JPH01297519A - Liquid thermometer - Google Patents

Liquid thermometer

Info

Publication number
JPH01297519A
JPH01297519A JP12971688A JP12971688A JPH01297519A JP H01297519 A JPH01297519 A JP H01297519A JP 12971688 A JP12971688 A JP 12971688A JP 12971688 A JP12971688 A JP 12971688A JP H01297519 A JPH01297519 A JP H01297519A
Authority
JP
Japan
Prior art keywords
container
liquid
refractive index
light
photoconductive medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12971688A
Other languages
Japanese (ja)
Inventor
Yasuo Katano
泰男 片野
Hiroyuki Horiguchi
堀口 浩幸
Toshiyuki Furuta
俊之 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12971688A priority Critical patent/JPH01297519A/en
Publication of JPH01297519A publication Critical patent/JPH01297519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute the measurement with high sensitivity by immersing a photoconductive body into an enclosed container, filling the inside of the enclosed container with a liquid and detecting a temperature variation of the outside of the container as an output variation of a photodetector by a refractive index variation of the liquid in the container. CONSTITUTION:A plate 11 to which an incident light part 10a of a photoconductive medium 10 and a light receiving part 10b are fixed is joined with a screw to a flange part 12a of a container 12 through an elastic member 13. In this plate 11, a hole 14 is pierced in advance, and from this hole 14, a reference liquid 15 is injected into the container 12, and after the container 12 is filled entirely with the liquid 15, the hole 14 is closed up tightly by a blank plug. In this case, as for the liquid 15, a water solution which is not deteriorated in a room temperature area, has photoabsorption sensitivity against incident light wavelength, and in which a substance of a wavelength area is dissolved is used. In such a state, a temperature variation of the outside of the container is detected as an output variation of a photodetector 22 by a refractive index variation of the liquid 15 in the container. In such a way, the measurement can be executed with high sensitivity.

Description

【発明の詳細な説明】 14氷乱 本発明は、液体温度計、より詳細には、反応溶液の温度
測定に関し、特に、工業プラントにおける反応溶液の液
温を管理する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid thermometer, more particularly to measuring the temperature of a reaction solution, and particularly to a device for controlling the temperature of a reaction solution in an industrial plant.

良來1区 従来、常温領域(5℃〜40℃)における温度計測とし
て、液体封入ガラス温度計、熱電対温度計、抵抗温度計
、水晶振動子温度計等が用いられている。
Liangrai 1st Ward Conventionally, liquid-filled glass thermometers, thermocouple thermometers, resistance thermometers, crystal resonator thermometers, etc. have been used to measure temperature in the normal temperature range (5° C. to 40° C.).

また、一般に工業プラントにおける反応溶液として、酸
性溶液やアルカリ性溶液、また、有桟溶剤等がよく使用
され、これらの液体に対する常温領域における高精度の
液温管理が要求されている。
In addition, acidic solutions, alkaline solutions, barred solvents, and the like are generally used as reaction solutions in industrial plants, and highly accurate liquid temperature control in the room temperature range is required for these liquids.

上記液体の液温管理に従来の温度計を使用する場合、例
えば、液体封入ガラス製温度計は自動計測が不可能で、
フッ酸中では使用できない欠点を有し、熱雷対温度計は
金属であるため酸及びアルカリ性溶液により腐蝕してし
まう欠点があった。また、抵抗温度計は、電流を流す必
要があるため、有機溶剤に対して防爆上の問題があり、
水晶振動子温度計は液体中での作動は不可能であった。
When using a conventional thermometer to control the temperature of the liquid mentioned above, for example, a thermometer made of liquid-filled glass cannot be automatically measured;
It has the disadvantage that it cannot be used in hydrofluoric acid, and since the thermometer is made of metal, it has the disadvantage of being corroded by acid and alkaline solutions. Also, since resistance thermometers require a current to flow through them, there are explosion-proof problems with organic solvents.
Quartz crystal thermometers could not operate in liquids.

