JPH01297245A - Preparation of planographic printing plate - Google Patents

Preparation of planographic printing plate

Info

Publication number
JPH01297245A
JPH01297245A JP12902888A JP12902888A JPH01297245A JP H01297245 A JPH01297245 A JP H01297245A JP 12902888 A JP12902888 A JP 12902888A JP 12902888 A JP12902888 A JP 12902888A JP H01297245 A JPH01297245 A JP H01297245A
Authority
JP
Japan
Prior art keywords
transparent electrode
toner
image
zinc oxide
printing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12902888A
Other languages
Japanese (ja)
Other versions
JP2513272B2 (en
Inventor
Yuka Imai
今井 ゆか
Shigeru Hirayama
平山 茂
Yoshimi Inaba
喜己 稲葉
Yoshinori Morimitsu
守満 美紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP63129028A priority Critical patent/JP2513272B2/en
Publication of JPH01297245A publication Critical patent/JPH01297245A/en
Application granted granted Critical
Publication of JP2513272B2 publication Critical patent/JP2513272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Or Reproduction Of Printing Formes (AREA)

Abstract

PURPOSE:To obtain high image quality and high printing durability, by forming an exposed image, which is composed of photoconductive toner consisting of an electric insulating non-polar liquid, zinc oxide, a spectrally sensitizing cyanine dye having sensitivity to near infrared rays and a binder resin, on a conductive substrate hydrophilic or susceptible to hydrophilic treatment. CONSTITUTION:A photoconductive toner layer is provided between conductive substrates hydrophilic or susceptible to hydrophilic treatment and voltage is applied between both electrodes to attract toner particles toward the transparent electrode and imagewise exposure is applied on the side of the transparent electrode to move the toner particles of the exposed part to the opposed electrode by electrophoresis. Both electrodes are separated and the toner particles on the opposed electrode are fixed by a heat source. The photoconductive toner is based on a non-polar liquid, zinc oxide, a sensitizing dye and a binder resin and, as the non-polar liquid, a carrier liquid generally used as a liquid developer for electrophotography is used. A cyanine dye for spectrally sensitizing zinc oxide and having sensitivity to near infrared rays has high adsorbing capacity to zinc oxide and relatively high stability to heat.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、平版印刷版の製造方法に関するもので、半導
体レーザー等の近赤外光域まで色素増感された酸化亜鉛
を含む光導電性トナーで、光電気泳動画像を形成する方
式の平版印刷版の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing a lithographic printing plate, in which a photoconductive material containing zinc oxide dye-sensitized to the near-infrared light region of a semiconductor laser, etc. The present invention relates to a method for producing a lithographic printing plate in which a photoelectrophoretic image is formed using toner.

〈従来技術〉 平版印刷用の版には、■砂目立てしたアルミシート上に
感光性樹脂を塗工した、いわゆるps版を像露光し現像
処理するもの、■酸化亜鉛粉末と結着剤樹脂等からなる
感光層をベース上に設けた版材にコロナ帯電、像露光、
トナー現像等の画像形成処理を施した後、非画像部の親
水化処理によって平版印刷版を製造する、いわゆるエレ
クトロフックス法。■■に電子写真法を応用したもので
、例えば持分・昭37−17162号公報等に記載され
た導電性基板上に有機光導電性化合物層を塗工した印刷
用版材をコロナ帯電、像露光、トナー現像等一連の電子
写真的画像形成処理を施した後トナー像をレジストとし
てアルカリ性の水溶性エツチング液で画像部以外の光導
電性化合物層をエツチング除−去して平版印刷版を作る
方法等が挙げられる。
<Prior art> Plates for lithographic printing include: ■ A so-called PS plate, which is a grained aluminum sheet coated with a photosensitive resin, is imagewise exposed and developed, ■ Zinc oxide powder and binder resin, etc. Corona charging, image exposure,
The so-called electrofuchs method involves manufacturing a lithographic printing plate by performing an image forming process such as toner development and then hydrophilizing the non-image area. This is an application of the electrophotographic method to After performing a series of electrophotographic image forming processes such as exposure and toner development, the toner image is used as a resist and the photoconductive compound layer other than the image area is etched away using an alkaline water-soluble etching solution to produce a lithographic printing plate. Examples include methods.

■の方法によるps版は、大部分の印刷に適する通常の
平版印刷版として利用されているものであり、露光、現
像の簡単なプロセスで刷版を製造できるが、その光感度
及び感光波長域から水銀灯等の紫外線による密着もしく
は投影露光が必要でよってデジタル信号によるスキャニ
ング露光は不可能で、加えて版材は、比較的高価といっ
た問題点があった。
The PS plate produced by method (2) is used as a normal lithographic printing plate suitable for most types of printing, and can be manufactured through a simple process of exposure and development, but its photosensitivity and sensitive wavelength range are limited. This requires close contact or projection exposure using ultraviolet light from a mercury lamp or the like, making scanning exposure using digital signals impossible.Additionally, the plate material is relatively expensive.

■の方法によるエレクトロフックス法による平版印刷版
は、事務用や少部数の軽印刷に適し、筒便に刷版を製造
でき、版材は比較的安価であることから近年広く用いら
れているが、これもハロゲンランプ等の限られた波長領
域の光源しか使えないうえに、原稿の反射光露光が主体
という露光条件の狭さがある。■の方法は、■の光感度
および感光波長域の改善ができるもので、原稿の反射光
による露光だけでなくArレーザやHe−Ne レーザ
、近年では半導体レーザによる走査露光も可能となり、
ワープロ等の画像データでレーザ光を変調し−て露光す
る、いわゆるダイレクト製版への対応が進んでいるが、
刷版製造のプロセスが複雑である。
Lithographic printing plates produced by the electrofuchs method using method (2) are suitable for office use and light printing of small numbers of copies, and have been widely used in recent years because they can be manufactured in tubes and the plate materials are relatively inexpensive. This method also has narrow exposure conditions, in that it can only use a light source with a limited wavelength range, such as a halogen lamp, and is mainly exposed to light reflected from the document. Method (2) improves the photosensitivity and sensitive wavelength range of (2), and enables not only exposure using reflected light from the document but also scanning exposure using Ar lasers, He-Ne lasers, and in recent years, semiconductor lasers.
Although progress is being made toward so-called direct plate making, in which laser light is modulated using image data from a word processor, etc., and exposed.
The printing plate manufacturing process is complicated.

