JPH01297315A - Stretching device for vehicle - Google Patents

Stretching device for vehicle

Info

Publication number
JPH01297315A
JPH01297315A JP63127415A JP12741588A JPH01297315A JP H01297315 A JPH01297315 A JP H01297315A JP 63127415 A JP63127415 A JP 63127415A JP 12741588 A JP12741588 A JP 12741588A JP H01297315 A JPH01297315 A JP H01297315A
Authority
JP
Japan
Prior art keywords
cylinder
rod
gas
spring mechanism
gas spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63127415A
Other languages
Japanese (ja)
Inventor
Atsushi Misumi
三角 淳
Akira Kitamura
朗 北村
Takeshi Kamitsukuri
神作 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP63127415A priority Critical patent/JPH01297315A/en
Publication of JPH01297315A publication Critical patent/JPH01297315A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/32Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds
    • B60G11/34Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds including leaf springs
    • B60G11/46Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds including leaf springs and also fluid springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/17Independent suspensions with a strut contributing to the suspension geometry by being articulated onto the wheel support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/44Indexing codes relating to the wheels in the suspensions steerable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/11Leaf spring
    • B60G2202/114Leaf spring transversally arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/148Mounting of suspension arms on the unsprung part of the vehicle, e.g. wheel knuckle or rigid axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/43Fittings, brackets or knuckles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7101Fiber-reinforced plastics [FRP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/02Resilient suspensions for a single wheel with a single pivoted arm
    • B60G3/04Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially transverse to the longitudinal axis of the vehicle
    • B60G3/10Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially transverse to the longitudinal axis of the vehicle the arm itself being resilient, e.g. leaf spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/28Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram at least one of the arms itself being resilient, e.g. leaf spring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To compact a gas spring mechanism by providing a suspension arm also served as spring and a gas spring mechanism wherein the volume of compressed gas is changed according to the relative displacement of its rod against a cylinder so as to support elastically a vertical load. CONSTITUTION:In a stretching device 1, a tyre 10, and a hub carrier 3 provided with the axle shaft 9 of the tyre are vertically displaced by the input form road surface while a vehicle is driven. Then a suspension arm 3 also served as spring which has its free end 2b turnably provided on the hub carrier 3 via a ball joint 8 expands and contracts vertically. And the rod 15 of a gas spring mechanism 4 the lower end of which is connected to the hub carrier 3 is relatively displaced in the vertical direction inside a cylinder 14 at the same time; or, if the rod 15 is stuffed into the cylinder 14, then its air chamber 13 is compressed and resiliency of gas increases. A piston portion 19 is displaced inside an oil chamber 12 at the same time and the displacement of the rod 15 is damped at a damping force generating portion 20.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車や附随車等の懸架機構部に用いられる
車両用懸架装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vehicle suspension system used in a suspension mechanism of an automobile, an accompanying vehicle, or the like.

[従来の技術] 自動車のサスペンションに使用されるガスばね装置は、
例えば特開昭60−80920号公報に見られるように
、シリンダと、このシリンダの軸線方向に移動自在に挿
入されたロッドを有している。上記シリンダの内部には
窒素等の圧縮ガスが収容されており、ガスの反発力によ
ってロッドがシリンダから突出する方向に付勢される。
[Prior art] Gas spring devices used in automobile suspensions are
For example, as seen in Japanese Unexamined Patent Publication No. 60-80920, it has a cylinder and a rod inserted movably in the axial direction of the cylinder. A compressed gas such as nitrogen is stored inside the cylinder, and the repulsive force of the gas urges the rod in a direction to protrude from the cylinder.

このガスばね装置は車輪側の部材と車体側の部材との間
に配置され、シリンダに対するロッドの相対位置に応じ
て圧縮ガスの体積が変化し、ガスの反発力によって上下
方向の荷重が弾性的に支持されるようになっている。こ
のため、ガスの封入圧力を充分高くすればこのガスばね
装置のみで荷重を支えることが可能である。
This gas spring device is placed between the wheel side member and the vehicle body side member, and the volume of compressed gas changes depending on the relative position of the rod with respect to the cylinder, and the vertical load is elastically reduced due to the repulsive force of the gas. It is now supported by Therefore, if the pressure of gas sealed in is made high enough, it is possible to support the load only with this gas spring device.