また、本出願人は、先に、第8図に示すごとき液体濃度
計について提案したが、この液体濃度計は光りがファイ
バ1を全反射伝播する際、伝播光の一部がファイバ1の
表面に浸み出す現象を利用したものであり、このしみ出
しは、エバネッセント波(A部)として知られている。
Furthermore, the present applicant previously proposed a liquid concentration meter as shown in FIG. This seepage is known as an evanescent wave (part A).

光の波長が液体に容器する固形分(例えば染料など)の
吸収波長であれば、この浸み出した光は溶存物質に吸収
される。従って、ファイバ1内を伝播する光量は、物質
濃度に依存し、ファイバ出力光量を検出することで、物
質濃度を知ることができる。また、第9図に示すように
、液体の屈折率が変化すると、第8図に示したファイバ
ー伝播光の反射角0が変わり伝播光量が変化する。
If the wavelength of the light is the absorption wavelength of the solid content (for example, dye) contained in the liquid, this seeped light will be absorbed by the dissolved substance. Therefore, the amount of light propagating within the fiber 1 depends on the substance concentration, and the substance concentration can be determined by detecting the fiber output light amount. Further, as shown in FIG. 9, when the refractive index of the liquid changes, the reflection angle 0 of the fiber propagating light shown in FIG. 8 changes, and the amount of propagating light changes.

更に、第10図に示すように、液体の屈折率は温度依存
性を有する。すなわち1通常、温度上昇に伴って液体密
度が小さくなり、そのため液体屈折率が減少する。従っ
て、液温が変化すると液体屈折率が変化しファイバ伝播
光量が変化する。逆に、ファイバ出力光量を検出するこ
とで、液温を求めることができる。本発明は、このよう
な原理を用いて構成されたものである。
Furthermore, as shown in FIG. 10, the refractive index of the liquid has temperature dependence. Namely, 1. Usually, as the temperature increases, the liquid density decreases, and therefore the liquid refractive index decreases. Therefore, when the liquid temperature changes, the liquid refractive index changes and the amount of light propagating through the fiber changes. Conversely, the liquid temperature can be determined by detecting the amount of fiber output light. The present invention is constructed using such a principle.

l−一部 本発明は、上述のごとき実情に鑑みてなされたもので、
特に、酸やアルカリ性の腐蝕性溶液や。
l-Part of the present invention was made in view of the above-mentioned circumstances,
Especially acidic and alkaline corrosive solutions.

引火性のある有機溶剤を含む溶液に対し、耐波性、防爆
性に優れ、かつ高感度な温度計を提供することを目的と
したものである。
The purpose of this invention is to provide a thermometer that has excellent wave resistance, explosion resistance, and high sensitivity for solutions containing flammable organic solvents.

隻−一部 本発明は、上記目的を達成するために、一端部が入射光
源に、他端部が受光素子に接する曲率をもった光伝導媒
体と、該光伝媒体を浸漬させる密閉容器と、該密閉容器
内に満杯に充填された液体とを有し、容器外部の温度変
化を容器内液体の屈折率又は該容器内液体の屈折率及び
吸収係数変化による受光素子の出力変化として検出する
ことを特徴としたものである。以下、本発明の実施例に
基いて説明する。
In order to achieve the above object, the present invention provides a photoconductive medium having a curvature such that one end is in contact with an incident light source and the other end is in contact with a light receiving element, and a sealed container in which the photoconductive medium is immersed. , the sealed container is fully filled with liquid, and a temperature change outside the container is detected as a change in the refractive index of the liquid in the container or a change in the output of the light receiving element due to a change in the refractive index and absorption coefficient of the liquid in the container. It is characterized by this. Hereinafter, the present invention will be explained based on examples.

第1図は1本発明の一実施例を説明するための部分斜視
図、第2図は、断面構成図で、図中。
FIG. 1 is a partial perspective view for explaining one embodiment of the present invention, and FIG. 2 is a cross-sectional configuration diagram.

