoms of the target 6 are sputtered and ejected into the plasma flow, and then enter the sample substrate S as they are or some of them have lost electrons in the plasma, forming a film. will be done.
ところでこのような従来装置にあっては、ターゲット6
からスパッタされた原子のうち、イオン化されなかった
原子の一部は電界、磁界に影響されることなく飛散して
マイクロ波導入窓1bの石英ガラス1aに付着する。こ
のためターゲット6が金属その他の導電性金属化合物で
ある場合、スパッタされた金属原子がマイクロ波導入窓
に付着してマイクロ波に対する遮閉物として機能し、マ
イクロ波がプラズマ生成室l内に導入出来なくなり、石
英ガラス1aに対する頻繁な点検保守が必要となる。ま
たプラズマ生成室1で生成されたECRプラズマの大部
分は、発散磁界によって、ターゲットに入射せずに試料
室3に輸送されてしまうという問題もあった。By the way, in such conventional equipment, target 6
Among the atoms sputtered from the microwave, some of the atoms that are not ionized are scattered without being affected by the electric field or magnetic field and adhere to the quartz glass 1a of the microwave introduction window 1b. Therefore, when the target 6 is a metal or other conductive metal compound, the sputtered metal atoms adhere to the microwave introduction window and function as a shield against the microwaves, allowing the microwaves to be introduced into the plasma generation chamber l. Therefore, frequent inspection and maintenance of the quartz glass 1a is required. Another problem is that most of the ECR plasma generated in the plasma generation chamber 1 is transported to the sample chamber 3 without being incident on the target due to the divergent magnetic field.
本発明はかかる事情に鑑みなされたものであって、その
目的とするところはマイクロ波導入窓への膜付着を抑制
し、またECRプラズマ利用効率の高いスパッタリング
装置を提供するにある。The present invention has been made in view of the above circumstances, and its purpose is to provide a sputtering apparatus which suppresses film adhesion to the microwave introduction window and which is highly efficient in utilizing ECR plasma.
本発明に係るスパッタリング装置は、前記試料室内にプ
ラズマ引出窓と、試料基板との間に前記マイクロ波導入
窓と対向しないようスパッタ用ターゲットを設け、また
該ターゲットと試料台との間にはプラズマを前記ターゲ
ット側に導くための磁界を形成する補助励磁コイルを配
設する。In the sputtering apparatus according to the present invention, a sputtering target is provided between a plasma extraction window and the sample substrate in the sample chamber so as not to face the microwave introduction window, and a sputtering target is provided between the target and the sample stage. An auxiliary excitation coil is provided to form a magnetic field for guiding the target toward the target.
本発明にあっては、これによってマイクロ波導入窓への
膜付着が防げる。またターゲット電流密度が増大し、プ
ラズマ利用効率も高くなり、成11り速度も大きくなる
。In the present invention, this prevents the film from adhering to the microwave introduction window. Furthermore, the target current density increases, the plasma utilization efficiency increases, and the growth rate also increases.
以下、本発明をその実施例を示す図面に基づき具体的に
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.
第1図は本発明に係るスパッタリング装置(本発明装置
という)の模式的縦断面図であり、図中1はプラズマ生
成室、2はマイクロ波導波管、3は試料室、4は励磁コ
イル、Sは試料基板を示している。FIG. 1 is a schematic longitudinal sectional view of a sputtering apparatus according to the present invention (referred to as the present invention apparatus), in which 1 is a plasma generation chamber, 2 is a microwave waveguide, 3 is a sample chamber, 4 is an excitation coil, S indicates a sample substrate.
プラズマ生成室1はマイクロ波の空洞共振器として機能
するよう構成されており、その上部壁中央には石英ガラ
ス1aにて封止されたマイクロ波導入窓1bを、また上
部壁中央にはプラズマ引出窓1cを備えており、前記マ
イクロ波導入窓1bにはマイクロ波導波管2の一端部が
接続され、またプラズマ引出窓1cに面して試料室3が
配設され、更に周囲にはプラズマ生成室l及びこれに接
続したマイクロ波導波管2の一端部にわたってこれらを
囲繞する態様で励磁コイル4が配設されている。The plasma generation chamber 1 is configured to function as a microwave cavity resonator, and has a microwave introduction window 1b sealed with quartz glass 1a in the center of its upper wall, and a plasma drawer in the center of the upper wall. One end of the microwave waveguide 2 is connected to the microwave introduction window 1b, and a sample chamber 3 is provided facing the plasma extraction window 1c. An excitation coil 4 is disposed so as to surround the chamber 1 and one end of the microwave waveguide 2 connected thereto.
