JPH01296317A - Work wagon guiding device utilizing beam light - Google Patents

Work wagon guiding device utilizing beam light

Info

Publication number
JPH01296317A
JPH01296317A JP63128028A JP12802888A JPH01296317A JP H01296317 A JPH01296317 A JP H01296317A JP 63128028 A JP63128028 A JP 63128028A JP 12802888 A JP12802888 A JP 12802888A JP H01296317 A JPH01296317 A JP H01296317A
Authority
JP
Japan
Prior art keywords
light
pair
light receiving
beam light
receiving position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63128028A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
滋 田中
Koji Yoshikawa
浩司 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63128028A priority Critical patent/JPH01296317A/en
Publication of JPH01296317A publication Critical patent/JPH01296317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To prevent occurrence of an error in the detecting and receiving position of guiding beam light caused by disturbance light by finding values of a pair of light receiving signals in a state where only the guiding beam light is received. CONSTITUTION:A received light intensity discriminating means 5 is caused to discriminate whether or not the sum of values of the pair of light receiving signals I1 and I2 outputted from a light receiving means Sa is larger than a set value. The moment when the sum becomes larger than the set value is discriminated as a moment when the guiding beam light A is made incident. Then the values of the pair of light receiving signals I1 and I2 when their sum becomes smaller than the set value are respectively subtracted from the value of the signals I1 and I2 when their sum becomes larger than the set value. As a result, the values of the pair of light receiving signals in the state where only the guiding beam light A is received are found. A light receiving position discriminating means 100 discriminates the beam light A receiving position based on the pair of light receiving signals corresponding to the state where only the beam light A is received.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地上側に、誘導用ビーム光を走査しながら投
射するビーム光投射手段が設けられ、作業車側に、前記
誘導用ビーム光の走査方向に交差する方向に沿う受光面
を備えると共に、入射光量に応じた強度で、且つ、入射
光の位置に対応する比となる一対の受光信号を出力する
受光手段が設けられ、前記受光手段から出力される一対
の受光信号に基づいて前記誘導用ビーム光の受光位置を
判別する受光位置判別手段と、前記作業車が設定走行軌
跡に沿って自動走行するように、前記受光位置判別手段
の情報に基づいて操向制御する操向制御手段とが設けら
れているビーム光利用の作業車誘導装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a beam projection means for scanning and projecting a guidance beam on the ground side, and a beam projection means for scanning and projecting the guidance beam on the work vehicle side. A light-receiving means is provided which outputs a pair of light-receiving signals having an intensity corresponding to the amount of incident light and a ratio corresponding to the position of the incident light. a light receiving position determining means for determining a light receiving position of the guiding beam light based on a pair of light receiving signals outputted from the means; and a light receiving position determining means for determining a light receiving position of the guiding beam light so that the work vehicle automatically travels along a set travel trajectory. The present invention relates to a work vehicle guidance system using a beam light, which is provided with a steering control means for controlling the steering based on the information of the vehicle.

〔従来の技術〕[Conventional technology]

上記この種のビーム光利用の作業車誘導装置は、誘導用
ビーム光の走査方向に交差する方向での受光位置に基づ
いて、作業車を設定走行軌跡に沿って自動走行させるよ
うに構成されたものである。
This type of work vehicle guidance device using beam light is configured to automatically drive the work vehicle along a set traveling trajectory based on the light receiving position in a direction intersecting the scanning direction of the guiding beam light. It is something.

ところで、入射光量に応じた強度で、且つ、入射光の位
置に対応する比となる一対の受光信号を出力する受光手
段として、例えば、PSD素子を用いることが考えられ
ている。
By the way, it has been considered to use, for example, a PSD element as a light receiving means that outputs a pair of light receiving signals with an intensity corresponding to the amount of incident light and a ratio corresponding to the position of the incident light.