また上記ガスばね装置において、シリンダの内部に適量
の作動油を収容するとともに、ロッドの相対運動に伴っ
て油が流動する箇所にオリフィスを設けることにより、
ロッドの往復運動を減衰させることができるようにした
油入りのガスばね装置、いわゆる油空圧サスペンション
も実用化されている。油空圧サスペンションは、オリフ
ィス開口量を適宜に設定することにより所望の減衰力が
得られるとともに、ガスばねとして働く気室の数を切換
えることによってばね定数を変えることも可能である。
In addition, in the above gas spring device, by storing an appropriate amount of hydraulic oil inside the cylinder and providing an orifice at a location where the oil flows with the relative movement of the rod,
A so-called hydropneumatic suspension, which is an oil-filled gas spring device that can damp the reciprocating motion of the rod, has also been put into practical use. In the hydropneumatic suspension, a desired damping force can be obtained by appropriately setting the orifice opening amount, and the spring constant can also be changed by changing the number of air chambers that act as gas springs.

このため、車両の走行状態や路面の凹凸状態を検知する
センサと組合わせることにより、状況に応じた減衰力と
ばね定数にするといった使い方も可能である。
Therefore, by combining it with a sensor that detects the running condition of the vehicle and the unevenness of the road surface, it is possible to use it to adjust the damping force and spring constant according to the situation.

[発明が解決しようとする課題] この種のガスばね装置は車体等に加わる大きな荷重を支
える必要があり、しかもガスばね装置を収容するスペー
スには限りがあるからコンパクトに構成しなければなら
ない。このため、シリンダ内のガス封入圧を大きくせざ
るをえない。ところがガスの封入圧を高めるにはシリン
ダ等の耐圧壁を厚くしなければならないから、装置の大
形化と重量増を招く。また、シリンダとロッドの摺動部
に設けられるシール材も高圧用のものを用いなければな
らないから、ロッドの摺動抵抗がかなり大きくなる。そ
の結果、微小振動に対する応答性が悪化するなどの問題
が出てくる。
[Problems to be Solved by the Invention] This type of gas spring device needs to support a large load applied to the vehicle body, etc., and the space for accommodating the gas spring device is limited, so it must be constructed compactly. For this reason, it is necessary to increase the gas filling pressure inside the cylinder. However, in order to increase the gas sealing pressure, the pressure walls of the cylinder etc. must be made thicker, which increases the size and weight of the device. Further, since the sealing material provided at the sliding portion between the cylinder and the rod must be made for high pressure, the sliding resistance of the rod becomes considerably large. As a result, problems such as poor response to minute vibrations arise.

一方、周知の自動車の独立懸架機構部に用いられるロア
アームあるいはアッパアームなどのサスペンションアー
ム(リンク)類は、懸架用の巻ばねあるいは板ばね等と
組合わせて使用されている。
On the other hand, suspension arms (links) such as lower arms and upper arms used in well-known independent suspension mechanisms of automobiles are used in combination with suspension coil springs, leaf springs, and the like.

しかもアームの上下運動を減衰させるためにショックア
ブソーバが併用されている。従ってこの種の懸架装置は
懸架専用のばねを必要とするばかりか、このばねだけで
荷重を支えるために大きなばね定数のものを使用する必
要があった。
Furthermore, a shock absorber is also used to dampen the vertical movement of the arm. Therefore, this type of suspension system not only requires a spring dedicated to the suspension, but also requires the use of a spring with a large spring constant in order to support the load with this spring alone.

従って本発明の目的は、ガスばね機構の内圧を下げたり
コンパクト化等を図ることが可能で、しかもサスペンシ
ョンアームが懸架用ばねとしての機能を兼用できるよう
な車両用懸架装置を提供することにある。
Therefore, an object of the present invention is to provide a suspension system for a vehicle in which the internal pressure of the gas spring mechanism can be lowered and the gas spring mechanism can be made more compact, and the suspension arm can also serve as a suspension spring. .

[課題を解決するための手段] 上記目的を果たすために本発明の車両用懸架装置は、F
RPからなりかつ固定端が車体側に固定されるとともに
自由端が車輪側の部材に連結されるばね兼用サスペンシ
ョンアームと、シリンダおよびこのシリンダの軸線方向
に移動自在に挿入されたロッドを有しかつ上記シリンダ
の内部に圧縮ガスが収容されているとともに上記シリン
ダに対するロッドの相対運動に伴って上記圧縮ガスの体
積が変化するガスばね機構とを具備し、上下方向の荷重
をガスばね機構とFRPばね兼用サスペンションアーム
との双方によって弾性的に支えるようにしたものである
[Means for Solving the Problems] In order to achieve the above object, the vehicle suspension system of the present invention has F.
The suspension arm is made of RP and has a fixed end fixed to the vehicle body side and a free end connected to a wheel side member, and a cylinder and a rod inserted movably in the axial direction of the cylinder. The cylinder is equipped with a gas spring mechanism in which compressed gas is accommodated and the volume of the compressed gas changes as the rod moves relative to the cylinder, and the vertical load is transferred between the gas spring mechanism and the FRP spring. It is designed to be elastically supported by both the dual-purpose suspension arm.