すなわち、帯電、露光、現像の後、さらにエツチング液
が必要で処理時間が長く、装置が大がかりになり、また
処理液が2種類必要であるばかりでなく、トナー像をレ
ジストとしてエツチングを行なうため画像が劣化し、微
細なパターンの再現が困難であるという欠点を有してい
た。また版材も高価という問題もあった。
That is, after charging, exposure, and development, an etching solution is required, which increases the processing time and requires a large-scale apparatus. In addition, not only do two types of processing solutions become necessary, but the etching process uses the toner image as a resist. However, it has the disadvantage that it deteriorates and it is difficult to reproduce fine patterns. There was also the problem that the printing materials were expensive.

また特開昭59−116759号公報、特開昭59−1
16760号公報等■のエレクトロフックス法を改良し
た酸化亜鉛・フタロシアニン顔料・結着剤樹脂からなる
平版印刷版は、通常の酸化並鉛版と同様の処理で現像・
印刷ができ且つ半導体レーザの走査露光によるダイレク
ト製版を可能としているが、ベースが紙であるので少部
数の印刷向けとなり、親水性は砂目光てAI板より悪く
、版材も高価となる(噴量にあった。
Also, JP-A-59-116759, JP-A-59-1
A lithographic printing plate made of zinc oxide, phthalocyanine pigment, and binder resin, which is an improved version of the electrofuchs method described in Publication No.
It is possible to print and direct plate making using semiconductor laser scanning exposure is possible, but since the base is paper, it is suitable for printing in small quantities, the hydrophilicity is poorer than AI board due to grainy grain, and the plate material is also expensive (spray printing). It was in quantity.

〈発明が解決しようとする課題〉 本発明は半導体レーザーの走査露光を用いたダイレクト
製版が可能でかつ高画質、高耐剛力の印刷ができ、しか
もランニゲコストの低い、多部数向けの平版印刷版の製
造方法を提供する事を目的としている。
<Problems to be Solved by the Invention> The present invention provides a lithographic printing plate for a large number of copies, which is capable of direct plate making using semiconductor laser scanning exposure, can print with high image quality and high rigidity, and has low running costs. The purpose is to provide a manufacturing method.

〈課題を解決するための手段〉 すなわち本発明は、親水性もしくは、親水処理可能な導
電性基体上に、少なくとも電気絶縁性の非極性液体、酸
化亜鉛、近赤外に感度を有する分光増感用シアニン色素
、およびバインダー樹脂から構成される光導電性トナー
による露光画像を形成した後、定着を行なう事を特徴と
する平版印刷版の製造方法である。
<Means for Solving the Problems> In other words, the present invention provides a method of applying at least an electrically insulating non-polar liquid, zinc oxide, and a spectral sensitizer sensitive to near-infrared light onto a hydrophilic or hydrophilically treatable conductive substrate. This is a method for producing a lithographic printing plate, which comprises forming an exposed image using a photoconductive toner composed of a cyanine dye and a binder resin, and then fixing the image.

〈作用〉 本発明で用いられる光導電性トナーは、電子写真的高感
度を有し、かつ分光感度が700〜900nm域にある
ため、半導体レーザーの走査露光が可能である。また、
液式トナーであるため、分散を充分に行なうことができ
、酸化亜鉛の1次粒子径0.2〜0.5 μmまで原理
的には解像でき高解像力の画像が得られる。また対向電
極でありかつ平版印刷版の基体として^l板を使用する
ことにより、非画像部の親水性が優れ、かつ伸縮のない
高品質、高耐剛力の多部数向けの平版印刷版が得られる
<Function> The photoconductive toner used in the present invention has high electrophotographic sensitivity and has a spectral sensitivity in the range of 700 to 900 nm, so that scanning exposure using a semiconductor laser is possible. Also,
Since it is a liquid toner, it can be sufficiently dispersed, and in principle it can resolve up to a primary particle size of zinc oxide of 0.2 to 0.5 μm, resulting in a high-resolution image. In addition, by using the ^l plate as the counter electrode and the base of the lithographic printing plate, a lithographic printing plate for large numbers of copies with excellent hydrophilicity in non-image areas, high quality with no expansion and contraction, and high stiffness resistance can be obtained. It will be done.

また画像形成後、非画像部のトナーは回収が可能で回収
したトナーは再利用できるので、消耗材は基体と画像部
の光導電体トナーのみとなり、ランニングコストは極め
て低くなる。
Further, after image formation, the toner in the non-image area can be collected and the collected toner can be reused, so that the only consumables are the substrate and the photoconductor toner in the image area, and running costs are extremely low.

〈発明の詳述〉 以下、本発明の詳細な説明するが、まず各構成材料につ
いて説明し、その後、光導電性トナーの作製方法および
平版印刷版の製造方法について述べる。
<Detailed Description of the Invention> The present invention will be described in detail below. First, each constituent material will be explained, and then a method for producing a photoconductive toner and a method for producing a lithographic printing plate will be described.

非極性液体は、一般に電子写真用液体現像剤用として用
いられているキャリア液体を使用できる。
As the non-polar liquid, a carrier liquid generally used for electrophotographic liquid developers can be used.