マイクロ波導波管2の他端部は図示しない高周波発振器
に接続されており、該高周波発振器から発せられたマイ
クロ波をプラズマ生成室1内に導入するようにしである
。The other end of the microwave waveguide 2 is connected to a high frequency oscillator (not shown), and microwaves emitted from the high frequency oscillator are introduced into the plasma generation chamber 1.
また励磁コイル4は図示しない直流電源に接続されてお
り、プラズマ生成室1内に電子サイクロトロン共鳴条件
を満たす磁界を形成すると共に、試料室3側に向けて磁
束密度が低下する発散磁界を形成するようにしである。The excitation coil 4 is connected to a DC power source (not shown), and forms a magnetic field that satisfies electron cyclotron resonance conditions in the plasma generation chamber 1, and also forms a diverging magnetic field whose magnetic flux density decreases toward the sample chamber 3 side. That's how it is.
試料室3内には前記プラズマ引出窓】Cと対向する位置
に試料台5が配設され、この上に試料基板Sを載置する
ようにしである。A sample stage 5 is disposed in the sample chamber 3 at a position facing the plasma extraction window C, and a sample substrate S is placed on this stage.
また試料室3内には前記プラズマ引出窓1cの試料室3
例の開口部の周縁に臨ませてスパッタ用のターゲット6
が、またこのターゲット6と試料台5との間の中間部の
外周にこれを囲繞する態様で補助励磁コイル8が配設さ
れている。In addition, the sample chamber 3 of the plasma extraction window 1c is located inside the sample chamber 3.
Sputtering target 6 facing the periphery of the opening in the example
However, an auxiliary excitation coil 8 is disposed around the outer periphery of the intermediate portion between the target 6 and the sample stage 5 so as to surround this.
ターゲット6はその上端部から下端部側に向かうに従っ
て内、外径を共に拡大した筒状円錐台形に形成され、そ
の内周面を除く上、下端面及び外周面にわたってこれを
覆うシールドケース6a内に抱持されて、前記プラズマ
引出窓1cと同心状にその直下に配設されており、これ
には直流電源7の負極側が接続されている。The target 6 is formed in the shape of a cylindrical truncated cone whose inner and outer diameters increase from the upper end toward the lower end. It is held concentrically with and directly below the plasma extraction window 1c, and is connected to the negative electrode side of the DC power supply 7.
円錐台形をなすターゲット6の内周面の垂線に対する(
頃斜角はその内周面のいずれの部分も直線的にマイクロ
波導入窓1aと直接対向しないように設定しである。(
The oblique angle is set so that no part of the inner circumferential surface directly faces the microwave introduction window 1a in a straight line.
補助励磁コイル8はその内径が励磁コイル4のそれと略
等しく設定され、その磁力線の向きが励磁コイル4によ
る磁力線の向きと逆向きとなるよう図示しない直流電源
に接続されている。The auxiliary excitation coil 8 is set to have an inner diameter substantially equal to that of the excitation coil 4, and is connected to a DC power source (not shown) so that the direction of its magnetic lines of force is opposite to that of the excitation coil 4.
而してこのような本発明装置にあってはプラズマ生成室
1、試料室3から排気して所定値に減圧した後、図示し
ないガス供給系からプラズマ生成室l内にガス(例えば
Arガス)を導入しつつ、プラズマ生成室1内にマイク
ロ波導波管2を通じてマイクロ波を導入すると共に、励
磁コイル4にて磁界を形成し、プラズマ生成室l内に電
子サイクロトロン共鳴条件を成立させてプラズマを生成
せしめ、これを励磁コイル4にて形成される発散磁界に
よって第2図に示す如くプラズマ引出窓ICを通じて試
料室3内に導入する。In the apparatus of the present invention, after the plasma generation chamber 1 and the sample chamber 3 are evacuated and the pressure is reduced to a predetermined value, a gas (for example, Ar gas) is supplied into the plasma generation chamber 1 from a gas supply system (not shown). At the same time, microwaves are introduced into the plasma generation chamber 1 through the microwave waveguide 2, and a magnetic field is formed by the excitation coil 4 to establish electron cyclotron resonance conditions in the plasma generation chamber 1 to generate plasma. This is generated and introduced into the sample chamber 3 through the plasma extraction window IC as shown in FIG. 2 by the divergent magnetic field formed by the excitation coil 4.