[作用] 車体に対して車輪が上下動すると、ばね兼用サスペンシ
ョンアームが同方向に撓むとともに、ガスばね機構のロ
ッドとシリンダとが相対的に動くことにより車輪の上下
動が緩衝される。上記サスペンションアームは、従来の
ロアアームあるいはアッパアームと同様に車輪側の部材
を支持するリンクとしての機能をもつとともに、懸架用
ばねとしての機能を兼用する。この懸架装置に加わる上
下方向の荷重はばね兼用サスペンションアームとガスば
ね機構とによって支持されるため、その分だけガスばね
機構の負担が軽くなり、シリンダ内圧を小さくすること
が可能である。また、シリンダ内圧を従来と同じにする
ならガスの体積やロッドの断面積が小さくてよい。
[Operation] When the wheel moves up and down with respect to the vehicle body, the suspension arm that also serves as a spring is bent in the same direction, and the rod and cylinder of the gas spring mechanism move relative to each other, thereby buffering the up and down movement of the wheel. The suspension arm has a function as a link supporting a wheel-side member like a conventional lower arm or upper arm, and also functions as a suspension spring. Since the vertical load applied to the suspension device is supported by the spring-cum-suspension arm and the gas spring mechanism, the load on the gas spring mechanism is reduced accordingly, making it possible to reduce the cylinder internal pressure. Furthermore, if the cylinder internal pressure is kept the same as before, the volume of gas and the cross-sectional area of the rod may be small.

〔実施例コ 以下に本発明の第1実施例につき第1図および第2図を
参照して説明する。第1図に示された自動車の独立懸架
式の懸架装置1(左右の片側のみ図示する)は、ばね兼
用サスペンションアーム2およびハブキャリア3等から
なるリンク系と、ガスばね機構4とを有している。サス
ペンションアーム2の基端部すなわち固定端2aは、車
体側の部材としてのフレーム5にボルト等の固定用部品
6を用いて片持ち梁成に固定されている。
[Embodiment] A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The independent suspension system 1 for an automobile shown in FIG. ing. A base end portion, that is, a fixed end 2a of the suspension arm 2 is fixed in a cantilevered manner to a frame 5, which is a member on the vehicle body side, using fixing parts 6 such as bolts.

サスペンションアーム2は、いずれも周知のマトリック
ス樹脂を主に長手方向に沿う一方向連続強化繊維によっ
て強化したものであり、自由端2b側の板厚が漸減する
ようなテーパ状に成形されている。すなわちFRPテー
パリーフである。
The suspension arms 2 are each made of a well-known matrix resin reinforced with unidirectional continuous reinforcing fibers mainly along the longitudinal direction, and are formed into a tapered shape such that the plate thickness on the free end 2b side gradually decreases. That is, it is an FRP taper leaf.

このようなテーパリーフであれば、アーム2が上下方向
に撓む際に長手方向各部の応力が均等化に近付き、短い
スパンでも大きな撓みを得ることができるし、軽量化を
図る上でも有利である。このアーム2は複数枚のばねを
厚み方向に重合した重ね板ばね方式であってもよい。
With such a tapered leaf, when the arm 2 bends in the vertical direction, the stress in each part in the longitudinal direction approaches equalization, and a large deflection can be obtained even with a short span, which is also advantageous in terms of weight reduction. . This arm 2 may be of a stacked leaf spring type in which a plurality of springs are stacked in the thickness direction.

サスペンションアーム2の自由端2bに、ボールジヨイ
ント8によって前記ハブキャリア3が上下方向のy軸回
りに旋回自在に設けられている。
The hub carrier 3 is provided at the free end 2b of the suspension arm 2 by a ball joint 8 so as to be pivotable about the vertical y-axis.

ハブキャリア3に設けられた車軸9は、駆動輪の場合は
図示しないドライブシャフトによって回転させられる。
In the case of a drive wheel, the axle 9 provided on the hub carrier 3 is rotated by a drive shaft (not shown).