10は入射光部10a、受光部10bを有する曲率をも
った光伝導媒体、11は該光伝導媒体を接着剤等により
接合固定する平板、12は前記光伝導媒体を浸漬する容
器でフランジ部12aを有している。前記光伝導媒体1
0の入射光部10a及び受光部10bを固定した平板1
1は、弾性部材13を介して容器12のフランジ部12
aにねじ等により接合される。前記平板11には、あら
かじめ孔14が穿設されており、この孔14より基準液
体15が容器12内に注入され、容器12を基準液体1
5で満杯にした後、めくら栓16により密閉される。尚
、前記弾性部材13は環境温度上昇による基準液体15
の体積膨張に対して緩衝作用を行なう、20は、発光素
子21及び受光素子22を前記平板11に固定した光伝
導媒体1゜の入射光部10a及び受光部10bに対応さ
せて固定した平板で0リング23等の密閉部材を介して
前記平板11に固定される。
Reference numeral 10 denotes a photoconductive medium having a curvature having an incident light part 10a and a light receiving part 10b, 11 a flat plate to which the photoconductive medium is bonded and fixed with an adhesive or the like, and 12 a container in which the photoconductive medium is immersed, with a flange part 12a. have. The photoconductive medium 1
A flat plate 1 on which the incident light section 10a and the light receiving section 10b of 0 are fixed.
1 connects the flange portion 12 of the container 12 via the elastic member 13
It is connected to a by screws or the like. A hole 14 is pre-drilled in the flat plate 11, and a reference liquid 15 is injected into the container 12 through the hole 14, and the container 12 is filled with the reference liquid 1.
After filling up with step 5, it is sealed with a blind stopper 16. Incidentally, the elastic member 13 is caused by the reference liquid 15 due to an increase in the environmental temperature.
20 is a flat plate having a light emitting element 21 and a light receiving element 22 fixed to the flat plate 11 in correspondence with the incident light part 10a and the light receiving part 10b of the photoconductive medium 1°. It is fixed to the flat plate 11 via a sealing member such as an O-ring 23.

第3図は、本発明の他の実施例を説明するための断面構
成図で、第1図及び第2図の場合と同一の作用をする箇
所には第1図及び第2図の場合と同一の参照番号が付さ
れている。而して、この実施例の場合、平板20には、
遠くにある光源及び受光素子(図示せず)と接続した光
ファイバー24゜25が、平板11に固定された光伝導
媒体1oの入射光部10a及び受光部10bに対応して
固定されており、前記第1図及び第2図に示した実施例
と同様に、0リング23等の密閉部材を介して前記平板
11に固定される。従って、この本実施例は、電気回路
を全く含まないので特に防爆性に優れている。
FIG. 3 is a cross-sectional configuration diagram for explaining another embodiment of the present invention. The same reference numbers are given. Therefore, in the case of this embodiment, the flat plate 20 includes:
Optical fibers 24 and 25 connected to a distant light source and a light receiving element (not shown) are fixed corresponding to the incident light part 10a and the light receiving part 10b of the photoconductive medium 1o fixed to the flat plate 11. Similar to the embodiment shown in FIGS. 1 and 2, it is fixed to the flat plate 11 via a sealing member such as an O-ring 23. Therefore, this embodiment is especially excellent in explosion-proof properties since it does not include any electrical circuits.

前記基準液体15として、常温領域で劣化のない、入射
光波長に対して光吸収感度を有する波長帯域を有する物
質が溶存する水溶液が用いられる。
As the reference liquid 15, an aqueous solution is used in which a substance that does not deteriorate at room temperature and has a wavelength band having light absorption sensitivity to the wavelength of incident light is dissolved.

この理由は、光伝導媒体よりもれ出た光が容器内で反射
し、再び光伝導媒体内にもどってくるのを防止したり、
あるいは、容器が透明である場合、容器外より入射する
光等の外乱光を除去する為である。前記水溶液の屈折率
が光伝導媒体の屈折率に近いほど、水溶液の屈折率変化
に対して感度が良くなるが伝播光量を減少する。
The reason for this is to prevent light leaking from the photoconductive medium from being reflected within the container and returning to the photoconductive medium,
Alternatively, if the container is transparent, this is to remove disturbance light such as light incident from outside the container. The closer the refractive index of the aqueous solution is to the refractive index of the photoconductive medium, the better the sensitivity to changes in the refractive index of the aqueous solution will be, but the amount of propagated light will be reduced.

