JPH01298129A - Gas absorbing alloy having excellent activation characteristics - Google Patents
Gas absorbing alloy having excellent activation characteristicsInfo
- Publication number
- JPH01298129A JPH01298129A JP12672088A JP12672088A JPH01298129A JP H01298129 A JPH01298129 A JP H01298129A JP 12672088 A JP12672088 A JP 12672088A JP 12672088 A JP12672088 A JP 12672088A JP H01298129 A JPH01298129 A JP H01298129A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- gas
- hydrogen
- present
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 101
- 239000000956 alloy Substances 0.000 title claims abstract description 101
- 230000004913 activation Effects 0.000 title claims description 26
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- 230000000694 effects Effects 0.000 abstract description 10
- 229910052802 copper Inorganic materials 0.000 abstract description 4
- 231100000572 poisoning Toxicity 0.000 abstract description 4
- 230000000607 poisoning effect Effects 0.000 abstract description 4
- 229910000640 Fe alloy Inorganic materials 0.000 abstract description 3
- 229910000765 intermetallic Inorganic materials 0.000 abstract description 3
- 230000003213 activating effect Effects 0.000 abstract 3
- 238000009792 diffusion process Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 56
- 239000001257 hydrogen Substances 0.000 description 44
- 229910052739 hydrogen Inorganic materials 0.000 description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 42
- 238000010521 absorption reaction Methods 0.000 description 31
- 238000001994 activation Methods 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910002090 carbon oxide Inorganic materials 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000628 Ferrovanadium Inorganic materials 0.000 description 2
- 229910001093 Zr alloy Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910000979 O alloy Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910003126 Zr–Ni Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、水素、酸素、窒素、−酸化炭素等の吸収合
金に関し、特に活性化特性に優れ、陰極線管、熱電子管
等の水素圧力制御用として、また、魔法瓶をはじめとす
る真空断熱によって保温を行う機器の真空度向上、その
他高真空維持が要求される機器の真空度劣化防止などに
広く利用することのできる合金に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to an absorbing alloy for hydrogen, oxygen, nitrogen, carbon oxide, etc., which has particularly excellent activation properties, and is useful for controlling hydrogen pressure in cathode ray tubes, thermionic tubes, etc. The present invention relates to an alloy that can be widely used for purposes such as improving the degree of vacuum in thermos flasks and other devices that maintain heat through vacuum insulation, and preventing deterioration of the degree of vacuum in other devices that require high vacuum maintenance.
(従来の技術)
高圧放電管、陰極線管、水銀灯などは管内の水素濃度に
よって始動電圧が変化する。例えば、水素濃度が高くな
ると始動電圧が高くなり機器の寿命が短くなることが知
られている。また真空断熱によって保温を行う機器は、
真空容器の部材からのガス放出があり、使用条件によっ
ては、容器の外壁の腐食によるガスや、環境に存在する
ガスが拡散して真空断熱層に侵入し真空度が低下して断
熱効果が失われることが知られている。(Prior Art) The starting voltage of high-pressure discharge tubes, cathode ray tubes, mercury lamps, etc. changes depending on the hydrogen concentration inside the tube. For example, it is known that when the hydrogen concentration increases, the starting voltage increases and the life of the equipment becomes shorter. In addition, equipment that retains heat through vacuum insulation,
Gas may be released from the vacuum container components, and depending on the usage conditions, gases due to corrosion of the outer wall of the container or gases present in the environment may diffuse and enter the vacuum insulation layer, reducing the degree of vacuum and losing the insulation effect. It is known that
上記のような問題に対して従来より採られてきた対策は
、ガスを吸収する物質を封入する方法である。例えば、
非金属型ガス吸収材としてはチャコールやゼオライトが
ある。金属型ガス吸収材(ガス吸収合金)としてよく知
られているのは■系合金である。例えばV −A1合金
を加熱して蒸発させ、利用機器の内壁面に蒸着させて皮
膜を作りガス吸収を行わせる。しかしながら、非金属型
ガス吸収材の一部のものは、酸素の存在する高温の環境
では使用できないという問題があった。また蒸着させる
ガス吸収合金は蒸着させる工程そのものが利用機器の内
壁をよごすことになり、陰極線管や電球などでは使用上
問題があった。A conventional solution to the above-mentioned problems is to encapsulate gas-absorbing substances. for example,
Charcoal and zeolite are examples of non-metallic gas absorbing materials. A well-known metal type gas absorbing material (gas absorbing alloy) is a type alloy. For example, V-A1 alloy is heated to evaporate and deposited on the inner wall surface of the equipment to form a film that absorbs gas. However, some nonmetallic gas absorbing materials have a problem in that they cannot be used in high-temperature environments where oxygen is present. Furthermore, the process of vapor-depositing the gas-absorbing alloy pollutes the inner walls of the equipment in which it is used, posing problems in its use in cathode ray tubes, light bulbs, and the like.