このPSD素子等の受光手段を用いると、例えば、CC
D素子を用いた一次元のイメージセンサ等を用いる場合
に比較して、受光信号の処理が簡単であり、且つ、その
受光位置の分解能が上記CCD素子等よりも高い利点が
ある。又、入射光の位置を一対の受光信号の比に基づい
て検出できるので、受光位置の検出精度が入射光強度に
影響され難いという利点がある。そこで、誘導用ビーム
光の受光位置を検出するための受光手段として、上記P
SD素子等の、入射光量に応じた強度で、且つ、入射光
の位置に対応する比となる一対の受光信号を出力する受
光手段を用いることが望まれている。
When using a light receiving means such as this PSD element, for example, CC
Compared to the case of using a one-dimensional image sensor using a D element, processing of the light reception signal is simpler, and the resolution of the light reception position is higher than that of the CCD element or the like. Furthermore, since the position of the incident light can be detected based on the ratio of a pair of light reception signals, there is an advantage that the detection accuracy of the light reception position is not easily influenced by the intensity of the incident light. Therefore, as a light receiving means for detecting the light receiving position of the guiding beam light, the above P
It is desired to use a light receiving means such as an SD element that outputs a pair of light receiving signals with an intensity corresponding to the amount of incident light and a ratio corresponding to the position of the incident light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記PSD素子等の受光手段は、入射光
の位置に対応する比となる一対の受光信号を出力するよ
うに構成されていることから、受光手段の受光面に入射
する光の強度分布が偏っていると、一対の受光信号の比
に誤差を生じて、検出される受光位置に誤差が生じる不
利がある。
However, since the light receiving means such as the PSD element is configured to output a pair of light receiving signals having a ratio corresponding to the position of the incident light, the intensity distribution of the light incident on the light receiving surface of the light receiving means is If it is biased, there is a disadvantage that an error occurs in the ratio of a pair of light reception signals, and an error occurs in the detected light reception position.

例えば、この種の装置を屋内に右いて使用する場合には
、照明やその照明によって生じる反射光や影等の外乱光
によって、受光面に対する入射光の強度分布に偏りを生
じる場合がある。
For example, when this type of device is used indoors, the intensity distribution of incident light on the light receiving surface may be biased due to illumination and disturbance light such as reflected light and shadows caused by the illumination.

又、屋外において使用する場合にも、同様に、自然光や
その反射光や影等の外乱光によって、受光面に入射する
光の強度分布に偏りが生じる場合がある。
Furthermore, when used outdoors, the intensity distribution of light incident on the light-receiving surface may similarly be biased due to disturbance light such as natural light, its reflected light, and shadows.

つまり、入射光の強度分布に偏りが生じている状態で、
誘導用ビーム光を受光すると、誘導用ビーム光の受光位
置に対応する一対の受光信号の比が、入射光強度分布に
偏りを生じた外乱光によって、真の受光位置からずれた
位置に対応する比となる虞れがある。
In other words, when the intensity distribution of the incident light is biased,
When the guiding beam light is received, the ratio of the pair of light receiving signals corresponding to the receiving position of the guiding beam light corresponds to a position shifted from the true light receiving position due to disturbance light that biases the incident light intensity distribution. There is a risk of comparison.

尚、受光面に対して誘導用ビーム光以外の外光が一様に
入射している場合には、その外光によっては、一対の受
光信号の比は変化しないので、誘導用ビーム光の受光位
置に検出誤差が生じることはない。
Note that if external light other than the guiding beam light is uniformly incident on the light receiving surface, the ratio of the pair of received light signals will not change depending on the external light, so the receiving surface of the guiding beam light will not change. There is no detection error in position.