第4図は、液体屈折率に対する相対出力を示す図である
。光伝導媒体(ファイバー)屈折率は1゜457であり
、液体屈折率が1.43以上の領域では屈折率変化に対
する出力変化量が増している。
FIG. 4 is a diagram showing relative power to liquid refractive index. The refractive index of the photoconductive medium (fiber) is 1°457, and in the region where the liquid refractive index is 1.43 or more, the amount of output change with respect to the change in refractive index increases.

しかし、1.455以上になると出力値が小さくなり、
S/Nが悪くなる。この実験結果より、液体屈折率をN
い光伝導媒体屈折率をNFとすると、 Np −0,04<NL<NF  O,01が望ましい
ことがわかる。つまり、第4図のAの領域が屈折率変動
に対して感度が高く、出力も十分ある。
However, when it becomes 1.455 or more, the output value becomes small,
S/N deteriorates. From this experimental result, we can determine that the liquid refractive index is N
Letting NF be the refractive index of a photoconductive medium, it can be seen that Np -0,04<NL<NF O,01 is desirable. In other words, the region A in FIG. 4 has high sensitivity to refractive index fluctuations and has sufficient output.

尚、屈折率はNo”の値を示す。Note that the refractive index indicates a value of No''.

また、前記容器12として、ポリエチレン、ポリプロピ
レン又は四フッ化エチレン重合体(PTFE)、四フッ
化エチレンと六フッ化プロピレンの共重合体(F E 
P)等のメチル基、パーフロロアルキル基を多量に含ん
だ樹脂成形品が用いられる。
Further, as the container 12, polyethylene, polypropylene, tetrafluoroethylene polymer (PTFE), a copolymer of tetrafluoroethylene and hexafluoropropylene (F E
A resin molded product containing a large amount of methyl groups and perfluoroalkyl groups such as P) is used.

また、金属表面にこれらの樹脂をコーティングした部材
を用いれば、被検液体が酸性あるいはアルカリ性溶液で
あっても優れた耐液性を有する。また、被検液体が有機
溶剤を含む場合は、容器12として、ガラスあるいは金
属を用いれば耐液性は良好となる。前記基準液体15内
に溶存する物質としては、溶液中でイオン化するものが
望ましく、例えば遷移金属や染料がこれに相当する。更
に。
Furthermore, if a member whose metal surface is coated with these resins is used, it will have excellent liquid resistance even if the liquid to be tested is acidic or alkaline. Furthermore, if the liquid to be tested contains an organic solvent, the liquid resistance will be good if glass or metal is used as the container 12. The substance dissolved in the reference liquid 15 is preferably one that ionizes in solution, such as transition metals and dyes. Furthermore.

容器12の肉厚を薄くし、容量を小さくして基準溶液量
を少なくすることにより、液温変化に対する応答性をよ
くすることができ、金属に樹脂をコーティングした容器
を用いれば、より応答性を高めることができる。
By thinning the wall thickness of the container 12 and reducing its capacity to reduce the amount of reference solution, responsiveness to changes in liquid temperature can be improved.If a container whose metal is coated with resin is used, responsiveness can be improved. can be increased.

光伝導媒体の材料としては、ガラスあるいは樹脂が望ま
しい、形状は、U字形の他、半球形又は回転楕円体でも
よい。
The material of the photoconductive medium is preferably glass or resin, and the shape may be a U-shape, a hemisphere, or a spheroid.

以下に、金属アルキレート法による超微粒子の作製にお
いて、反応溶液としてHCQを触媒とするアルコール水
溶液を用い、液温を管理しながら反応を行う場合に前記
溶液に対して使用した実施例を示す。
Below, an example will be shown in which an aqueous alcohol solution containing HCQ as a catalyst was used as the reaction solution in the production of ultrafine particles by the metal alkylate method, and the solution was used when the reaction was carried out while controlling the liquid temperature.