これらの問題を解決するために開発されたのが非蒸発型
ガス吸収合金である。たとえば、Zr−Ni合金、Zr
−Ti合金、Zr−Affi合金、Zr−Ti −Ni
合金、Zr−Tj−Fe合金等が非蒸発型ガス吸収合金
として知られている。しかしながら、これらの合金は、
通常酸化物や窒化物などの不活性表面皮膜に覆われてい
るため、ガス吸収を開始させるためには、真空もしくは
、不活性ガス雰囲気にて450〜900℃に加熱し、表
面不活性層を合金内部に拡散させる活性化処理が不可欠
である。機器によっては、その内部でこのような活性化
条件を実現することは不可能な場合があり、そのために
非蒸発型ガス吸収合金の用途は限定されていた。Non-evaporable gas absorbing alloys have been developed to solve these problems. For example, Zr-Ni alloy, Zr
-Ti alloy, Zr-Affi alloy, Zr-Ti -Ni
BACKGROUND ART Alloys such as Zr-Tj-Fe alloys are known as non-evaporable gas absorbing alloys. However, these alloys
It is usually covered with an inert surface film such as oxide or nitride, so in order to start gas absorption, the surface inert layer must be heated to 450-900°C in a vacuum or in an inert gas atmosphere. Activation treatment to diffuse into the alloy is essential. Depending on the device, it may be impossible to achieve such activation conditions inside the device, which has limited the use of non-evaporable gas absorbing alloys.
非蒸発型ガス吸収合金の上記の問題点を解決する一つの
提案が特公昭62−1292号公報(特開昭55−12
4538号公報)に示されている。ここに示された1r
−V−Fe系合金は、活性化処理が真空中350℃1時
間加熱でできるというもので、これによって非蒸発型ガ
ス吸収合金の使用はかなり容易なものとなった。しかし
ながら利用機器内で350’Cの真空雰囲気を作ること
も困難な場合があり、このため未だに利用範囲が限られ
ているのが現状である。また、実験室的には、A、Pe
bler & E、A、 Ga1b−ransenらが
TRANSACTION OF T、M、S、 AIM
Eνo1.239゜(1967) P1593−160
0に、ZrVz金属間化合物を提案しており、これは活
性化処理がほとんど不要で水素ガスを吸収すると報告し
ている。しかし、このZrVz合金は非常に発火しやす
く、工業的な取扱いに適せず実用的とは言えない。One proposal to solve the above-mentioned problems of non-evaporable gas absorbing alloys is published in Japanese Patent Publication No. 1292-1982
No. 4538). 1r shown here
-V-Fe alloys can be activated by heating at 350° C. for 1 hour in a vacuum, which has made it considerably easier to use non-evaporable gas absorbing alloys. However, it is sometimes difficult to create a vacuum atmosphere of 350'C within the equipment used, and for this reason, the scope of use is still limited. In addition, in the laboratory, A, Pe
bler & E. A. Galb-ransen et al. TRANSACTION OF T. M. S. AIM
Eνo1.239° (1967) P1593-160
proposed a ZrVz intermetallic compound, and reported that it absorbs hydrogen gas with almost no activation treatment. However, this ZrVz alloy is highly flammable, unsuitable for industrial handling, and cannot be said to be practical.
更に、特公昭59−34224号公報には、活性化処理
なしで使用できるというZrV、(但しχは原子比で0
.01〜0.28)が開示されている。しかし、この合
金は非常に延性が大きくて塑性変形し易く、粉砕が困難
であるため、製品形態は塊状となる。Furthermore, Japanese Patent Publication No. 59-34224 states that ZrV can be used without activation treatment (however, χ is 0 in atomic ratio).
.. 01 to 0.28) are disclosed. However, this alloy is very ductile, easily deformed plastically, and difficult to crush, resulting in a lumpy product.
通常この種の合金は粉砕して表面積を増加させ、ガス吸
収速度を高めて使用するが、塊状であるこの合金は迅速
なガス吸収が要求される用途には不適当である。Typically, this type of alloy is used by grinding to increase the surface area and speed of gas absorption; however, the bulk of this alloy is unsuitable for applications requiring rapid gas absorption.
叙上のとおり、これまで知られている非蒸発型ガス吸収
合金の用途は限られたものであり、上記のような問題点
がなく利用範囲の広い非蒸発型ガス吸収合金の開発が望
まれていた。As mentioned above, the uses of the non-evaporative gas absorbing alloys known so far are limited, and it is desired to develop a non-evaporative gas absorbing alloy that does not have the above problems and can be used in a wide range of applications. was.
(発明が解決しようとする課題)
本発明の課題は、活性化処理が容易であり、しかも発火
性等の問題がなくて取扱いやすく、利用範囲の広い非蒸
発型ガス吸収合金を提供することにある。(Problems to be Solved by the Invention) An object of the present invention is to provide a non-evaporative gas absorbing alloy that is easy to activate, has no problems such as flammability, is easy to handle, and has a wide range of uses. be.