車軸9には図示しないハブを介してタイヤ10が装着さ
れる。
A tire 10 is attached to the axle 9 via a hub (not shown).

一方、ガスばね機構4は、第2図に概念的に示したよう
に、内部に油室12と気室13を有するシリンダ14と
、ロッド15などを備えて構成される。油室12と気室
13は、例えばベローズ状の伸縮自在な仕切り部材17
によって完全に仕切られている。図示例のシリンダ14
は、その内部に同心状に内筒18を有し、この内筒18
に沿ってロッド15が軸線方向に相対往復動する。ロッ
ド15はシリンダ14に対して軸回りに回転できる。ロ
ッド15に設けられたピストン部19にはオリフィスを
備えた減衰力発生部20が設けられている。油室12の
内部は作動油で満たされている。気室13の内部には圧
縮された窒素等の不活性ガスが封入されている。なお、
油室12に油圧ユニットを接続することにより、油室1
2内の油を出し入れできるようにして車高を調整可能と
してもよい。また、減衰力発生部20にアクチュエータ
によって駆動される弁体を設け、オリフィス開口量を可
変とすることにより減衰力を切換えるようにしてもよい
On the other hand, as conceptually shown in FIG. 2, the gas spring mechanism 4 includes a cylinder 14 having an oil chamber 12 and an air chamber 13 therein, a rod 15, and the like. The oil chamber 12 and the air chamber 13 are separated by a bellows-like expandable partition member 17, for example.
completely separated by. Cylinder 14 in the illustrated example
has an inner cylinder 18 concentrically therein, and this inner cylinder 18
The rod 15 relatively reciprocates in the axial direction along. The rod 15 can rotate about an axis relative to the cylinder 14. A piston portion 19 provided on the rod 15 is provided with a damping force generating portion 20 having an orifice. The interior of the oil chamber 12 is filled with hydraulic oil. The inside of the air chamber 13 is filled with compressed inert gas such as nitrogen. In addition,
By connecting a hydraulic unit to the oil chamber 12, the oil chamber 1
The vehicle height may be adjustable by allowing oil to be taken in and out of the vehicle. Alternatively, the damping force generating section 20 may be provided with a valve body driven by an actuator, and the damping force may be switched by making the orifice opening amount variable.

ガスばね機構4の図示上端側はフレーム5に取付けられ
ている。ガスばね機構4の図示下端側はハブキャリア3
に連結されている。従ってハブキャリア3はロッド15
と一体にy軸回りに旋回できる。
The upper end side of the gas spring mechanism 4 in the drawing is attached to the frame 5. The lower end side of the gas spring mechanism 4 in the diagram is the hub carrier 3
is connected to. Therefore, the hub carrier 3 is the rod 15
It can rotate around the y-axis as a unit.

上記構成の懸架装置1は、走行中の路面からの上下方向
の入力などによってタイヤ10とハブキャリア3が上下
方向に動くと、ばね兼用アーム2が上下方向に撓むとと
もに、ガスばね機構4のロッド15が上下方向に相対移
動することにより、路面からの入力を吸収することがで
きる。更に詳しく言うと、ロッド15がシリンダ14内
に押込まれる方向に移動する際には、シリンダ14内に
ロッド15が押込まれた量に相当する体積分だけ気室1
3が更に圧縮され、ガスの反発力が増大する。また同時
にピストン部19が油室12内を移動し、減衰力発生部
20のオリフィスに油が流れることによって、ロッド1
5の動きが減衰させられる。逆にロッド15がシリンダ
14から突出する方向に移動する際には、シリンダ14
内からロッド15が抜は出た量だけ気室13の体積が増
大する。この時も減衰力発生部20のオリフィスに油が
流れることによって、ロッド15の動きが減衰させられ
る。
In the suspension system 1 having the above configuration, when the tire 10 and the hub carrier 3 move in the vertical direction due to vertical input from the road surface while driving, the spring arm 2 bends in the vertical direction, and the rod of the gas spring mechanism 4 15 can relatively move in the vertical direction, thereby absorbing input from the road surface. More specifically, when the rod 15 moves in the direction in which it is pushed into the cylinder 14, the air chamber 1 is expanded by a volume corresponding to the amount by which the rod 15 is pushed into the cylinder 14.
3 is further compressed, and the repulsive force of the gas increases. At the same time, the piston section 19 moves within the oil chamber 12, and oil flows into the orifice of the damping force generating section 20, causing the rod 1
5 movements are damped. Conversely, when the rod 15 moves in the direction of protruding from the cylinder 14, the cylinder 14
The volume of the air chamber 13 increases by the amount that the rod 15 is pulled out from inside. At this time as well, the movement of the rod 15 is damped by the oil flowing into the orifice of the damping force generating section 20.