特に電気抵抗が10’Ωcm以上で、かつ誘電率が3以
下の有機溶剤が好ましい。例えば脂肪族炭化水素、脂環
式炭化水素、芳香族炭化水素、ハロゲン化炭化水素が挙
げられるが、臭気や毒性の点でイソパラフィン系溶剤が
好ましい。
Particularly preferred is an organic solvent having an electrical resistance of 10'Ωcm or more and a dielectric constant of 3 or less. Examples include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons, but isoparaffinic solvents are preferred in terms of odor and toxicity.

具体例としてはシェルシルア1(シェル化学社製)アイ
ソパーG1アイソパーH、アイソパーL(以上エクソン
化学社製)等が例示される6酸化亜鉛は特に制限はない
が、平均粒径0.2〜0.5 μm程度の電子写真用と
して一最に使用されている粉末状のものの適用が好まし
い。
Specific examples include Shell Silua 1 (made by Shell Chemical Co., Ltd.), Isopar G1, Isopar H, Isopar L (all made by Exxon Chemical Co., Ltd.), etc. Zinc hexaoxide is not particularly limited, but has an average particle size of 0.2 to 0. It is preferable to use powdered materials, which are most commonly used for electrophotography with a diameter of about 5 μm.

バインダー樹脂としては、非極性液体に可溶のメタクリ
ル酸あるいはアクリル酸の高級アルキル(例えばラウリ
ル、トリデシル、2−エチルヘキシル、ステアリル等)
エステルの重合体が例示できる。これらは単独で用いる
こともできるが、2つ以上のモノマーの共重合体も使用
できる。この場合には、非極性液体に不溶となる化合物
を共重合させることもできる。但し、この含[1は30
%以下が好ましい。不溶性となる化合物としてはメタク
リル酸グリシジル、メタクリル酸あるいはアクリル酸の
低級アルキル(例えば、メチル、エチルヒドロキシエチ
ル等)エステル等が例示される。
As the binder resin, methacrylic acid or higher alkyl acrylic acid that is soluble in non-polar liquids (e.g. lauryl, tridecyl, 2-ethylhexyl, stearyl, etc.)
An example is an ester polymer. Although these monomers can be used alone, a copolymer of two or more monomers can also be used. In this case, it is also possible to copolymerize a compound that is insoluble in a nonpolar liquid. However, this inclusion [1 is 30
% or less is preferable. Examples of the insoluble compound include glycidyl methacrylate and lower alkyl (eg, methyl, ethylhydroxyethyl, etc.) esters of methacrylic acid or acrylic acid.

また、大豆油、アマニ油等で変性したアルキッド樹脂、
天然ゴム、合成ゴム、各種変性ゴム等、非極性液体に良
好な分散性を示す樹脂も使用することができる。これら
の樹脂は、分散安定性および定着性を司る機能を有する
In addition, alkyd resins modified with soybean oil, linseed oil, etc.
Resins that exhibit good dispersibility in nonpolar liquids, such as natural rubber, synthetic rubber, and various modified rubbers, can also be used. These resins have the function of controlling dispersion stability and fixing properties.

酸化亜鉛の分光増感用である、近赤外光に感度を有する
シアニン色素について言えば、例えば、後記式I、■で
示される色素は、電子構造が酸化亜鉛の色素増感に適合
しており、酸化亜鉛への吸着能が高いことに加えて、熱
に対する安定性も比較的高< 、700〜11000n
に分光吸収があり、且つ光導電性トナーの暗所での帯電
性を阻害しないため、分光増感剤として好適である。こ
の色素を単体で用いても良いが、ほかのシニアン色素を
併用しても差し支えない、もちろん、ここであげた以外
のシアニン色素で分光増感に優れたものがあれば、それ
を用いても差し支えない、配合量は酸化亜鉛に対して、
0.01〜0.1重量%が適当である。
Regarding cyanine dyes sensitive to near-infrared light, which are used for spectral sensitization of zinc oxide, for example, the dyes represented by formulas I and (■) below have electronic structures that are compatible with dye sensitization of zinc oxide. In addition to its high adsorption capacity to zinc oxide, its stability against heat is also relatively high, from 700 to 11,000 nm.
It is suitable as a spectral sensitizer because it has spectral absorption and does not inhibit the chargeability of photoconductive toner in the dark. This dye may be used alone, but it may also be used in combination with other cyanine dyes. Of course, if there are cyanine dyes other than those listed here that have excellent spectral sensitization, you can also use them. There is no problem, the blending amount is based on zinc oxide.
0.01-0.1% by weight is suitable.

酸化亜鉛に対するシアニン色素の配合量が少ないと充分
な感度が得られず、多すぎると暗電流が大きくなり0、
露光による充分なコントラストが得られない。
If the amount of cyanine dye blended with respect to zinc oxide is small, sufficient sensitivity cannot be obtained, and if it is too large, the dark current increases.
Sufficient contrast cannot be obtained by exposure.

式! (ただし、RはC,lHz、、、 n−1,2X Lt
ハロゲン元素、A−は酸アニオン)式■ (ただし、RはC,Hz、1.I、 n”l、2Xはハ
ロゲン元素、A−は酸アニオン。
formula! (However, R is C, lHz, n-1,2X Lt
(Halogen element, A- is an acid anion) Formula ■ (However, R is C, Hz, 1.I, n"l, 2X is a halogen element, A- is an acid anion.