(課題を解決するための手段)
前述のとおり、従来の非蒸発型ガス吸収合金は、ガス吸
収をさせるためには゛、不活性ガス雰囲気もしくは真空
中で350°C〜900°Cに加熱して、吸収材の表面
被毒層(酸化層、窒化層)を内部に拡散させる活性化処
理が必要であった。本発明者は、この活性化処理を容易
にするために、表面被毒層に欠陥を生しさせることによ
って、従来よりも容易に新鮮な合金面を露出させる方法
を検討した。その結果、以下に述べる組成の合金が活性
化処理の容易性においてガス吸収合金として従来のもの
に勝ることを見出し、本発明を完成した。(Means for Solving the Problems) As mentioned above, conventional non-evaporable gas absorbing alloys must be heated to 350°C to 900°C in an inert gas atmosphere or vacuum in order to absorb gas. , activation treatment was required to diffuse the surface poisoning layer (oxidized layer, nitrided layer) of the absorbent material into the interior. In order to facilitate this activation process, the present inventor investigated a method of exposing a fresh alloy surface more easily than before by creating defects in the surface poisoning layer. As a result, it was discovered that an alloy having the composition described below is superior to conventional gas absorbing alloys in ease of activation treatment, and the present invention was completed.
ここに、本発明は「重量%で、V:10〜55%、Fe
: 0.5〜15%、Cu : 0.5〜10%(た
だしV+Fe+Cuの合計が60%以下)を含み、残部
は実質的に2「からなる活性化特性に優れたガス吸収合
金」を要旨とする。なお、以下「%」は「重量%」を意
味する。Here, the present invention is based on "by weight %, V: 10-55%, Fe
: 0.5 to 15%, Cu: 0.5 to 10% (however, the total of V + Fe + Cu is 60% or less), and the remainder is essentially 2 "a gas absorbing alloy with excellent activation properties" shall be. Note that "%" hereinafter means "% by weight".
残部が実質的にZrからなるというのは、Zrの外、Z
r原料としてジルカロイ合金を使用する場合及び■、F
e原料としてフェロバナジウム合金を使用する場合に不
可避的に混入し合金の機能に本質的な影響を及ぼさない
不純物、例えば2%までのSn、1.5%までのAI、
0.5%までのSi等が許容される、ということであ
る。The remainder is essentially composed of Zr, which means that Zr is excluded from Zr.
r When using Zircaloy alloy as raw material and ■, F
e Impurities that are inevitably mixed in when using a ferrovanadium alloy as a raw material and do not have an essential effect on the function of the alloy, such as up to 2% Sn, up to 1.5% AI,
This means that up to 0.5% of Si, etc. is allowed.
上記本発明の合金の一般的な製造方法は、原料をカルジ
ャ等のるつぼに装入し、アルゴン等の不活性ガス雰囲気
中で、例えば高周波誘導溶解を行い、造塊後、機械的に
粉砕する、という方法である。The general method for manufacturing the alloy of the present invention is to charge the raw materials into a crucible such as Calja, perform high frequency induction melting in an inert gas atmosphere such as argon, form an ingot, and then mechanically crush the material. , is the method.
本発明の合金は、主に次のように使用される。The alloy of the present invention is mainly used as follows.
■IO気圧以下、高真空までの雰囲気で水素吸収に用い
る。■Used for hydrogen absorption in atmospheres below IO atmospheric pressure and up to high vacuum.
■陰極線管、熱電子管等に封入し内部の水素圧力の上昇
防止又は制御に用いる。■Enclosed in cathode ray tubes, thermionic tubes, etc., and used to prevent or control increases in internal hydrogen pressure.
■10気圧以下、高真空までの雰囲気で水蒸気、酸素、
窒素、−酸化炭素、炭化水素等のガスの吸収に用いる。■ Water vapor, oxygen, etc. under 10 atmospheres and up to high vacuum
Used to absorb gases such as nitrogen, carbon oxide, and hydrocarbons.
(作用)
まず、本発明の合金の組成の選定理由を作用効果ととも
に説明する。(Function) First, the reason for selecting the composition of the alloy of the present invention will be explained together with the function and effect.
本発明のZr基合金において、
■は、活性化処理を容易にし、吸収時のガス平衡圧(特
に水素平衡圧)を下げる働きをする。この効果を得るた
めにはvlは10%以上必要である。In the Zr-based alloy of the present invention, (2) facilitates the activation treatment and serves to lower the gas equilibrium pressure (particularly the hydrogen equilibrium pressure) during absorption. To obtain this effect, vl is required to be 10% or more.