1−適一涯 光伝導媒体:ポリメチルペンテン(商品名TPX、三井
東圧化学、屈折率No= 1.463)の成形品で断面1 m X1mの角、長さ
ioms1曲率半径 5■ 平板:ポリプロピレン製 光伝導媒体の平板への接着材:XB5052、チバガイ
ギー社 容器:ポリプロピレン製(深さ13I、断面81B X
 l 、 5 m 、内厚0.3mm)基準液体:溶存
物質・・・フタロシアニンブルー〇、5wt% 屈折率−1’Jo= 1.433 光源H56Qnm波長のLED 受光素子:Siフォトダイオード 光源、受光素子は光ファイバーを通して光伝導媒体と結
合した。
1-Suitable photoconductive medium: Molded product of polymethylpentene (trade name TPX, Mitsui Toatsu Chemical, refractive index No. = 1.463), cross section 1 m x 1 m corner, length ioms 1 radius of curvature 5 ■ Flat plate: Polypropylene adhesive for photoconductive medium to flat plate: XB5052, Ciba Geigy Container: Polypropylene (depth 13I, cross section 81B
l, 5 m, inner thickness 0.3 mm) Reference liquid: Dissolved substance... Phthalocyanine blue〇, 5 wt% Refractive index -1'Jo = 1.433 Light source H56Qnm wavelength LED Light receiving element: Si photodiode light source, light receiving element was coupled with a photoconductive medium through an optical fiber.

このHCQを含有するアルコール水溶液の液温に対する
出力値は、第5図に示すように0.1℃の液温変化に対
し出力は10%変化しており、十分な感度を有すること
がわかる。しかも、容器12は耐酸性に優れており、ま
た、引火性のあるアルコール溶液に対し、光ファイバー
を用いて光源、受光素子と光伝導媒体が結合しているの
で。
As shown in FIG. 5, the output value of the aqueous alcohol solution containing HCQ with respect to the liquid temperature shows that the output changes by 10% for a change in liquid temperature of 0.1° C., indicating that it has sufficient sensitivity. In addition, the container 12 has excellent acid resistance and is resistant to flammable alcohol solutions since the light source, light receiving element, and photoconductive medium are connected using optical fibers.

防爆型温度計とすることができた。This made it possible to create an explosion-proof thermometer.

また、前記基準液体15に溶存する物質に吸収係数が温
度依存するものを用いた場合も温度に応じて光伝導媒体
内を伝播する光量が変化する。この時、温度上昇に伴っ
て吸収係数が減少するものを用いると、第6図に示すよ
うに、温度が上昇するにつれて光量が増加し、かつ先に
述べたように、屈折率も減少し、さらに感度よく測定す
ることができる。次に前記容器12内の基準液体15中
の溶存物質として、前記条件を満たしているBiV4・
0.lCaOを用いた実施例を示す。
Furthermore, when a substance whose absorption coefficient depends on temperature is used as the substance dissolved in the reference liquid 15, the amount of light propagating within the photoconductive medium changes depending on the temperature. At this time, if a material whose absorption coefficient decreases as the temperature rises is used, as shown in Figure 6, the amount of light increases as the temperature rises, and as mentioned earlier, the refractive index also decreases. It is also possible to measure with higher sensitivity. Next, as a dissolved substance in the reference liquid 15 in the container 12, BiV4.
0. An example using lCaO will be shown.

実施例 金属アルキレート法による超微粒子の作製において、反
応溶液としてHCQを触媒とするアルコール水溶液を用
い、液温を管理しながら反応を行う場合に前記溶液に対
して使用した実施例を示す。
EXAMPLE An example will be shown in which an aqueous alcohol solution containing HCQ as a catalyst was used as the reaction solution in the production of ultrafine particles by the metal alkylate method, and the reaction was carried out while controlling the temperature of the solution.