本発明は、上記実情に鑑みてなされたものであって、そ
の目的は、誘導用ビーム光の検出受光位置が、外乱光に
よって誤差を生じることがないようにすることにある。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to prevent errors in the detection and reception position of the guiding beam light from occurring due to disturbance light.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるビーム光利用の作業車誘導装置は、地上側
に、誘導用ビーム光を走査しながら投射するビーム光投
射手段が設けられ、作業車側に、前記誘導用ビーム光の
走査方向に交差する方向に沿う受光面を備えると共に、
入射光量に応じた強度で、且つ、入射光の位置に対応す
る比となる一対の受光信号を出力する受光手段が設けら
れ、前記受光手段から出力される一対の受光信号に基づ
いて前記誘導用ビーム光の受光位置を判別する受光位置
判別手段と、前記作業車が設定走行軌跡に沿って自動走
行するように、前記受光位置判別手段の情報に基づいて
操向制御する操向制御手段とが設けられているものであ
って、その特徴構成は、前記一対の受光信号の和の値が
設定値より大であるか否かを判別する信号強度判別手段
が設けられ、前記受光位置判別手段は、前記信号強度判
別手段の検出情報に基づいて、前記一対の受光信号の和
の値が前記設定値より大である時の前記一対の受光信号
夫々から、前記和の値が設定値より大でない時の前記一
対の受光信号を減算した値に基づいて、前記誘導用ビー
ム光の受光位置を判別するように構成されている点にあ
る。
The work vehicle guidance device using a beam light according to the present invention is provided with a beam light projection means for scanning and projecting a guiding beam light on the ground side, and a beam light projecting means that projects the guiding beam light while scanning, and a beam light projecting means that projects the guiding beam light while scanning it, and a beam light projecting means that projects the guiding beam light while scanning it, and a beam light projecting means that projects the guiding beam light while scanning is provided on the ground side. and a light-receiving surface along the direction of
A light receiving means is provided for outputting a pair of light receiving signals having an intensity corresponding to the amount of incident light and a ratio corresponding to the position of the incident light, and the guiding light is detected based on the pair of light receiving signals output from the light receiving means. A light receiving position determining means for determining a light receiving position of the beam light, and a steering control means for controlling steering based on information of the light receiving position determining means so that the work vehicle automatically travels along a set travel trajectory. The device is provided with a signal strength determining means for determining whether the sum of the pair of light receiving signals is greater than a set value, and the light receiving position determining means is , based on the detection information of the signal strength determining means, when the sum value of the pair of light reception signals is larger than the set value, the sum value is not larger than the set value from each of the pair of light reception signals. The light receiving position of the guiding beam light is determined based on the value obtained by subtracting the pair of light receiving signals at the time.

〔作 用〕[For production]

受光手段から出力される一対の受光信号の和は、誘導用
ビーム光が入射した場合には、その誘導用ビーム光の強
度に応じて、誘導用ビーム光が入射していない場合より
も増大することになる。
When the guiding beam light is incident, the sum of the pair of light reception signals outputted from the light receiving means increases compared to when the guiding beam light is not incident, depending on the intensity of the guiding beam light. It turns out.

そこで、受光手段から出力される一対の受光信号の和が
設定値より大であるか否かを判別させて、設定値より大
である時を、誘導用ビーム光が入射した時点と判断する
のである。そして、一対の受光信号の和が設定値より大
であ不時の一対の受光信号、つまり、誘導用ビーム光と
受光位置に誤差を生じる原因となる外乱光の両方を受光
している状態における一対の受光信号夫々から、前記和
の値が設定値より小となる時の一対の受光信号、つまり
、外乱光のみを受光している状態における一対の受光信
号を減算することにより、誘導用ビーム光のみを受光し
ている状態における一対の受光信号の値を求めて、その
誘導用ビーム光のみを受光している状態に対応する一対
の受光信号に基づいて、誘導用ビーム光の受光位置を判
別させるのである。
Therefore, it is determined whether the sum of the pair of light reception signals output from the light receiving means is greater than a set value, and when it is greater than the set value, it is determined that the guiding beam light is incident. be. Then, when the sum of the pair of received light signals is greater than the set value and the pair of emergency received light signals is received, in other words, both the guiding beam light and the disturbance light that causes an error in the light receiving position are received. By subtracting the pair of light reception signals when the sum value is smaller than the set value, that is, the pair of light reception signals in a state where only disturbance light is being received, from each of the pair of light reception signals, the guiding beam The values of the pair of light reception signals in the state where only the light is being received are determined, and the light reception position of the guiding beam light is determined based on the pair of light reception signals corresponding to the state where only the guiding beam light is being received. Let them judge.