しかし、その世が55%を超えると残部のZr量が減少
し、ガス吸収量が低下してガス吸収合金としての効果が
小さくなる。したがって、■含有量は10%〜55%と
することが必要である。However, when the proportion exceeds 55%, the remaining Zr content decreases, the amount of gas absorption decreases, and the effect as a gas absorption alloy decreases. Therefore, it is necessary that the content of (1) be 10% to 55%.
Feは、合金の発火性を押さえ工業的な取扱いを容易に
する働きをする。この効果を得るためには0.5%以上
必要である。しかしその量が15%を超えると、合金の
活性化処理が困難になるとともに吸収時のガス平衡圧が
高くなり、またガス吸収量が減少する。したがってFe
iは0.5〜15%であることが必要である。Fe functions to suppress the ignitability of the alloy and facilitate industrial handling. In order to obtain this effect, 0.5% or more is required. However, if the amount exceeds 15%, it becomes difficult to activate the alloy, the gas equilibrium pressure during absorption increases, and the amount of gas absorbed decreases. Therefore, Fe
i needs to be 0.5 to 15%.
Cuは、合金中にZrzCu金属間化合物を析出させ、
合金表面の被毒層中の母相とZrtCu相との境界に欠
陥を作り、この欠陥を起点とした水素ガス等の拡散が、
活性化処理を容易にする働きをする。この効果を得るた
めには0.5%以上必要である。しかしその量が10%
を超えるとガス吸収量が減少するのでCulは0.5%
〜10%である必要がある。Cu precipitates ZrzCu intermetallic compound in the alloy,
Defects are created at the boundary between the matrix phase and the ZrtCu phase in the poisoned layer on the alloy surface, and hydrogen gas, etc., diffuses from this defect as a starting point.
It functions to facilitate the activation process. In order to obtain this effect, 0.5% or more is required. However, the amount is 10%
Cul is 0.5% because the amount of gas absorption decreases when it exceeds
~10%.
上記の■、FeおよびCuについては、その合計金*i
を一定値以下に抑えることも重要である。即ち、V+F
e+Cuの合計を60%以下にしなければならない。ガ
ス吸収合金としてこの合金を使用した場合、ガスを吸収
するのはZrであり、V+Fe+Cuの合計量が60%
を超えると残部のZr1lが少なくなりすぎてガス吸収
量が減少してしまう、即ちガス吸収合金としての機能が
失われる。For the above ■, Fe and Cu, the total amount *i
It is also important to keep the value below a certain value. That is, V+F
The total of e+Cu must be 60% or less. When this alloy is used as a gas absorption alloy, it is Zr that absorbs gas, and the total amount of V + Fe + Cu is 60%.
If the amount exceeds 1, the remaining Zr1l becomes too small and the amount of gas absorption decreases, that is, the function as a gas absorbing alloy is lost.
以上の組成をもつ本発明の合金のガス吸収合金としての
基本的特性は下記のとおりである。The basic properties of the alloy of the present invention having the above composition as a gas absorbing alloy are as follows.
■ 水素ガスについては吸収のみならず、一定の平衡圧
力を持って放出する。すなわち可逆的なガス吸収・放出
性を持つ。■ Hydrogen gas is not only absorbed, but also released with a certain equilibrium pressure. In other words, it has reversible gas absorption and release properties.
■ 酸素、窒素、−酸化炭素、二酸化炭素、メタン等に
ついては、吸収のみ行うという不可逆的なガス吸収性を
待つ。■ For oxygen, nitrogen, -carbon oxide, carbon dioxide, methane, etc., wait for irreversible gas absorption in which only absorption occurs.
■ 不活性なガス、例えばAr、 He等については、
吸収・放出作用を持たない。■ For inert gases such as Ar and He,
It has no absorption/release effects.
本発明合金の活性化処理は、次のようにして行う。The activation treatment of the alloy of the present invention is carried out as follows.
■ 水素の吸収・放出用の場合は、活性化の途中に他の
ガスを吸収して、目的とする水素の吸収量を減少させな
いために、0.005torrより高真空度の雰囲気ま
たは不活性ガスに置換した雰囲気中で、150°C以上
の温度で一定時間保持する。■ For hydrogen absorption and desorption, use an atmosphere with a vacuum higher than 0.005 torr or an inert gas to avoid absorbing other gases during activation and reducing the amount of hydrogen absorbed. The temperature is maintained at 150°C or higher for a certain period of time in an atmosphere substituted with
■ 水素以外の吸収可能なガスを吸収させる場合は、使
用環境に合金を封入し、150°C以上の温度で一定時
間保持する。■ When absorbing absorbable gases other than hydrogen, enclose the alloy in the usage environment and hold it at a temperature of 150°C or higher for a certain period of time.
次に本発明合金の利用方法について述べる。先に記した
とおり、本発明合金の主たる用途は次の2つである。Next, a method of using the alloy of the present invention will be described. As mentioned above, the alloy of the present invention has the following two main uses.