以上の主成分の他に、電子親和性物質を添加しても良く
、無水フタル酸、無水マレイン酸、無水安息香酸等の酸
無水物やテトラシアノキノジメタン等があり、酸化亜鉛
の分光増感助剤、帯電性改善用として公知のものが使用
できる。配合量は、酸化亜鉛に対して0.001〜0.
1重量%が適当である。 0.001重量%以下では効
果がほとんどなく、0.1重量%以上では暗電流が太き
(なり、充分な画像コントラストが得られない。
In addition to the above main components, electron-affinity substances may be added, such as acid anhydrides such as phthalic anhydride, maleic anhydride, benzoic anhydride, tetracyanoquinodimethane, etc., and the spectral increase of zinc oxide. Known sensitizers for improving chargeability can be used. The blending amount is 0.001 to 0.00% relative to zinc oxide.
1% by weight is suitable. If it is less than 0.001% by weight, there is almost no effect, and if it is more than 0.1% by weight, the dark current becomes thick and sufficient image contrast cannot be obtained.

光導電性トナーは、上記非極性液体、酸化亜鉛、増感色
素、バインダー樹脂を主成分として構成され、組成比と
しては固形分として、バインダー樹脂1〜80重量%、
酸化亜鉛20〜99重量%が適当である。固形分比は0
.5〜20重量%が適する。
The photoconductive toner is mainly composed of the above-mentioned non-polar liquid, zinc oxide, sensitizing dye, and binder resin, and has a composition ratio of 1 to 80% by weight of binder resin as solid content,
20-99% by weight of zinc oxide is suitable. Solid content ratio is 0
.. 5-20% by weight is suitable.

バインダー樹脂は少ないと定着性および分散安定性が悪
く、多すぎると感度および光照射時の泳動性が悪くなる
If the amount of binder resin is too small, the fixing properties and dispersion stability will be poor, and if it is too large, the sensitivity and migration properties upon irradiation with light will be poor.

酸化亜鉛は少ないと画像部の付着量が小さくなり、印刷
画像のコントラストがなくなり、多すぎると泳動性が悪
くなる。
If the amount of zinc oxide is too low, the amount of adhesion in the image area will be small and the contrast of the printed image will be lost, and if it is too high, the electrophoresis will be poor.

導電性基体は、亜鉛板、アルミニウム板、等の金属板で
公知の手段によって砂目立てされるか化学処理によって
親水性化された物、および上記の金属板にポリビニルア
ルコール、カゼイン、澱粉誘導体、セルロース誘導体等
の親水性樹脂の皮膜に高分子電解質、無機塩、金属粉等
の導電剤を添加して導電性としたものを紙、合成紙、プ
ラスチ−ツクシートに塗布あるいは含浸させたものでも
良い。
The conductive substrate is a metal plate such as a zinc plate or an aluminum plate that has been grained by known means or made hydrophilic by chemical treatment, and the above metal plate is coated with polyvinyl alcohol, casein, starch derivatives, or cellulose. A film made of a hydrophilic resin such as a derivative and a conductive agent such as a polymer electrolyte, an inorganic salt, or a metal powder may be added thereto to make it conductive, and the film may be coated or impregnated onto paper, synthetic paper, or plastic sheet.

また上記導電性基体の対向に配する透明電極は、酸化錫
の透明なmNで被覆された光学的に透明なNESA等を
用いることができる。
Further, as the transparent electrode disposed opposite to the conductive substrate, optically transparent NESA coated with transparent mN of tin oxide or the like can be used.

本発明の光導電性トナーの製造方法は、溶媒に溶解させ
た色素と酸化亜鉛を、坦音波、ボールミル、振動ミル、
サンドミル等であらかじめ分散、吸着処理後、溶媒を蒸
発させて得た増感酸化亜鉛に、非極性液体とバインダー
樹脂を加え、上記の分散機で分散してもよいし、各物質
を一度に混合、分散してもよい。
The method for producing the photoconductive toner of the present invention includes mixing a dye and zinc oxide dissolved in a solvent using a carrier wave, a ball mill, a vibration mill, or a
You can add a non-polar liquid and a binder resin to the sensitized zinc oxide obtained by dispersing and adsorbing it in a sand mill or the like, then evaporate the solvent, and then disperse it with the above dispersing machine, or you can mix each substance at once. , may be dispersed.

このようにして得られた光導電性トナーを用いた平版印
刷版の製造方法を以下に説明する。
A method for producing a lithographic printing plate using the photoconductive toner thus obtained will be described below.

第1図に示すように平版印刷版の製造工程として (1)透明電極と対向電極(親水性もしくは親水処理可
能な導電性基体)間に光導電性トナー層を設ける。
As shown in FIG. 1, as a manufacturing process of a lithographic printing plate, (1) a photoconductive toner layer is provided between a transparent electrode and a counter electrode (a hydrophilic or hydrophilically treatable conductive substrate).

(2)両電極間に電圧を印加し、トナー粒子を透明゛電
極側に引きつける。
(2) A voltage is applied between both electrodes to attract the toner particles to the transparent electrode side.

(3)透明電極側より像露光を施し、露光部のトナー粒
子を電気泳動により対向電極上に移動させる。
(3) Image exposure is performed from the transparent electrode side, and the toner particles in the exposed area are moved onto the counter electrode by electrophoresis.

(4)両電極を分離する。(4) Separate both electrodes.

(5)ヒーター等の熱源により対向電極上のトナー粒子
を定着させる。
(5) Fixing the toner particles on the counter electrode using a heat source such as a heater.

の各段階がある。There are various stages.

(1)の手段としては、暗所中にて対向電極2の上方よ
り光電極性トナーを滴下、その上を透明電極3で覆う方
法があり、さらには、透明電極のトナー接触側には、P
ET 、ポリエチレン等の誘電層を設けても良い、光導
電性トナー層の厚さは、薄すぎると平版印刷版での耐剛
性が劣り、厚すぎると感度の低下がおこる事から約5〜
500 μm程度が適当である・が、好ましくは10〜
100 μmである。
As a means for (1), there is a method of dropping photopolar toner from above the counter electrode 2 in a dark place and covering the photopolar toner with the transparent electrode 3;
The thickness of the photoconductive toner layer, which may be provided with a dielectric layer such as ET or polyethylene, should be approximately 5 to 50 ml, as too thin will result in poor rigidity in a lithographic printing plate, and too thick will result in a decrease in sensitivity.
Approximately 500 μm is appropriate, but preferably 10 to 500 μm.
It is 100 μm.