第2図は励磁コイル4、補助励磁コイル8による磁界の
磁力線を示す説明図であり、試料室3内では補助励磁コ
イル8によって励磁コイル4による磁界と逆向きの磁界
が形成されており、励EIIコイル4によって形成され
た発散磁界の磁力線は第2図に示す如くプラズマ引出窓
1cを経た位置でターゲット6側に曲げられる結果、試
料室3内に導入されたプラズマもこれに沿ってターゲッ
ト6の表面に衝突する。FIG. 2 is an explanatory diagram showing the lines of magnetic force of the magnetic field produced by the excitation coil 4 and the auxiliary excitation coil 8. In the sample chamber 3, the auxiliary excitation coil 8 forms a magnetic field in the opposite direction to the magnetic field produced by the excitation coil 4. As shown in FIG. 2, the lines of magnetic force of the diverging magnetic field formed by the EII coil 4 are bent toward the target 6 at a position passing through the plasma extraction window 1c, and as a result, the plasma introduced into the sample chamber 3 also follows this direction toward the target 6. collide with the surface of
ターゲット6には直流電源7にて負電圧が印加せしめら
れており、イオンはこれに引き寄せられてターゲット6
の表面に加速された状態で衝突し、これをスパッタする
。A negative voltage is applied to the target 6 by a DC power source 7, and ions are attracted to the target 6.
collides with the surface in an accelerated state and sputters it.
スパッタされてターゲット6から飛び出した原子はその
まま、また一部は周囲のプラズマ中で電子を失ってイオ
ン化され、試料基板Sの表面に導かれ、これに付着して
成膜が行われる。The sputtered atoms ejected from the target 6 remain as they are, and some of them lose electrons in the surrounding plasma and are ionized, guided to the surface of the sample substrate S, and attached thereto to form a film.
このような実施例にあってはターゲット6をマイクロ波
導入窓1bと対向しないようその位置及び形状を設定し
ており、スパツクされた原子がマイクロ波導入窓に付着
するのを防止出来ることば勿論、補助励磁コイル8の磁
界によってプラズマ流をターゲット6表面側に導くため
ターゲット6周囲のプラズマ密度が高く、ターゲット電
流密度が間められて成膜速度も大きくなり、プラズマ利
用効率が向上する。In such an embodiment, the position and shape of the target 6 are set so that it does not face the microwave introduction window 1b, which can of course prevent the spattered atoms from adhering to the microwave introduction window 1b. Since the plasma flow is guided toward the surface of the target 6 by the magnetic field of the auxiliary excitation coil 8, the plasma density around the target 6 is high, the target current density is reduced, the film formation rate is increased, and the plasma utilization efficiency is improved.
第3図は本発明の他の実施例を示す模式的縦断面図であ
り、試料室13の横断面積をその上端側から試料台5の
直上近傍までの間でプラズマ生成室1の横断面積と略等
しくして、試料室3の外周に段部3aを形成し、ここに
補助励磁コイル8を設置しである。FIG. 3 is a schematic vertical cross-sectional view showing another embodiment of the present invention, in which the cross-sectional area of the sample chamber 13 is defined as the cross-sectional area of the plasma generation chamber 1 from its upper end to the vicinity directly above the sample stage 5. A stepped portion 3a is formed on the outer periphery of the sample chamber 3 so as to be approximately equal to each other, and an auxiliary excitation coil 8 is installed here.
このような実施例にあっては補助励磁コイル8が試料室
3の外部に配設されることによって、不純物の混入を低
減し得、また補助励磁コイル8自体の損傷も防止し得る
効果がある。In such an embodiment, by disposing the auxiliary excitation coil 8 outside the sample chamber 3, it is possible to reduce the contamination of impurities and also to prevent damage to the auxiliary excitation coil 8 itself. .
他の構成及び作用は第1図に示す実施例と実質的に同じ
であり、対応する部材には同じ番号を付して説明を省略
する。The other configurations and operations are substantially the same as those of the embodiment shown in FIG. 1, and corresponding members are given the same numbers and their explanations will be omitted.
以上の如く本発明装置にあってはスパッタ用のターゲッ
トをプラズマ引出窓と試料台との間であって、プラズマ
導入窓とは対向しない位置に設置すると共に、このター
ゲットと試料台との間に補助励磁コイルを設けてプラズ
マをターゲット側に案内するようにしであるからプラズ
マ導入窓へのスパッタ原子の付着を確実に防止すること
が出来、保守点検作業が大幅に簡略化され、またそれだ
け稼動効率も向上するなど本発明は優れた効果を奏する
ものである。As described above, in the apparatus of the present invention, the sputtering target is installed between the plasma extraction window and the sample stage at a position not facing the plasma introduction window, and the sputtering target is installed between the target and the sample stage. Since an auxiliary excitation coil is provided to guide the plasma toward the target, it is possible to reliably prevent sputtered atoms from adhering to the plasma introduction window, greatly simplifying maintenance and inspection work, and increasing operating efficiency. The present invention has excellent effects such as improved performance.