第1の用途は、真空度を維持する必要がある容器で、そ
の容器の外壁部材そのものの中に存在する水素、外壁が
外部環境の作用で腐食して発生した水素などが拡散して
真空層に侵入してきた場所の水素吸収用である。かかる
用途では、本発明の合金を真空度を維持する必要がある
容器に封入し、誘導加熱等の手段で150°C以上まで
昇温し1時間程度保持する。これによって活性化された
合金は、以後容器内の水素を吸収し長期間にわたってそ
の真空度を保持する働きをする。The first application is for containers that need to maintain a degree of vacuum, where hydrogen existing in the outer wall of the container itself or hydrogen generated when the outer wall corrodes due to the action of the external environment diffuses into a vacuum layer. This is for absorbing hydrogen from places where it has invaded. In such applications, the alloy of the present invention is sealed in a container that requires maintaining the degree of vacuum, heated to 150° C. or higher by means such as induction heating, and held for about 1 hour. The activated alloy then absorbs hydrogen in the container and functions to maintain the vacuum level for a long period of time.
第2の用途は、酸化、窒化等が生じては困る真空熱処理
や真空雰囲気粉末焼成炉用である。このような機器類で
、不純物ガスとして存在する水蒸気、酸素、窒素、−酸
化炭素等のガスを吸収させて取り除き、真空度を高める
ために用いる。これらのガスは水素と異なり放出されな
いで化学吸着されたままとなる。The second application is for vacuum heat treatment and vacuum atmosphere powder firing furnaces where oxidation, nitridation, etc. should not occur. These devices are used to increase the degree of vacuum by absorbing and removing gases such as water vapor, oxygen, nitrogen, and carbon oxides that exist as impurity gases. Unlike hydrogen, these gases are not released and remain chemisorbed.
(実施例)
添加成分の含有量を変化させた合金を溶製し、水素吸収
特性を調査し、且つ現在市販されている非渾発型ガス吸
収合金と特性を比較調査した。(Example) Alloys with varying contents of additive components were produced, and their hydrogen absorption properties were investigated, and their properties were compared with those of currently commercially available non-repulsion type gas absorption alloys.
(])試験材の制作
■約150gの小インゴットをアルゴン・アークによっ
てボタン溶解溶製
■均質化のためアルゴン・アークで再溶解■機械粉砕に
より1〜3閣の粒状合金作製第1表に示す合金1−15
が本発明の合金の実施例である0合金1〜I5および比
較材の作製には、Zr原料としてジルカロイスクラップ
、■原料として99.7%フレーク、Fe原料として電
解鉄、Cu原料として[線スクラップを使用した。また
、■とFeの重量比が8=2であるものは80%■−2
0%Feのフェロ・バナジウム合金を用いた。従来材は
、先に掲げた特公昭62−1292号公報に開示されて
いる合金で、市販されている同種の非蒸発型ガス吸収合
金で最も活性化処理が容易といわれているものである。(]) Production of test material■ Small ingot of approximately 150g is button-melted using an argon arc.■ Melting is remelted using an argon arc for homogenization.■Preparation of 1 to 3 granular alloys by mechanical crushing as shown in Table 1. Alloy 1-15
To prepare alloys 1 to I5, which are examples of the alloys of the present invention, and comparative materials, Zircaloy scrap was used as the Zr raw material, 99.7% flake was used as the raw material, electrolytic iron was used as the Fe raw material, and [wire scrap] was used as the Cu raw material. It was used. Also, when the weight ratio of ■ and Fe is 8=2, it is 80%■-2
A ferro-vanadium alloy with 0% Fe was used. The conventional material is the alloy disclosed in the above-mentioned Japanese Patent Publication No. 1292-1982, which is said to be the easiest to activate among the same type of non-evaporable gas absorbing alloys on the market.
(以下、余白)
(2)水素吸収特性
最初に、本発明の合金と市販されている従来材との水素
吸収特性を比較した。ここで活性化処理は、第2表の条
件で行った。水素平衡圧力の測定温度が350’Cであ
るので合金1〜Gの活性化条件は350’C真空加熱と
する方が妥当かもしれないが、従来材よりも優れた活性
化特性を利用して低温の250’Cでの活性化処理とし
た。(Hereinafter, blank) (2) Hydrogen absorption properties First, the hydrogen absorption properties of the alloy of the present invention and commercially available conventional materials were compared. Here, the activation treatment was performed under the conditions shown in Table 2. Since the temperature at which the hydrogen equilibrium pressure is measured is 350'C, it may be more appropriate to use 350'C vacuum heating as the activation condition for Alloys 1 to G. Activation treatment was carried out at a low temperature of 250'C.