(2)において、スイッチ5を閉成し、電圧を印加する
。これによって、両電極間の負に帯電させたトナー粒子
は透明電極側に引きつけられる。印加電圧としては20
0〜1000 V程度、電界強度として10’V/Ω以
上、印加時間は0.01〜20秒が好ましい゛。
In (2), switch 5 is closed and voltage is applied. As a result, the negatively charged toner particles between the two electrodes are attracted toward the transparent electrode. The applied voltage is 20
It is preferable that the voltage is about 0 to 1000 V, the electric field strength is 10'V/Ω or more, and the application time is 0.01 to 20 seconds.

(3)の段階は、暗所中で、白色灯、半導体レーザー光
による走査露光等の像露光を行なう。そうすると、露光
部分の粒子内に電荷キャリアの正孔電子対を発生し、こ
の正孔電子対のうち負キャリアは透明導電層3の方向へ
向って動く。正孔のみ存在するトナー粒子は正電荷を帯
びた状態になり、透明導電層3に反発され、導電性基体
2の方に移動し、導電性基体上には光電気泳動画像が形
成される。露光量としては1〜1000μJ/dが適す
る。
In step (3), image exposure such as scanning exposure using a white lamp or semiconductor laser light is performed in a dark place. Then, hole-electron pairs of charge carriers are generated within the particles in the exposed portion, and the negative carriers of these hole-electron pairs move toward the transparent conductive layer 3 . Toner particles containing only holes become positively charged, are repelled by the transparent conductive layer 3, and move toward the conductive substrate 2, forming a photoelectrophoretic image on the conductive substrate. A suitable exposure amount is 1 to 1000 μJ/d.

好ましくは10〜500  μJ/cdである。Preferably it is 10 to 500 μJ/cd.

(4)において両電極を分離する。この際、対向電極上
に形成された画像をくずす事のないように行なう必要が
ある。
In (4), both electrodes are separated. At this time, it is necessary to do this so as not to destroy the image formed on the counter electrode.

(5)の定着においては、パネルヒーターや熱風、ある
いはヒートロール等による加熱定着、溶剤定着、あるい
は圧力定着等を用いる事ができる。
For fixing (5), heat fixing using a panel heater, hot air, heat roll, etc., solvent fixing, pressure fixing, etc. can be used.

また、他の製造方法として以下に説明するようなものが
ある。
Further, there are other manufacturing methods as described below.

すなわち、第2図に示すように、前記光導電性トナーを
おいた透明電極3上を、親水性もしくは一親水処理可能
な導電性基体よりなる円筒形の対向電極2を、前記透明
電極と一定間隔を保ちながら転がすと同時に両電極間に
電圧を印加し、かつ透明電極側より像露光を施す事によ
って、前記対向電極上にトナー粒子による露光画像を形
成するというものや、第3図に示すように、トナーをお
いた対向電極2上を、内部より露光が可能な円筒形の透
明電極3を前記対向電極と一定間隔を保ちながら転がす
と同時に両電極間に電圧を印加し、かつ前記透明電極内
部より像露光を施す事によって、前記対向電極上にトナ
ー粒子による露光画像を形成するというものがある。
That is, as shown in FIG. 2, a cylindrical counter electrode 2 made of a conductive substrate that is hydrophilic or monohydrophilic is placed on the transparent electrode 3 on which the photoconductive toner is placed, and is placed at a constant distance from the transparent electrode. There is a method in which an exposed image of toner particles is formed on the counter electrode by applying a voltage between both electrodes at the same time while maintaining a distance and performing imagewise exposure from the transparent electrode side, as shown in FIG. 3. A cylindrical transparent electrode 3, which can be exposed from the inside, is rolled over the counter electrode 2 on which toner is placed, while maintaining a constant distance from the counter electrode, and at the same time, a voltage is applied between both electrodes, and the transparent There is a method in which an exposed image of toner particles is formed on the counter electrode by performing imagewise exposure from inside the electrode.

これら第2図および第3図に示す方法によると、前述の
製造方法における(1)〜(4)の工程を同時に行なう
事ができ、その後、対向電極上のトナー粒子による露光
画像に定着処理を施せば、平版印刷版が作製できる。
According to the methods shown in FIGS. 2 and 3, steps (1) to (4) in the above-mentioned manufacturing method can be performed simultaneously, and then a fixing process is applied to the exposed image by toner particles on the counter electrode. By applying this, a lithographic printing plate can be produced.

上記のようにして得られた平版印刷版は、印刷に先立っ
てエツチング処理(a水性処理)を行なうひとができる
。エツチング処理液は、リン酸、タンニン酸等の弱酸に
コロイド物質等を加えた公知のものを用いることができ
る。
The lithographic printing plate obtained as described above can be subjected to an etching treatment (a aqueous treatment) prior to printing. As the etching solution, a known solution prepared by adding a colloidal substance to a weak acid such as phosphoric acid or tannic acid can be used.