〔発明の効果〕〔Effect of the invention〕

従って、外乱光の影響を除いた一対の受光信号に基づい
て誘導用ビーム光の受光位置を判別させるので、外乱光
によって誤差を生じることがないようにできる。もって
、受光位置の検出精度を向上できるに至った。
Therefore, since the light reception position of the guiding beam light is determined based on the pair of light reception signals from which the influence of the disturbance light has been removed, it is possible to prevent errors from occurring due to the disturbance light. As a result, it has become possible to improve the detection accuracy of the light receiving position.

〔実施例〕〔Example〕

以下、本発明を、ビルの通路等を自動走行しながら清掃
する清掃用の作業車に適用した場合にふける実施例を図
面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a cleaning work vehicle that automatically travels and cleans the passages of buildings will be described below with reference to the drawings.

第3図乃至第5図に示すように、作業範囲となる通路毎
に、誘導用ビーム光(A)を通路の長手方向に沿って走
査しながら、通路の横幅方向で且つ上方に傾斜した方向
に向けて投射するビーム光投射手段としてのレーザ光投
射装置(B)が、前記通路の長手方向の略中間部となる
壁面部に付設され、作業車(V)の車体前後左右の各端
部に、前記誘導用ビーム光(A)の走査方向に交差する
方向となる車体上下方向での受光位置を検出する受光手
段としての受光器(Sa)の夫々が、それらの受光面が
車体上下方向に長く形成される状態で、設けられている
As shown in FIGS. 3 to 5, while scanning the guiding beam light (A) along the longitudinal direction of the passage for each passage serving as the work area, the guide beam (A) is scanned in the width direction of the passage and in an upwardly inclined direction. A laser beam projection device (B) serving as a beam projection means for projecting a beam toward is attached to a wall portion that is approximately the middle portion in the longitudinal direction of the passage, and is attached to each end of the front, rear, left, and right sides of the vehicle body of the work vehicle (V). Each of the light receivers (Sa) serving as light receiving means for detecting a light receiving position in the vertical direction of the vehicle body, which is a direction intersecting the scanning direction of the guiding beam light (A), It is provided in a state where it is formed for a long time.

そして、後述の如く、前記通路の長手方向に沿って設定
され、且つ、前記通路の横幅方向に作業幅毎に並ぶ状態
で設定された複数個の作業行程の夫々において、前記作
業車(V)が設定走行軌跡(ffl)に沿って自動走行
するように、前記複数個の受光器(Sa)のうちの前記
レーザ光投射装置(B)が付設された壁面側に位置する
前後−対の受光器(Sa)夫々の受光位置情報に基づい
て、前記レーザ光投射装置(B)が付設された壁面から
の位置(1)と、前記各作業行程における設定走行軌跡
(ffl)に対する傾き(ψ)とを検出して、それら検
出情報に基づいて操向制御されることになり、そして、
前記通路長手方向の両端部に達するに伴って、通路横幅
方向に一行程分を幅寄せ走行させて、自動的に次の作業
行程に移動することになる。
As will be described later, the work vehicle (V) A pair of front and rear light receivers located on the wall surface side to which the laser beam projection device (B) is attached among the plurality of light receivers (Sa) so that the laser beam automatically travels along a set travel trajectory (ffl). Based on the light receiving position information of each of the laser beam projection devices (Sa), the position (1) from the wall surface to which the laser beam projection device (B) is attached and the inclination (ψ) with respect to the set travel trajectory (ffl) in each of the work steps are determined. and the steering will be controlled based on the detected information, and
As the machine reaches both ends in the longitudinal direction of the passage, it moves one stroke in the width direction of the passage and automatically moves to the next working stroke.