第1図(a)、(blに試験結果を示す。縦軸は水素子
1%i圧力(torr)、横軸は吸収水素原子数/合金
原子数(+1/?lという)、すなわち水素の吸収量を
示す値である。The test results are shown in Figure 1 (a) and (bl). The vertical axis is the hydrogen 1%i pressure (torr), and the horizontal axis is the number of absorbed hydrogen atoms/the number of alloy atoms (+1/?l), that is, the hydrogen This value indicates the amount of absorption.
第1図(a)、 (t)lから、本発明合金は活性化温
度が250’Cであるにも拘らず、活性化温度が450
°Cの従来材とほぼ同等の水素吸収特性を示すことがわ
か(3)活性化特性
本発明合金と比較材の活性化特性を調査した。From FIG. 1(a) and (t)l, it can be seen that although the activation temperature of the alloy of the present invention is 250'C, the activation temperature is 450'C.
It was found that the alloy exhibited almost the same hydrogen absorption characteristics as the conventional material at °C. (3) Activation characteristics The activation characteristics of the alloy of the present invention and the comparative material were investigated.
評価は、第3表の条件にて行った。The evaluation was performed under the conditions shown in Table 3.
第3表 活性化特性調査条件
この結果を第2図(a)、 (b)に示す。第2図の縦
軸は水素吸収による重量増加率、横軸は5°C/分で昇
温した時の雰囲気温度である。Table 3 Activation characteristics investigation conditions The results are shown in Figures 2 (a) and (b). The vertical axis in FIG. 2 is the weight increase rate due to hydrogen absorption, and the horizontal axis is the ambient temperature when the temperature is increased at 5° C./min.
第2図(a)、 (b)かられかることは、Cu量を増
加させていくと低温から水素を吸収するようになること
である。市販されている従来材が90°C程度から水素
吸収を開始しているのに対してCuを0.5%以上添加
した合金は90’C以下で水素吸収を開始しており、C
u 4%以上では、測定を開始した室温から水素の吸収
を始めている。本発明合金の特徴である活性化の容易さ
が明らかである。What can be seen from FIGS. 2(a) and 2(b) is that as the amount of Cu increases, hydrogen begins to be absorbed from low temperatures. Conventional commercially available materials start absorbing hydrogen at around 90°C, while alloys containing 0.5% or more of Cu start absorbing hydrogen at temperatures below 90°C.
When u is 4% or more, hydrogen absorption begins at room temperature when measurement is started. The ease of activation, which is a feature of the alloy of the present invention, is obvious.
(4)水素圧力制御特性
次に、水素圧力制御用としての特性の一例を第3図に示
す。ここで横軸は水素吸収・放出の温度であり、痘軸は
水素を吸収・放出した時の水素平衡圧力である。(4) Hydrogen pressure control characteristics Next, an example of characteristics for hydrogen pressure control is shown in FIG. Here, the horizontal axis is the temperature at which hydrogen is absorbed and released, and the small axis is the hydrogen equilibrium pressure when hydrogen is absorbed and released.
測定は約50ccの容積を持つ反応器に合金2を1g入
れ全体を真空に引きその後加熱して400°Cとして1
O−Storrまで排気脱ガスを行った。その後、水素
を反応器内に導入して300torrの水素圧として、
合金2を水素化させた後5°C/分で冷却させ、水素を
吸収させたのち再び5゛C/分で昇温させて、その間の
水素平衡圧を測定した。The measurement was carried out by putting 1 g of Alloy 2 in a reactor with a volume of about 50 cc, evacuating the whole, and then heating it to 400°C.
Exhaust degassing was performed to O-Storr. After that, hydrogen was introduced into the reactor and the hydrogen pressure was set at 300 torr.
After hydrogenating Alloy 2, it was cooled at a rate of 5°C/min to absorb hydrogen, and then heated again at a rate of 5°C/min, during which time the hydrogen equilibrium pressure was measured.
第3図に示した3組の線は、それぞれ初期のH/Mが0
.1.0.4.0.6のものである。どの)l/?Iイ
直の場合も、活性化処理を行わなくても水素を吸収し始
め、温度を変化させることで第3図に示すような水素平
衡圧の変化を示した。このことは、水素圧力制御をする
必要のある場合、使用温度が決まれば、所望の水素平衡
圧を持つH/Mの合金を封入して、使用機器内の水素圧
力を所望の圧力にし、且つそれを保持することができる
ことを意味する。The three sets of lines shown in Figure 3 each have an initial H/M of 0.
.. 1.0.4.0.6. Which) l/? In the case of Ii direct, hydrogen began to be absorbed even without activation treatment, and by changing the temperature, the hydrogen equilibrium pressure changed as shown in FIG. 3. This means that when it is necessary to control hydrogen pressure, once the operating temperature is determined, an H/M alloy having the desired hydrogen equilibrium pressure is sealed to bring the hydrogen pressure inside the equipment to the desired pressure. It means you can hold it.