本発明において、半導体レーザーによる走査露光を行な
う際に、カラースキャナー等から採り込んだイエロー版
、マゼンタ版、シアン版、墨版の各色版用に分解された
画像データを半導体レーザの変調信号として使えば、カ
ラー印刷に使用する各色の平版印刷版を、容易に製造す
ることが可能である。この各色の平版印刷版を見当を合
わせながら印刷することで、カラー印刷物が得られる。
In the present invention, when performing scanning exposure using a semiconductor laser, image data taken from a color scanner or the like and separated into each color version of yellow, magenta, cyan, and black can be used as a modulation signal for the semiconductor laser. For example, it is possible to easily produce lithographic printing plates of each color used in color printing. Color printed matter can be obtained by printing the lithographic printing plates of each color while adjusting the register.

〈実施例〉 以下、本発明を実施例によりさらに詳細に説明する。<Example> Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1) 弐■ 上記式■で示されるシアニン色素0.02 gをメチル
アルコール200 gに溶解し、酸化亜鉛(堺化学社製
5AZI!X2000)80 gを加えてa音波分散機
テ20分間分散させ、その後ロータリーエバボレークー
により溶媒を藩発せしめて、色素増感酸化亜鉛を得た。
(Example 1) 2 0.02 g of the cyanine dye represented by the above formula 2 was dissolved in 200 g of methyl alcohol, 80 g of zinc oxide (5AZI! After dispersing for a minute, the solvent was removed using a rotary evaporator to obtain dye-sensitized zinc oxide.

これにシェルシルア190g、メタクリル酸ドデシル−
メタクリル酸グリシジル共重合体樹脂(重量比3:1)
34gを添加し、ガラスピーズ1゜Ogと共にガラス瓶
に入れてペイントシェーカー(レフトデビル社製)にて
1時間分散し、光導電性トナーを得た。
Add to this 190g of shell silua, dodecyl methacrylate.
Glycidyl methacrylate copolymer resin (weight ratio 3:1)
A photoconductive toner was obtained by adding 34 g of the solution and dispersing it in a glass bottle together with 1.0 g of glass peas in a paint shaker (manufactured by Left Devil Co., Ltd.) for 1 hour.

このトナーを、砂目立てしたAI板からなる対向電極と
透明電極との間に厚さ約10μ工程度に注入し、暗所に
て電源(トレック社610B) により透明電極側に一
500Vの電圧を印加し、さらに白色灯に780 μm
の干渉フィルタ(東芝硝子製)をつけた光源を用い、密
着焼付けにより、光fio、3mJ/a!で像露光を行
なった。この後、両電極を分離し、AI析板上形成され
たトナー粒子よりなる露光画像をドライヤーにより熱定
着して平版印刷版を得た。
This toner was injected to a thickness of about 10 μm between the opposite electrode made of a grained AI plate and the transparent electrode, and a voltage of 1500 V was applied to the transparent electrode side using a power source (Trek 610B) in a dark place. 780 μm to the white light.
Using a light source equipped with an interference filter (manufactured by Toshiba Glass), the light fio is 3mJ/a! Image exposure was performed. Thereafter, both electrodes were separated, and the exposed image formed on the AI plate was heat-fixed using a dryer to obtain a lithographic printing plate.

これを市販のプレートエッチ液(富士フィルム製−EV
−1)でエツチング後、市販の軽オフセット印刷機(リ
ョービ印刷機製AD−80)で印刷した。その結果50
00枚印刷後の印刷画像濃度が1.2以上(マクベス反
射濃度計RD−914)であり非常に高品位な印刷物が
得られた。
Add this to a commercially available plate etch solution (Fuji Film - EV).
-1), and then printed using a commercially available light offset printing machine (Ryobi Printing Co., Ltd. AD-80). The result is 50
The printed image density after printing 00 sheets was 1.2 or more (Macbeth reflection densitometer RD-914), and very high quality printed matter was obtained.

(実施例2) 弐■ 上記式■で示される色素0.03 g使用した他は、実
施例1と同様の手順で光導電性トナーを作製した。印刷
版の製造方法きしでは、第2図に示すように透明電極3
上に光導電性トナー1をおき、砂目立てした^l板をロ
ーラー状にした対向電極2を、透明電極3との間隔を3
0μmに保ちながら、10ma+/secの速度ですべ
りのないように転がすと同時に透明’fit t!ti
側に一500vの電圧を印加し、がっ実施例1と同様の
光源により透明電極側より像露光を行なった。
(Example 2) 2) A photoconductive toner was prepared in the same manner as in Example 1, except that 0.03 g of the dye represented by the above formula (2) was used. In the printing plate manufacturing method, as shown in FIG.
A counter electrode 2 made of a roller-shaped grained plate with photoconductive toner 1 placed thereon is spaced from the transparent electrode 3 by 3.
While keeping it at 0 μm, it is rolled at a speed of 10 ma+/sec without slipping, and at the same time it is transparent. Ti
A voltage of -500 V was applied to the transparent electrode side, and image exposure was performed from the transparent electrode side using the same light source as in Example 1.

この結果、AI析板上トナー粒子による露光画像が形成
され、これを120″Cで2分間加熱定着し、平版印刷
版を得た。この印刷版を用いて実施例1と同様に印刷を
行なったところ、良好な印刷物が得られた。
As a result, an exposed image of toner particles was formed on the AI analysis plate, and this was fixed by heating at 120"C for 2 minutes to obtain a lithographic printing plate. Using this printing plate, printing was carried out in the same manner as in Example 1. As a result, good printed matter was obtained.

(実施例3) 第3図に示す方法により、実施例1の光導電性トナーを
用いて平版印刷版を作製した。
(Example 3) A lithographic printing plate was prepared using the photoconductive toner of Example 1 by the method shown in FIG.