このように本実施例の懸架装置1においては、ばね兼用
アーム2とガスばね機構4とによって上下方向の荷重が
分散して支持されるため、ガスはね機構4のみによって
荷重を支持する場合に比べて以下に述べるような利点が
ある。
In this way, in the suspension system 1 of this embodiment, the load in the vertical direction is distributed and supported by the spring arm 2 and the gas spring mechanism 4, so when the load is supported only by the gas spring mechanism 4, Compared to this, it has the following advantages.

ここで、ガスばね機構4のロッド15に加わる荷重をW
、ロッド15の径方向の断面積をA、ガス体積をV、シ
リンダ内圧をP、ガスばね定数をkとすると次式が成立
つ。
Here, the load applied to the rod 15 of the gas spring mechanism 4 is W
, the radial cross-sectional area of the rod 15 is A, the gas volume is V, the cylinder internal pressure is P, and the gas spring constant is k, the following equation holds true.

k−WA/V−PA2/V  、、、0式ガスばね機構
4のみによって荷重を支持する場合と、ばね兼用アーム
2およびガスばね機構4とによって荷重を支持する場合
とでは懸架装置全体としての上下方向の撓みの大きさに
変わりがないから、ばね兼用アーム2とガスばね機構4
を併用する場合には、ガスばね機構4のみで支持する場
合に比べてばね定数には荷重分担の割合いに応じて低下
する。例えば、アーム2とガスばね機構4とで半分ずつ
荷重を分担する場合にはガスばね機構4のばね定数には
1/2ですむし、ガスばね機構4の荷重分担が1/3の
場合にはばね定数には1/3ですむ。
k-WA/V-PA2/V ,,,The overall suspension system is Since there is no difference in the amount of vertical deflection, the spring arm 2 and the gas spring mechanism 4
When used in combination, the spring constant decreases depending on the load sharing ratio compared to the case where the gas spring mechanism 4 is used alone. For example, if the load is shared in half by the arm 2 and the gas spring mechanism 4, the spring constant of the gas spring mechanism 4 will be 1/2, and if the load is shared by the gas spring mechanism 4 in 1/3, then the spring constant of the gas spring mechanism 4 will be 1/2. 1/3 is enough for the spring constant.

前記0式から明らかなように、仮にばね定数kが1/2
になれば、ロッド断面積Aとガス体積Vが一定ならシリ
ンダ内圧Pは1/2でよい。一方、シリンダ内圧Pを一
定にした場合には、ロッド断面積Aが1/2ですむとと
もにガス体積Vも1/2で足りる。ばね定数kが1/3
ですむ時には、ロッド断面積Aとガス体積Vが一定なら
シリンダ内圧Pは1/3でよい。ばね定数kが1/3で
、シリンダ内圧Pが一定であるなら、ロッド断面積Aが
1/3ですむとともにガス体積Vも1/3で足りる。こ
れらはほんの−例であり、シリンダ内圧Pとロッド断面
積Aおよびガス体積Vは必要に応じて種々に変えること
ができる。また、ばね兼用アーム2とガスばね機構4の
荷重分担の割合いも必要に応じて種々に変えることがで
きる。
As is clear from the above equation 0, if the spring constant k is 1/2
Then, if the rod cross-sectional area A and the gas volume V are constant, the cylinder internal pressure P may be 1/2. On the other hand, when the cylinder internal pressure P is kept constant, the rod cross-sectional area A only needs to be 1/2, and the gas volume V only needs to be 1/2. Spring constant k is 1/3
If the rod cross-sectional area A and the gas volume V are constant, the cylinder internal pressure P may be 1/3. If the spring constant k is 1/3 and the cylinder internal pressure P is constant, the rod cross-sectional area A only needs to be 1/3, and the gas volume V also needs to be 1/3. These are just examples, and the cylinder internal pressure P, rod cross-sectional area A, and gas volume V can be varied as required. Further, the ratio of load sharing between the spring arm 2 and the gas spring mechanism 4 can be varied as necessary.