(5)その他のガス吸収特性
本発明の合金は、水素以外のガス、たとえば−酸化炭素
、窒素、酸素、炭化水素等の吸収にも使用できる。従っ
て、不純ガスを取り除き真空度を上げる等の用途にも広
く使える。(5) Other gas absorption properties The alloy of the present invention can also be used to absorb gases other than hydrogen, such as carbon oxides, nitrogen, oxygen, hydrocarbons, etc. Therefore, it can be widely used for purposes such as removing impurity gas and increasing the degree of vacuum.
第4図は、かかる用途向けの特性の一例として、−酸化
炭素(CO)と窒素(N2)の吸収特性を合金3と9に
ついて調べた結果である。FIG. 4 shows the results of investigating the carbon oxide (CO) and nitrogen (N2) absorption characteristics of Alloys 3 and 9, as an example of the characteristics for such applications.
第4図において、横軸はガスの吸収量、縦軸は吸収速度
を示している。1気圧で350°Cの各ガス雰囲気中に
、本発明合金120mgを封入した0合金は350°C
雰囲気で自動的に活性化されガスを吸収し始めた。この
ガス吸収が水素の吸収と異なるのは、周囲温度や圧力を
変化させてもガスを遊離しないことである。したがって
、本発明合金は不純ガスを吸収・除去するゲッターとし
ての用途にも好適である。In FIG. 4, the horizontal axis shows the amount of gas absorbed, and the vertical axis shows the absorption rate. 0 alloy containing 120 mg of the alloy of the present invention sealed in each gas atmosphere at 350°C at 1 atmosphere is 350°C.
It was automatically activated by the atmosphere and began to absorb gas. This gas absorption differs from hydrogen absorption in that the gas is not liberated even if the ambient temperature or pressure is changed. Therefore, the alloy of the present invention is also suitable for use as a getter for absorbing and removing impurity gases.
(6)発火性
次に本合金の発火性について調査した結果を以下に示す
。(6) Ignition properties Next, the results of an investigation into the ignition properties of this alloy are shown below.
発火性について定量的に評価する方法として、大気中で
の示差熱分析を行った。その条件を第4表に示す。Differential thermal analysis in the atmosphere was performed as a method to quantitatively evaluate ignitability. The conditions are shown in Table 4.
第4表 発火性試験条件
この評価方法は大気中で加熱した場合に、酸化によって
生ずる燃焼熱を捕らえるものである。発火性調査を行っ
た合金は、発火性が問題だったZrv!。Table 4 Ignition test conditions This evaluation method captures the combustion heat generated by oxidation when heated in the atmosphere. The alloy tested for flammability was Zrv!, which had a problem with flammability. .
従来材と合金2.5である。Conventional material and alloy 2.5.
結果を図5に示す。横軸は10°C/分の加熱速度で加
熱した場合の温度、縦軸は発熱反応によって生じた熱を
熱電対で測定した際の熱起電力である。The results are shown in Figure 5. The horizontal axis is the temperature when heating at a heating rate of 10°C/min, and the vertical axis is the thermoelectromotive force when the heat generated by the exothermic reaction is measured with a thermocouple.
4種の合金は全て発熱反応を起こす。ZrV、合金は約
200 ’Cから急に発熱量が増加し、燃焼する。他の
合金は燃焼することはない、従って本発明合金は、通常
の取り扱いをするうえで特に問題はない。All four alloys undergo exothermic reactions. ZrV, an alloy, suddenly increases in calorific value from about 200'C and burns. Other alloys do not burn, so the alloy of the present invention poses no particular problem in normal handling.
(発明の効果)
本発明は、従来の非蒸発型ガス吸収合金が有していた活
性化処理が困難であるという問題点を解決し、活性化が
容易でなおかつ良好なガス吸収特性を持つ非蒸発型ガス
吸収合金を提供する。(Effects of the Invention) The present invention solves the problem of difficulty in activation treatment that conventional non-evaporable gas absorbing alloys had, and the present invention solves the problem that conventional non-evaporable gas absorbing alloys have. An evaporative gas absorbing alloy is provided.
本発明のガス吸収合金は、これまで活性化処理が困難な
ために利用できなかった分野にまで非藩発型ガス吸収合
金の利用を拡大するため産業上の価値が極めて高いもの
である。The gas-absorbing alloy of the present invention has extremely high industrial value because it expands the use of non-invented gas-absorbing alloys to fields where they could not be used due to the difficulty of activation treatment.