第1図は本発明装置の模式的縦断面図、第2同は励磁コ
イル、補助励磁コイルにより形成される磁力線の態様を
示す説明図、第3図は本発明の他の実施例を示す模式的
縦断面図、第4図は従来装置の模式的縦断面図、第5図
は励磁コイルによる6〃力線の態様を示す説明図である
。
1・・・プラズマ生成室 2・・・プラズマ導波管3・
・・試料室 4・・・励磁コイル 5・・・試料室6・
・・ターゲット 7・・・電源 8・・・補助励磁コイ
ル第 I ■
凍 2 団
見 3 団
り
第 4 回
厚 5 圓Fig. 1 is a schematic vertical sectional view of the device of the present invention, Fig. 2 is an explanatory diagram showing the mode of magnetic lines of force formed by the excitation coil and the auxiliary excitation coil, and Fig. 3 is a schematic diagram showing another embodiment of the invention. FIG. 4 is a schematic longitudinal sectional view of a conventional device, and FIG. 5 is an explanatory diagram showing the aspect of six force lines due to an excitation coil. 1... Plasma generation chamber 2... Plasma waveguide 3.
・・Sample chamber 4・Excitation coil 5・Sample chamber 6・
...Target 7...Power supply 8...Auxiliary excitation coil No. I
Claims (1)
界及び励磁コイルによる磁界を形成して電子サイクロト
ロン共鳴励起によりプラズマを生成するプラズマ生成室
と、前記プラズマ生成室からプラズマ引出窓を通じてプ
ラズマを導入する試料室と、前記試料室内に試料基板及
びスパッタ用ターゲットとを有するスパッタリング装置
において、 前記試料室内にプラズマ引出窓と、試料基板との間に前
記マイクロ波導入窓と対向しないようスパッタ用ターゲ
ットを設け、また前記ターゲットと試料台との間にはプ
ラズマを前記ターゲット側に導くための磁界を形成する
補助励磁コイルを設けたことを特徴とするスパッタリン
グ装置。[Scope of Claims] 1. A plasma generation chamber that generates plasma by electron cyclotron resonance excitation by forming an electric field by microwaves introduced from a microwave introduction window and a magnetic field by an excitation coil, and a plasma extraction window from the plasma generation chamber. In a sputtering apparatus having a sample chamber into which plasma is introduced through, a sample substrate and a sputtering target in the sample chamber, a plasma extraction window in the sample chamber and a space between the sample substrate so as not to face the microwave introduction window. A sputtering apparatus characterized in that a sputtering target is provided, and an auxiliary excitation coil is provided between the target and a sample stage to form a magnetic field for guiding plasma toward the target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13078888A JPH01298158A (en) | 1988-05-27 | 1988-05-27 | Sputtering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13078888A JPH01298158A (en) | 1988-05-27 | 1988-05-27 | Sputtering device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01298158A true JPH01298158A (en) | 1989-12-01 |
Family
ID=15042701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13078888A Pending JPH01298158A (en) | 1988-05-27 | 1988-05-27 | Sputtering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01298158A (en) |
-
1988
- 1988-05-27 JP JP13078888A patent/JPH01298158A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4610770A (en) | Method and apparatus for sputtering | |
US4492620A (en) | Plasma deposition method and apparatus | |
TWI391518B (en) | Ion source and plasma processing device | |
KR100436950B1 (en) | Method And Apparatus For Low Pressure Sputtering | |
US6117279A (en) | Method and apparatus for increasing the metal ion fraction in ionized physical vapor deposition | |
US5345145A (en) | Method and apparatus for generating highly dense uniform plasma in a high frequency electric field | |
US7338581B2 (en) | Sputtering apparatus | |
JP2000040475A (en) | Self-electron emitting ecr ion plasma source | |
JPS6338585A (en) | Plasma device | |
WO2023275958A1 (en) | Method for regenerating inner wall member | |
JPH01298158A (en) | Sputtering device | |
JP4554117B2 (en) | Surface treatment equipment | |
JP2674995B2 (en) | Substrate processing method and apparatus | |
JPH01219161A (en) | Ion source | |
JPH1154296A (en) | Plasma generator and plasma device | |
JPH02228471A (en) | Thin film forming device | |
EP0778608A2 (en) | Plasma generators and methods of generating plasmas | |
JPH02197567A (en) | Plasma sputtering device | |
JPH01298157A (en) | Sputtering device | |
JPH02194174A (en) | Sputtering device | |
JPH01306558A (en) | Sputtering device | |
JP2777657B2 (en) | Plasma deposition equipment | |
JP2502948B2 (en) | Plasma deposition method | |
JPS61127862A (en) | Method and device for forming thin film | |
JPS61114518A (en) | Plasma adhering device |