光伝導媒体:ポリメチルペンテン(商品名TPX、三井
東圧化学、屈折率1’Jo= 1.463)の成形品で断面11m× 1+nmの角、長さ10mm、曲率半径m 平板:ポリプロピレン製 光伝導媒体の平板への接着材:XB5052、チバガイ
ギー社 容器:ポリプロピレン製、深さ1.3 rrn 、断面
8nu X 1 、5 m +内厚0.3m基準液体:
溶存物貿・・・B x V 04・0.1.Ca02w
t% 屈折率・・・ND=1.433 光源:白色光源に530nmのフィルターをつけたもの 受光素子:Siフォトダイオード 光源、受光素子は光ファイバーを通して光伝導媒体と結
合した。又、V、O5の分光特性を第7図に示す。
Photoconductive medium: Molded product of polymethylpentene (trade name TPX, Mitsui Toatsu Chemical, refractive index 1'Jo = 1.463), cross section 11 m x 1 + nm corner, length 10 mm, radius of curvature m Flat plate: Polypropylene light Adhesive material for conducting medium to flat plate: XB5052, Ciba Geigy Container: Made of polypropylene, depth 1.3 rrn, cross section 8 nu x 1, 5 m + inner thickness 0.3 m Reference liquid:
Dissolved material trade...B x V 04・0.1. Ca02w
t% Refractive index: ND=1.433 Light source: White light source with a 530 nm filter Light receiving element: Si photodiode The light source and the light receiving element were coupled to a photoconductive medium through an optical fiber. Further, the spectral characteristics of V and O5 are shown in FIG.

効   果 以上の説明から明らかなように、本発明によると、安価
な材料で構成されるため、部品見積りコストを低減させ
ることができる。
Effects As is clear from the above explanation, according to the present invention, the parts estimate cost can be reduced because it is made of inexpensive materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明するための部分斜視
図、第2図は、断面構成図、第3図は、本発明の他の実
施例を説明するための断面構成図、第4図は、液体屈折
率と相対出力の変化率を示す図、第5図は、被検液体の
温度と相対出力の変化率を示す図、第6図は、基準液体
温度と相対出方の変化を示す図、第7図は、V、Olの
分光特性を示す図、第8図は、本発明の原理を示す図、
第9図は、液体の屈折率と相対出方の変化率を示す図、
第10図は、液温と液体屈折率の変化率を示す図である
。 10・・・光伝導媒体、10a・・・入射光部、10b
・・・受光部、11・・・平板、12・・・容器、13
・・・弾性部材、14・・・孔、15・・・基準液体、
2o・・・平板、21・・・発光素子、22・・・受光
素子、24.25・・・光ファイバー。
FIG. 1 is a partial perspective view for explaining one embodiment of the present invention, FIG. 2 is a cross-sectional configuration diagram, and FIG. 3 is a cross-sectional configuration diagram for explaining another embodiment of the present invention. Figure 4 is a diagram showing the rate of change of liquid refractive index and relative output, Figure 5 is a diagram showing the temperature of the test liquid and rate of change of relative output, and Figure 6 is a diagram showing the reference liquid temperature and relative output. FIG. 7 is a diagram showing the spectral characteristics of V and Ol, FIG. 8 is a diagram showing the principle of the present invention,
FIG. 9 is a diagram showing the refractive index of the liquid and the rate of change in relative direction;
FIG. 10 is a diagram showing the liquid temperature and the rate of change of the liquid refractive index. 10... Photoconductive medium, 10a... Incident light section, 10b
... Light receiving part, 11 ... Flat plate, 12 ... Container, 13
... elastic member, 14 ... hole, 15 ... reference liquid,
2o... Flat plate, 21... Light emitting element, 22... Light receiving element, 24.25... Optical fiber.

Claims (1)