前記のようにシリンダ内圧Pを減少させた場合には、シ
リンダ14の肉厚を薄くすることができるとともに、シ
リンダ14とロッド15との摺動部分のシール材の低圧
化が図れ、シールが容易となる。また、油圧ユニットを
接続することにより油室12に油を出し入れ可能とした
車高調整機能付のガスばね機構の場合には、油圧ポンプ
の負担が軽くなるといった利点もある。一方、ガス体積
Vあるいはロッド断面積Aを減らすようにした場合には
、シリンダ14あるいはロッド15のコンパクト化と軽
量化が図れる。
When the cylinder internal pressure P is reduced as described above, the wall thickness of the cylinder 14 can be made thinner, and the pressure of the sealing material in the sliding portion between the cylinder 14 and the rod 15 can be lowered, making sealing easier. becomes. Furthermore, in the case of a gas spring mechanism with a vehicle height adjustment function that allows oil to be taken in and out of the oil chamber 12 by connecting a hydraulic unit, there is an advantage that the burden on the hydraulic pump is lightened. On the other hand, if the gas volume V or the rod cross-sectional area A is reduced, the cylinder 14 or the rod 15 can be made more compact and lighter.

またFRP製のばね兼用アーム2はスチール製のものに
比べてヤング率が格段に低く、撓みを充分に大きくとる
ことができるから、ハブキャリア3が大きな上下ストロ
ークで上下動することが可能である。そしてこのアーム
2が懸架用ばねを兼ねているから、別途に巻ばね等の懸
架用ばねを設ける必要がなく、収納スペースも少なくて
すむ。
In addition, the spring arm 2 made of FRP has a much lower Young's modulus than that of steel, and can have a sufficiently large amount of deflection, allowing the hub carrier 3 to move up and down with a large vertical stroke. . Since this arm 2 also serves as a suspension spring, there is no need to separately provide a suspension spring such as a coil spring, and the storage space can be reduced.

また、従来の懸架用巻ばねを用いた場合に比べて上下方
向および車幅方向への突出量が少なく、エンジンルーム
方向への突出量も小さいから、デザイン上あるいは空力
学的な観点からフロントフードを低くしたい場合に有利
であるし、自動車のFF化(フロントエンジン・フロン
トドライブ化)や四輪駆動化に伴なって狭くなる傾向に
あるエンジンルーム内を広く使うことができる。
In addition, compared to the case of using conventional suspension coil springs, the amount of protrusion in the vertical direction and vehicle width direction is smaller, and the amount of protrusion toward the engine room is also smaller, so it is useful for design and aerodynamic reasons. This is advantageous when you want to lower the engine speed, and you can use more space in the engine compartment, which has tended to become narrower as automobiles become more FF (front engine, front drive) and four-wheel drive.

なお第3図は本発明の第2実施例を示すものであり、縦
長コ字状の中間ホルダ22を介してハブキャリア3が取
付けられている。アーム2の自由端2bは水平方向の軸
23によって中間ホルダ22の下端部に枢着されており
、中間ホルダ22の上端部にガスばね機構4が取付けら
れている。
Note that FIG. 3 shows a second embodiment of the present invention, in which a hub carrier 3 is attached via a vertically long U-shaped intermediate holder 22. As shown in FIG. The free end 2b of the arm 2 is pivotally connected to the lower end of the intermediate holder 22 by a horizontal shaft 23, and the gas spring mechanism 4 is attached to the upper end of the intermediate holder 22.

ハブキャリア3は中間ホルダ22に対して上下方向のy
′軸回りに旋回自在に支持されている。この実施例にお
いても、上下方向の荷重はばね兼用アーム2とガスばね
機構4の双方によって弾性的に支持される。
The hub carrier 3 is vertically y relative to the intermediate holder 22.
It is rotatably supported around the 'axis. Also in this embodiment, the load in the vertical direction is elastically supported by both the spring arm 2 and the gas spring mechanism 4.