但し、前記作業車(V)は、前記レーザ光投射装置(B
)が付設された壁面側に位置する前後−対の受光器(S
a)夫々の受光位置情報に基づいて、操向制御されるの
で、前記レーザ光投射装置(B)側に位置する受光器(
Sa)を用いるように、−行程毎に前後進を繰り返して
自動走行させることになる。
However, the work vehicle (V) is equipped with the laser beam projection device (B).
) located on the wall side with a pair of front and rear receivers (S
a) Since the steering is controlled based on the respective light receiving position information, the light receiver (
Sa), the vehicle is automatically driven by repeatedly moving forward and backward every -stroke.

前記受光器(Sa)の受光位置を判別するための構成に
ついて説明すれば、第1図に示すように、前記受光器(
Sa)は、PSD素子を利用して、その受光面の長さ方
向を、前記誘導用ビーム光(A)の走査方向に交差する
方向となる車体上下方向に向けた状態で設けられている
To explain the configuration for determining the light receiving position of the light receiver (Sa), as shown in FIG.
Sa) is provided using a PSD element with the length direction of its light-receiving surface facing in the vertical direction of the vehicle body, which is a direction intersecting the scanning direction of the guiding beam light (A).

前記PSD素子は、その受光面の長さ方向両端部の夫々
から、入射光量に応じた強度で、且つ、入射光の位置に
対応する比となる一対の受光信号(1+)、 (Iz)
を出力するように構成されているものである。
The PSD element receives a pair of light-receiving signals (1+) and (Iz) from both longitudinal ends of its light-receiving surface, respectively, with an intensity corresponding to the amount of incident light and a ratio corresponding to the position of the incident light.
It is configured to output .

そして、前記一対の受光信号、<11.12)夫々の和
信号(I:1=Il+12)と差信号(ΔI=I、−1
2)とを演算する信号処理回路(1)、それら和信号(
El)。
Then, the sum signal (I:1=Il+12) and the difference signal (ΔI=I, -1) of the pair of light reception signals, <11.12), respectively.
2) and a signal processing circuit (1) that calculates their sum signal (
El).

と差信号(Δ1)の夫々を記憶保持するサンプルホール
ド回路(2)、そのサンプルホールド回路(2)にて記
憶保持された信号をデジタル値に変換するA/D変換器
(3)、そのA/D変換器(3)の出力に基づいて前記
受光器(Sa)の受光位置(X)を検出する受光位置検
出手段(100)を構成するマイクロコンピュータ利用
の制御装置(4)、前記和信号(ΣI)が、前記誘導用
ビーム光(A)が前記受光器(Sa)に入射した場合に
増大する受光信号の値に対応して設定された設定値より
大であるか否かを判別する信号強度判別手段としてのコ
ンパレータ(5)、及ヒ、そのコンパレータ(5)の出
力信号にてセットされて、前記サンプルホールド回路(
2)に対してホールド信号を出力するフリップフロップ
(6)が設けられている。但し、このフリップフロップ
(6) から出力されるホールド信号は、前記制御装置
(4) に対して前記誘導用ビーム光(A)を受光した
ことを示す信号として人力しである。又、このフリップ
フロップ(6)は、前記制御装置(4)から出力される
クリア信号によってリセットされるようになっている。
and a difference signal (Δ1), an A/D converter (3) that converts the signals stored and held in the sample and hold circuit (2) into digital values, and the A control device (4) using a microcomputer that constitutes a light receiving position detection means (100) for detecting a light receiving position (X) of the light receiver (Sa) based on the output of the /D converter (3), and the sum signal (ΣI) is larger than a set value set corresponding to a value of a received light signal that increases when the guiding beam light (A) enters the light receiver (Sa). A comparator (5) as a signal strength determination means is set by the output signal of the comparator (5), and the sample and hold circuit (
2) is provided with a flip-flop (6) that outputs a hold signal. However, the hold signal output from this flip-flop (6) is manually generated as a signal indicating to the control device (4) that the guiding beam (A) has been received. Further, this flip-flop (6) is reset by a clear signal output from the control device (4).