砂目立てしたAl板からなる対向電極2上に光導電性ト
ナー1をおき、内部に実施例1と同様な光源を持ち、内
側より像露光が可能なローラー状の透明電極3を両電掻
間の間隔を35μmに保ちながら、すべりのないように
転がす。同時に透明電極側に一600v印加し、かつ透
明電極内側より、像露光を施すと、Al板上にトナー粒
子による露光画像が形成された。このAt板を120°
Cで5分間加熱定着して平版印刷版を得た。この印刷版
を用いて実施例1と同様に印刷を行なったところ、良好
な印刷物が得られた。
A photoconductive toner 1 is placed on a counter electrode 2 made of a grained Al plate, and a roller-shaped transparent electrode 3 having an internal light source similar to that in Example 1 and capable of image exposure from the inside is placed between both electrodes. Roll it without slipping while maintaining the interval of 35 μm. At the same time, when 1600 V was applied to the transparent electrode side and image exposure was performed from the inside of the transparent electrode, an exposed image of toner particles was formed on the Al plate. This At plate is 120°
A lithographic printing plate was obtained by heating and fixing at C for 5 minutes. When printing was carried out in the same manner as in Example 1 using this printing plate, good printed matter was obtained.

(比較例1) 色素としてローズベンガル0.02gを使用した他は、
実施例1と同様の手順で光導電性トナーを製作した。こ
のトナーを用い、実施例1と同様の装置・光源で像露光
を行なったが、Al板にはトナー粒子による露光画像は
全く形成されなかった。光源として、白色灯により1.
2IIJ/cfflの条件で露光を行なった場合には良
好な平版印刷装置が得られた。
(Comparative Example 1) Except for using 0.02g of rose bengal as the pigment,
A photoconductive toner was produced in the same manner as in Example 1. Using this toner, imagewise exposure was carried out using the same apparatus and light source as in Example 1, but no exposed image of toner particles was formed on the Al plate. 1. With a white light as a light source.
When exposure was carried out under the conditions of 2IIJ/cffl, a good lithographic printing device was obtained.

(比較例2) 実施例1において、シアニン色素0.02 g ’1.
008gとした光導電性トナーから同様の方法で平版印
刷版を作製した。同様に印刷したところ、トナーの感度
不足から印刷画像濃度を十分再現するに足りるトナーの
付着が得られず、50枚目の印刷画像濃度が0.3以下
であった。
(Comparative Example 2) In Example 1, cyanine dye 0.02 g '1.
A lithographic printing plate was prepared in the same manner from a photoconductive toner weighing 0.008 g. When similarly printed, toner adhesion was not sufficient to sufficiently reproduce the printed image density due to insufficient toner sensitivity, and the printed image density of the 50th sheet was 0.3 or less.

(比較例3) 実施例1においてシアニン色素0.02 gを0.2g
とした光導電性トナーから同様の方法で平版印刷版を作
成した。同様に印刷したところ、50枚目の印刷画像濃
度が0.5以下であり、低品位な印刷物。
(Comparative Example 3) 0.2 g of cyanine dye 0.02 g in Example 1
A lithographic printing plate was prepared using the same photoconductive toner. When similarly printed, the image density of the 50th print was 0.5 or less, resulting in a low-quality print.

しか得られなかった。I could only get it.

〈効果〉 以上説明したように、本発明の方法によると、半導体レ
ーザー等の近赤外光まで色素増悪させた光導電性トナー
を使用しており、半導体レーザーの走査露光によるダイ
レクト製版が可能であり、従来のダイレクト製版方法よ
りも簡単に短時間で良好な平版印刷版が得られた。
<Effects> As explained above, according to the method of the present invention, a photoconductive toner whose pigment has been enhanced to near-infrared light such as a semiconductor laser is used, and direct plate making using semiconductor laser scanning exposure is possible. A good lithographic printing plate could be obtained more easily and in a shorter time than the conventional direct plate making method.

しかも、平版印刷版の基材として、アルミニウム等の金
属板を砂目立てするなどして、親水性の導電性基体を用
いる事により、地汚れが少なく、耐剛力のある印刷版が
得られた。
Furthermore, by using a hydrophilic conductive substrate such as graining a metal plate such as aluminum as the base material of the lithographic printing plate, a printing plate with less background staining and high stiffness resistance was obtained.