第4図に示した第3実施例は、ロアアーム2とアッパア
ーム25に、ボールジヨイント26゜27を介してハブ
キャリア3が旋回自在に支持されている。アッパアーム
25はロアアーム2と同様にFRP製であり、その固定
端25aがフレーム5に固定される。アッパアーム25
も、好ましくは自由端25b側の板厚が減するようなテ
ーパ状に成形されている。そしてロアアーム2と車体フ
レーム5との間にガスばね機構4が設けられている。こ
の場合のアッパアーム25は、ガスばね機構4との干渉
を避けるため、第5図あるいは第6図に示されるように
二股状に2枚に分かれたものを使用する。ロアアーム2
は、第5図のように1枚あるいは第6図のように2枚に
分かれていてもよい。上下のアーム2,25はいずれも
フレーム5に固定される。
In the third embodiment shown in FIG. 4, a hub carrier 3 is rotatably supported by a lower arm 2 and an upper arm 25 via ball joints 26 and 27. The upper arm 25 is made of FRP like the lower arm 2, and its fixed end 25a is fixed to the frame 5. Upper arm 25
It is also preferably formed into a tapered shape such that the plate thickness on the free end 25b side is reduced. A gas spring mechanism 4 is provided between the lower arm 2 and the vehicle body frame 5. In this case, in order to avoid interference with the gas spring mechanism 4, the upper arm 25 is bifurcated into two pieces as shown in FIG. 5 or 6. lower arm 2
may be divided into one sheet as shown in FIG. 5 or two sheets as shown in FIG. The upper and lower arms 2 and 25 are both fixed to the frame 5.

第7図に本発明の第4実施例を示す。この実施例におい
ては、ロアアーム2とアッパアーム25の各自由端2b
、25b側に水平方向の軸30゜31によって中間ホル
ダ22を枢着し、この中間ホルダ22にハブキャリア3
をy′軸回りに旋回自在に取付けている。この場合のア
ッパアーム25も、ガスばね機構4との干渉を避けるた
め、第5図あるいは第6図に示された例と同様に二股状
に分かれたものを使用するとよい。ロアアーム2は、第
5図のように1枚あるいは第6図のように2枚に分かれ
ていてもよい。
FIG. 7 shows a fourth embodiment of the present invention. In this embodiment, each free end 2b of the lower arm 2 and the upper arm 25 is
, an intermediate holder 22 is pivotally attached to the 25b side by a horizontal shaft 30° 31, and a hub carrier 3 is attached to this intermediate holder 22.
is mounted so that it can rotate freely around the y' axis. In this case, in order to avoid interference with the gas spring mechanism 4, it is preferable that the upper arm 25 be bifurcated as in the example shown in FIG. 5 or 6. The lower arm 2 may be divided into one piece as shown in FIG. 5 or two pieces as shown in FIG. 6.

なお、上下のばね兼用アーム2.25のうちいずか一方
をFRP製とし、他方をスチール製にしてもよい。
Note that one of the upper and lower spring arms 2.25 may be made of FRP, and the other may be made of steel.

[発明の効果] 本発明によれば、サスペンションに使われるガスばね機
構のシリンダ内圧を小さくしたりガス体積あるいはロッ
ド断面積等を減らしてコンパクト化を図ることができる
。また、FRP製のサスペンションアームが懸架用ばね
を兼ねるから別途に巻ばね等を設ける必要がない。
[Effects of the Invention] According to the present invention, it is possible to reduce the cylinder internal pressure of a gas spring mechanism used in a suspension, reduce the gas volume, rod cross-sectional area, etc., and thereby achieve compactness. Further, since the FRP suspension arm also serves as a suspension spring, there is no need to separately provide a coil spring or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す懸架装置の正面図、
第2図は第1図に示された懸架装置におけるガスばね機
構の断面図、第3図は本発明の第2実施例を示す懸架装
置の正面図、第4図は本発明の第3実施例を示す懸架装
置の正面図、第5図は第4図に示された懸架装置の斜視
図、第6図はロアアームの変形例を示す斜視図、第7図
は本発明の第4実施例を示す懸架装置の正面図である。 1・・・懸架装置、2・・・ばね兼用サスペンションア
ーム、2a・・・固定端、2b・・・自由端、3・・・
ハブキャリア、4・・・ガスばね機構、5・・・フレー
ム(車体側の部材)、10・・・タイヤ(車輪)、14
・・・シリンダ、15・・・ロッド、25・・・アッパ
アーム(ばね兼用サスペンションアーム)。 出願人代理人 弁理士 鈴江武彦 第1図 ↓ 第2図 第3図 第4図
FIG. 1 is a front view of a suspension system showing a first embodiment of the present invention;
2 is a sectional view of the gas spring mechanism in the suspension system shown in FIG. 1, FIG. 3 is a front view of the suspension system showing a second embodiment of the present invention, and FIG. 4 is a third embodiment of the present invention. FIG. 5 is a perspective view of the suspension device shown in FIG. 4, FIG. 6 is a perspective view of a modification of the lower arm, and FIG. 7 is a fourth embodiment of the present invention. FIG. 3 is a front view of the suspension device. DESCRIPTION OF SYMBOLS 1... Suspension device, 2... Suspension arm also serving as a spring, 2a... Fixed end, 2b... Free end, 3...
Hub carrier, 4... Gas spring mechanism, 5... Frame (body side member), 10... Tire (wheel), 14
...Cylinder, 15...Rod, 25...Upper arm (suspension arm that also serves as a spring). Applicant's agent Patent attorney Takehiko Suzue Figure 1 ↓ Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] FRPからなりかつ固定端が車体側に固定されるととも
に自由端が車輪側の部材に連結されるばね兼用サスペン
ションアームと、シリンダおよびこのシリンダの軸線方
向に移動自在に挿入されたロッドを有しかつ上記シリン
ダの内部に圧縮ガスが収容されているとともに上記シリ
ンダに対するロッドの相対運動に伴って上記圧縮ガスの
体積が変化するガスばね機構とを具備し、上下方向の荷
重を上記ガスばね機構とFRPばね兼用サスペンション
アームとの双方によって弾性的に支えることを特徴とす
る車両用懸架装置。
The suspension arm is made of FRP and has a fixed end fixed to the vehicle body and a free end connected to a wheel side member, and a cylinder and a rod inserted movably in the axial direction of the cylinder. The cylinder is equipped with a gas spring mechanism in which compressed gas is accommodated and the volume of the compressed gas changes as the rod moves relative to the cylinder, and the vertical load is transferred between the gas spring mechanism and the FRP. A vehicle suspension system characterized by being elastically supported by both a spring and a suspension arm.
JP63127415A 1988-05-25 1988-05-25 Stretching device for vehicle Pending JPH01297315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127415A JPH01297315A (en) 1988-05-25 1988-05-25 Stretching device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127415A JPH01297315A (en) 1988-05-25 1988-05-25 Stretching device for vehicle