尚、図面では、一つの受光器(Sa)に対する信号処理
の構成のみを図示しているが、これらは、各受光器(S
a)の夫々に対して、各1組みが設けられることになる
Note that although the drawing only shows the configuration of signal processing for one photoreceiver (Sa), these
One set will be provided for each of a).

又、詳しくは後述するが、前記制御装置(4)を利用し
て、前記受光器<Sa>の受光位置情報に基づいて前記
作業車(V)が設定走行軌跡(m)に沿って自動走行す
るように制御する操向制御手段(101)等の各種手段
が構成されることになる。
Further, as will be described in detail later, the work vehicle (V) automatically travels along a set travel trajectory (m) based on the light receiving position information of the light receiver <Sa> using the control device (4). Various means, such as a steering control means (101), are configured to control the vehicle so as to perform the following actions.

次に、第2図に示すフローチャートに基づいて、前記受
光器(Sa)の受光位置(X)を判別する受光位置判別
手段(100)について詳述する。
Next, the light receiving position determining means (100) for determining the light receiving position (X) of the light receiver (Sa) will be described in detail based on the flowchart shown in FIG.

但し、以下の説明では、−個の受光器(Sa)に対する
処理のみについて説明するが、車体前後夫々の受光器の
夫々に対して、同じ処理を行うことによって、車体前後
夫々での受光位置が、各別に判別されることになる。
However, in the following explanation, only the processing for − number of light receivers (Sa) will be explained, but by performing the same processing on each of the light receivers at the front and rear of the vehicle body, the light receiving positions at the front and rear of the vehicle body can be changed. , each will be determined separately.

すなわち、前記受光器(Sa)に、前記誘導用ビーム光
(A)が入射すると、前記フリップフロップ(6)から
前記ホールド信号が出力されて、前記誘導用ビーム光(
A)の入射位置に応じた値となる和信号(Σ1)及び差
信号(Δl)夫々の値が保持されると共に、前記制御装
置(4) が起動されて、前記A/D変換器(3)を作
動させ、そして、A7D変換された値が読み込まれるこ
とになる。
That is, when the guiding beam light (A) is incident on the light receiver (Sa), the hold signal is output from the flip-flop (6), and the guiding beam light (A) is outputted from the flip-flop (6).
The values of the sum signal (Σ1) and the difference signal (Δl) that correspond to the incident position of the signal A) are held, and the control device (4) is activated to control the A/D converter (3). ), and the A7D converted value will be read.

但し、前記誘導用ビーム光(A)を受光した時点におけ
る前記一対の受光信号(I I)、 (La)夫々の実
際の値は、前記誘導用ビーム光(A)のみを受光した場
合の値(II)、 (12)と前記誘導用ビーム光(A
)を受光しない外乱光のみを受光している場合の値(I
 r’ )、(12°)とを加算した値となっている。
However, the actual values of the pair of light reception signals (II) and (La) at the time of receiving the guiding beam light (A) are the values when only the guiding beam light (A) is received. (II), (12) and the guiding beam light (A
) when receiving only disturbance light (I
r') and (12°).

そこで、前記ホールド信号が出力されて、前記誘導用ビ
ーム光(A)の受光状態における前記和信号(Σ■)及
び差信号(ΔI)夫々の値を読み込んだ後は、前記フリ
ップフロップ(6)をクリアして、前記受光器(Sa)
が前記誘導用ビーム光(A)の非受光状態となるまでに
要する設定時間経過するまで待機した後、再度、前記誘
導用ビーム光(A)の非受光状態にふける和信号(ΣI
’)及び差信号(ΔI’)夫々の値を読み込む。
Therefore, after the hold signal is output and the respective values of the sum signal (Σ■) and the difference signal (ΔI) in the state of receiving the guiding beam light (A) are read, the flip-flop (6) Clear the above receiver (Sa)
After waiting until the set time required for the guiding beam light (A) to be in the non-receiving state, the sum signal (ΣI
') and the difference signal (ΔI').