【特許請求の範囲】 1、一端部が入射光源に、他端部が受光素子に接する曲
率をもった光伝導媒体と、該光伝導体を浸漬させる密閉
容器と、該密閉容器器内に満杯に充填された液体とを有
し、容器外部の温度変化を容器内液体の屈折率変化によ
る受光素子の出力変化として検出することを特徴とする
液体温度計。 2、一端部が入射光源に、他端部が受光素子に接する曲
率をもった光伝導媒体と、該光伝媒体を浸漬させる密閉
容器と、該密閉容器内に満杯に充填された液体とを有し
、容器外部の温度変化を容器内液体の屈折率及び吸収係
数変化による受光素子の出力変化として検出することを
特徴とする液体温度計。 3、前記光伝導媒体、容器内液体の屈折率をN_F、N
_Lとすると、該液体屈折率が N_F−0.04≦N_L≦N_F−0.01の範囲内
にあることを特徴とする請求項第1項あるいは第2項に
記載の液体温度計。
[Scope of Claims] 1. A photoconductive medium having a curvature such that one end is in contact with an incident light source and the other end is in contact with a light-receiving element, a closed container in which the photoconductor is immersed, and the closed container is full. 1. A liquid thermometer, characterized in that the temperature change outside the container is detected as a change in the output of a light-receiving element due to a change in the refractive index of the liquid inside the container. 2. A photoconductive medium with a curvature such that one end is in contact with the incident light source and the other end is in contact with the light receiving element, a sealed container in which the photoconductive medium is immersed, and a liquid filled in the sealed container. 1. A liquid thermometer, which detects a temperature change outside the container as a change in the output of a light-receiving element due to a change in the refractive index and absorption coefficient of the liquid inside the container. 3. The refractive index of the photoconductive medium and the liquid in the container is N_F, N
3. The liquid thermometer according to claim 1, wherein the liquid refractive index is within the range of N_F-0.04≦N_L≦N_F-0.01, where _L.
JP12971688A 1988-05-26 1988-05-26 Liquid thermometer Pending JPH01297519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12971688A JPH01297519A (en) 1988-05-26 1988-05-26 Liquid thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12971688A JPH01297519A (en) 1988-05-26 1988-05-26 Liquid thermometer

Publications (1)

Publication Number Publication Date
JPH01297519A true JPH01297519A (en) 1989-11-30

Family

ID=15016445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12971688A Pending JPH01297519A (en) 1988-05-26 1988-05-26 Liquid thermometer

Country Status (1)

Country Link
JP (1) JPH01297519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131616A1 (en) * 2019-12-24 2021-07-01 株式会社クボタ Urea concentration sensor and ammonia concentration sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131616A1 (en) * 2019-12-24 2021-07-01 株式会社クボタ Urea concentration sensor and ammonia concentration sensor

Similar Documents

Publication Publication Date Title
EP0027099A1 (en) Refractive-index responsive light-signal system
US6356675B1 (en) Fiber optic refractive index monitor
US5058420A (en) Fiber optic liquid leak detector
Jeon et al. Fiber-optic pH sensor based on sol-gel film immobilized with neutral red
US4037967A (en) Apparatus for measuring the density of a liquid, utilizing the law of refraction
US20180024052A1 (en) Immersion Refractometer
JPH01297519A (en) Liquid thermometer
CN110207846B (en) Capillary tube optical fiber temperature sensor
CN205982082U (en) Liquid refractometry system
CN104864918A (en) Device and method for testing fiber bragg grating corrosion and liquid refractive index
Motellier et al. Fiber-optic pH sensor for in situ applications
Puyol et al. Absorbance-based integrated optical sensors
Samian et al. Non‐touch detection of rhodamine B concentration in distilled water using fiber coupler based on displacement sensor
JP3673254B2 (en) Liquid level detection sensor and liquid level detection method
JP3100247B2 (en) Alcohol concentration measurement method
Zahir et al. Implementation of a Fiberoptic Sensor to Detect Change in Liquid Level and Change in Concentration of Solute in a Water Reservoir
CN201000426Y (en) Optical fibre sensor for on-line measuring biomass concentration
GB2173894A (en) Optical fibre sensors
GB2134254A (en) Refractometer for fluids
JPH0736257Y2 (en) Optical fiber level gauge
CN116412944A (en) Ultra-high-sensitivity optical fiber F-P cavity pressure sensing structure
JPH06281509A (en) Temperature measuring device
JP3121711B2 (en) Concentration measuring device
Accetta Applications of Refractometry in Battery State-of-Charge (SOC) Measurements
Zhang et al. Polymer Waveguide Sensor Based on Evanescent Bragg Grating for Lab-on-a-Chip Applications