Publications (1)

Publication Number Publication Date
JPH01297315A true JPH01297315A (en) 1989-11-30

Family

ID=14959398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127415A Pending JPH01297315A (en) 1988-05-25 1988-05-25 Stretching device for vehicle

Country Status (1)

Country Link
JP (1) JPH01297315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065376A1 (en) * 2009-11-26 2011-06-03 有限会社スガイ総業 Suspension device for vehicle
JP2017508659A (en) * 2014-03-06 2017-03-30 ケラー・トビアス Spring arm device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341243A (en) * 1986-08-07 1988-02-22 Mazda Motor Corp Electric car
JPS6380734A (en) * 1986-09-20 1988-04-11 Sanyo Electric Co Ltd Output transmission device for motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341243A (en) * 1986-08-07 1988-02-22 Mazda Motor Corp Electric car
JPS6380734A (en) * 1986-09-20 1988-04-11 Sanyo Electric Co Ltd Output transmission device for motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065376A1 (en) * 2009-11-26 2011-06-03 有限会社スガイ総業 Suspension device for vehicle
JP2011111017A (en) * 2009-11-26 2011-06-09 Sugai Sogyo:Kk Suspension device of vehicle
JP2017508659A (en) * 2014-03-06 2017-03-30 ケラー・トビアス Spring arm device

Similar Documents

Publication Publication Date Title
US4688774A (en) Side load compensating air suspension
US5678847A (en) Active suspension system
CZ2003637A3 (en) Pneumatic springing and damping device
JPH0569715A (en) Suspension system for automobile
JP3268454B2 (en) Wheel suspension method and suspension device
JP2003118344A (en) Air suspension for automobile
JP2017100697A (en) Suspension device
US7364000B2 (en) Suspension apparatus of vehicle
EP2165863B1 (en) Hydraulic damper
JP2000018305A (en) Hydraulic shock absorber
JPH01297315A (en) Stretching device for vehicle
CA2286103A1 (en) Improvements to vehicle suspension systems
JPH02136319A (en) Suspension device of vehicle
JP3016220B2 (en) Composite hydraulic cylinder device
JPH09144801A (en) Hydraulic buffer
KR100235446B1 (en) Double cylinder type shock absorber
JP2001317582A (en) Vehicular hydraulic shock absorber
WO2021156510A2 (en) Motor vehicle suspension gas spring
JP2000027919A (en) Two-stage extendable hydraulic shock absorber
US20230084579A1 (en) Articulated working machine vehicle
JPH06229439A (en) Shock absorber
JP2003063394A (en) Suspension system of railway rolling stock and damper
JPH0234823B2 (en)
JP3840550B2 (en) Vehicle suspension system
JPH09137846A (en) Hydraulic buffer