加えて、像露光による画像形成後、非画像部にあたるト
ナーは回収され、再利用できるため、低コストで印刷版
を作製できる。
In addition, after image formation by image exposure, toner in non-image areas can be collected and reused, so printing plates can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は、本発明による平版印刷版の
製造方法を示す説明図である。 1・・・光導電性トナー  2・・・対向電極3・・・
透明電極     4・・・ガラス5・・・スイッチ 
    6・・・光電気泳動画像7・・・定着用熱源 (薯) 第1図
FIG. 1, FIG. 2, and FIG. 3 are explanatory diagrams showing a method for manufacturing a lithographic printing plate according to the present invention. 1... Photoconductive toner 2... Counter electrode 3...
Transparent electrode 4...Glass 5...Switch
6... Photoelectrophoresis image 7... Heat source for fixing (yam) Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも電気絶縁性の非極性液体、酸化亜鉛、
近赤外光に吸収感度を有する分光増感用シアニン色素、
およびバインダー樹脂から構成される光導電性トナー層
を、透明電極と、親水性もしくは親水処理可能な導電性
基体からなる対向電極間に設け、両電極間に電圧を印加
し、さらに透明電極を通して像露光を施し、対向電極上
にトナー粒子による光電気泳動画像を形成した後、両電
極を分離し、対向電極上のトナー粒子を定着させる事を
特徴とする平版印刷版の製造方法。
(1) At least an electrically insulating non-polar liquid, zinc oxide,
cyanine dye for spectral sensitization that has absorption sensitivity to near-infrared light;
A photoconductive toner layer composed of a binder resin and a transparent electrode is provided between a transparent electrode and an opposing electrode composed of a hydrophilic or hydrophilically treatable conductive substrate, a voltage is applied between both electrodes, and an image is imaged through the transparent electrode. A method for producing a lithographic printing plate, which comprises performing exposure to form a photoelectrophoretic image of toner particles on a counter electrode, then separating both electrodes, and fixing the toner particles on the counter electrode.
(2)前記光導電性トナーをおいた透明電極上を、親水
性もしくは親水処理可能な導電性基体よりなる円筒形の
対向電極を、前記透明電極を一定間隔を保ちながら転が
すと同時に両電極間に電圧を印加し、かつ透明電極側よ
り像露光を施す事によって、前記対向電極上にトナー粒
子による露光画像を形成した後、定着させる事を特徴と
する平版印刷版の製造方法。
(2) Roll a cylindrical counter electrode made of a hydrophilic or hydrophilically treatable conductive substrate over the transparent electrode on which the photoconductive toner is placed, while keeping the transparent electrode at a constant distance, and simultaneously roll the transparent electrode between the two electrodes. A method for producing a lithographic printing plate, comprising forming an exposed image of toner particles on the counter electrode by applying a voltage to the electrode and performing imagewise exposure from the transparent electrode side, and then fixing the exposed image.
(3)前記光導電性トナーをおいた親水性もしくは親水
可能な導電性基体からなる対向電極上を、内部より露光
可能な円筒形の透明電極を前記対向電極と一定間隔を保
ちながら転がすと同時に両電極間に電圧を印加し、かつ
前記透明電極内部より像露光を施す事によって、前記対
向電極上にトナー粒子による露光画像を形成した後、定
着させる事を特徴とする平版印刷版の製造方法。
(3) At the same time, a cylindrical transparent electrode that can be exposed from the inside is rolled over a counter electrode made of a hydrophilic or hydrophilic conductive substrate on which the photoconductive toner is placed, while maintaining a constant distance from the counter electrode. A method for producing a lithographic printing plate, comprising forming an exposed image of toner particles on the counter electrode by applying a voltage between both electrodes and performing imagewise exposure from inside the transparent electrode, and then fixing the exposed image. .
(4)前記光導電性トナー中の酸化亜鉛に対する増感色
素の割合が0.01〜0.1重量%である事を特徴とす
る請求項1〜3記載の平版印刷版の製造方法。
(4) The method for producing a lithographic printing plate according to any one of claims 1 to 3, wherein the ratio of the sensitizing dye to zinc oxide in the photoconductive toner is 0.01 to 0.1% by weight.
JP63129028A 1988-05-26 1988-05-26 Lithographic printing plate manufacturing method Expired - Lifetime JP2513272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129028A JP2513272B2 (en) 1988-05-26 1988-05-26 Lithographic printing plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129028A JP2513272B2 (en) 1988-05-26 1988-05-26 Lithographic printing plate manufacturing method

Publications (2)

Publication Number Publication Date
JPH01297245A true JPH01297245A (en) 1989-11-30
JP2513272B2 JP2513272B2 (en) 1996-07-03

Family

ID=14999345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129028A Expired - Lifetime JP2513272B2 (en) 1988-05-26 1988-05-26 Lithographic printing plate manufacturing method

Country Status (1)

Country Link
JP (1) JP2513272B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170002A (en) * 1974-11-08 1976-06-17 Xerox Corp MUSUIINSATSUMASUTAANOSEIZOHOHO
JPS59220753A (en) * 1983-05-30 1984-12-12 Toppan Printing Co Ltd Lithographic plate
JPS59220752A (en) * 1983-05-30 1984-12-12 Toppan Printing Co Ltd Printing plate for electrostatic printing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170002A (en) * 1974-11-08 1976-06-17 Xerox Corp MUSUIINSATSUMASUTAANOSEIZOHOHO
JPS59220753A (en) * 1983-05-30 1984-12-12 Toppan Printing Co Ltd Lithographic plate
JPS59220752A (en) * 1983-05-30 1984-12-12 Toppan Printing Co Ltd Printing plate for electrostatic printing

Also Published As

Publication number Publication date
JP2513272B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4435491A (en) Electrophotographic process for the production of lithographic printing plates and light-sensitive materials for use therein
US4425418A (en) Liquid developers for electrophotography and developing method using the same
JPH0644164B2 (en) Zero printing method
JPS6035750A (en) Etchable electrophotographic plate for long-time use and manufacture thereof
US3681066A (en) Process whereby a diazo-containing material exhibits an imagewise change in triboelectric charging properties
US3816117A (en) Multilayer electrophotographic element containing high contrast and opaque barrier layers
US3654865A (en) Method for forming dye image using an electrophotographic developer containing a gelatin toner
JP2513272B2 (en) Lithographic printing plate manufacturing method
JP2570365B2 (en) Lithographic printing plate manufacturing method
EP0430597B1 (en) Laser-sensitive electrophotographic element
JPH04212969A (en) Material for electrophotographic planographic printing plate
JPH021868A (en) Photoelectric photographic material and photoelectric photographic method
JPH0277754A (en) Photosensitive body for electrostatic printing plate and manufacture of the plate
US3806339A (en) Liquid developer composition
JPH02291570A (en) High resolution superimposed image from photopolymer electrostatic master
JP2669711B2 (en) Electrophotographic planographic printing plate material
US5085967A (en) Wet-type electrostatic photographic transferring method
US3704124A (en) Diazo-containing material exhibits an imagewise change in triboelectric charging properties
JPH04156558A (en) Manufacture of electrophotographic flat printing plate by reversal development
JP3086240B2 (en) Method for producing electrophotographic lithographic printing plate by reversal development
JPH01288441A (en) Fabrication of lithographic plate
JPS6323168A (en) Production of planographic printing plate
JPH0442237A (en) Production of electrophotographic planographic printing plate by reversal development
JPH0425541B2 (en)
JPH03203757A (en) Electrophotographic liquid reversal developing method