第1図(a) 、 (b)は、本発明の合金と従来材の
水素吸収特性を示す図、
第2図(a) 、 (b)は、本発明合金と比較材の活
性化特性を示す図、
第3図は、本発明合金の温度と平衡水素圧力との関係を
示す図、
第4図は、本発明合金の窒素と一酸化炭素の吸収特性を
示す図、である。
第5図は、雰囲気温度と発熱特性との関係を示す図、で
ある。
第7図−(幻
畷収水を源Y牧/含合滑子数(Hk)
第1図−(bl
口及収水素原子数/合金原子数 (つ・閂)零口気温屋
2図−(α〕
勢囲気温屓
肴 固 し里屓 °C
2図−(1))
雰囲気2濱 ゛C
第3図
温/1 (/ρOγ丁’に一’ )
第9図
畷収量((ma’ 、tar r )Figures 1 (a) and (b) show the hydrogen absorption properties of the alloy of the present invention and the conventional material, and Figures 2 (a) and (b) show the activation properties of the alloy of the present invention and the comparative material. FIG. 3 is a diagram showing the relationship between temperature and equilibrium hydrogen pressure of the alloy of the present invention, and FIG. 4 is a diagram showing the absorption characteristics of nitrogen and carbon monoxide of the alloy of the present invention. FIG. 5 is a diagram showing the relationship between ambient temperature and heat generation characteristics. Figure 7 - (Genke water source Y Maki / Contained number of sliders (Hk) Figure 1 - (bl Number of hydrogen atoms/Number of alloy atoms (Tsu/bar) Zero mouth temperature shop 2 figure - (α) Atmosphere 2 °C Figure 2-(1)) Atmosphere 2 °C Figure 3 Temperature/1 (/ρOγt' to 1') Figure 9 Yield ((ma') , tar)
Claims (1)
Cu:0.5〜10%(ただしV+Fe+Cuの合計が
60%以下)を含み、残部は実質的にZrからなる活性
化特性に優れたガス吸収合金。In weight%, V: 10-55%, Fe: 0.5-15%,
A gas-absorbing alloy with excellent activation properties, containing Cu: 0.5 to 10% (however, the total of V+Fe+Cu is 60% or less), and the remainder being substantially Zr.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12672088A JPH01298129A (en) | 1988-05-24 | 1988-05-24 | Gas absorbing alloy having excellent activation characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12672088A JPH01298129A (en) | 1988-05-24 | 1988-05-24 | Gas absorbing alloy having excellent activation characteristics |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01298129A true JPH01298129A (en) | 1989-12-01 |
Family
ID=14942200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12672088A Pending JPH01298129A (en) | 1988-05-24 | 1988-05-24 | Gas absorbing alloy having excellent activation characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01298129A (en) |
-
1988
- 1988-05-24 JP JP12672088A patent/JPH01298129A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4312669A (en) | Non-evaporable ternary gettering alloy and method of use for the sorption of water, water vapor and other gases | |
US4907948A (en) | Non-evaporable ternary gettering alloy, particularly for the sorption of water and water vapor in nuclear reactor fuel elements | |
JPS5839217B2 (en) | Mitsushi Metal for hydrogen storage - Nickel alloy | |
Mandal et al. | Hydrogenation behaviour of the new composite storage material Mg-x% FeTi | |
CA1202200A (en) | Oxygen stabilized zirconium-vanadium-iron alloy | |
Yang et al. | Hydrogen storage properties of 2LiNH2+ LiBH4+ MgH2 | |
US4358316A (en) | Alloys for hydrogen storage | |
Mizuno et al. | Titanium concentration in FeTix (l⩽ x⩽ 2) alloys and its effect on hydrogen storage properties | |
US4556551A (en) | Hydrogen storage materials of zirconium-chromium-iron and titanium alloys characterized by ZrCr2 stoichiometry | |
US4161401A (en) | Nickel-calcium alloy for hydrogen storage | |
US4082834A (en) | Process for gettering moisture and reactive gases | |
US4200460A (en) | Alloys for gettering moisture and reactive gases | |
CN113201679B (en) | ZrCo-based high-entropy intermetallic compound with stable isomorphous hydrogen absorption/desorption reaction and preparation and application thereof | |
US4412982A (en) | Zirconium-titanium-manganese-iron alloy characterized by ZrMn2 stoichiometry | |
JPS5830380B2 (en) | Mitsushi metal alloy for hydrogen storage | |
JPH01298129A (en) | Gas absorbing alloy having excellent activation characteristics | |
USRE30083E (en) | Iron titanium manganase alloy hydrogen storage | |
JPS5837374B2 (en) | Mitsushi Metal for Hydrogen Storage - Calcium Alloy | |
US4512965A (en) | Hydrogen storage materials of hyperstoichiometric alloys | |
US5441715A (en) | Method for the separation of hydrogen isotopes using a hydrogen absorbing alloy | |
JPH01298130A (en) | Gas absorbing alloy having excellent activation characteristics | |
JPS5938293B2 (en) | Titanium-chromium-vanadium hydrogen storage alloy | |
JPH0247535B2 (en) | ||
CA1229247A (en) | Hydrogen storage materials of ceni in5-x xx mn.sub.x alloys | |
US4576639A (en) | Hydrogen storage metal material |