そして、前記誘導用ビーム光(A)の受光状態の時の和
信号(ΣI)と差信号(Δ■)の夫゛々から、前記誘導
用ビーム光(A)の非受光状態の時の和信号(Σ1°)
と差信号(ΔI’)の夫々を減算して、前記受光器(S
a)が前記誘導用ビーム光(A)のみを受光している状
態に対応する和信号及び差信号の夫々を求める。
Then, from each of the sum signal (ΣI) and the difference signal (Δ■) when the guiding beam (A) is in the receiving state, the sum when the guiding beam (A) is not receiving is calculated. Signal (Σ1°)
and the difference signal (ΔI'), respectively, to obtain the light receiver (S
A sum signal and a difference signal corresponding to the state in which a) receives only the guiding beam light (A) are determined.

次に、前記受光器(Sa)の受光位置(X)を、下記(
i)式から求める。
Next, the light receiving position (X) of the light receiver (Sa) is set as follows (
i) Determine from the formula.

X=L(1+ΔI/ΣI)    =(i)但し、前記
受光位置(X)の値は、前記受光器(Sa)の受光面の
上下方向での長さを2Lとして、その受光面の下端を基
準位置とした位置の値として判別するようにしである。
X=L(1+ΔI/ΣI) =(i) However, the value of the light receiving position (X) is determined by assuming that the length in the vertical direction of the light receiving surface of the light receiver (Sa) is 2L, and the lower end of the light receiving surface is 2L. The value is determined based on the value of the reference position.

次に、前記受光器(Sa)の受光位置(X)の情報に基
づいて、前記壁面からの位置(Il’)を検出するため
の手段について説明する。
Next, a description will be given of means for detecting the position (Il') from the wall surface based on the information on the light receiving position (X) of the light receiver (Sa).

第4図に示すように、前記誘導用ビーム(八)は、前記
作業車(V)の走行面に平行で且つ前記誘導用ビーム光
(A)の投射位置を通る仮想面(F)に対して設定角度
(θ)を傾斜した方向から、前記作業車(V)の横側面
に向けて投射されることになる。
As shown in FIG. 4, the guiding beam (8) is directed toward a virtual plane (F) that is parallel to the traveling surface of the working vehicle (V) and passes through the projection position of the guiding beam (A). The light is projected toward the side surface of the work vehicle (V) from the direction in which the set angle (θ) is inclined.

従って、前記レーザ光投射装置(B)の設置位置つまり
前記通路の壁面に対する前記作業車(V)の位置<i>
は、前記仮想面(F)を基準として、前記受光器(Sa
)が前記誘導用ビーム光(A)を受光した上下方向での
受光位置(X) と、前記設定角度(θ)とに基づいて
、下記(ii )式から求めることができるのである。
Therefore, the installation position of the laser beam projection device (B), that is, the position of the work vehicle (V) with respect to the wall surface of the passage <i>
is the photodetector (Sa) with the virtual plane (F) as a reference.
) can be determined from the following equation (ii) based on the light receiving position (X) in the vertical direction at which the guiding beam light (A) is received and the setting angle (θ).

j2=X/lanθ ・−=−(ii )但し、前記受
光器(Sa)の一つの受光位置情報からは、各作業行程
における設定走行軌跡(m)に対する傾き(ψ)を検出
することができないので、前記レーザ光投射装!(B)
の設置側に位置する受光器(Sa)の前後一対の受光位
置情報から前記傾き(ψ)を検出するようにしである。
j2=X/lanθ ・−=−(ii) However, from the light receiving position information of one of the light receivers (Sa), the inclination (ψ) with respect to the set travel trajectory (m) in each work process cannot be detected. So said laser light projection device! (B)
The inclination (ψ) is detected from the light receiving position information of a pair of front and rear light receivers (Sa) located on the installation side.

尚、以下の説明において、説明の都合上、車体前方側の
受光器を受光器(S、)と表記し、車体後方側の受光器
を受光器(St)と表記し、前記レーザ光投射装置(B
)の設置側とは反対側となる車体前方側の受光器を受光
器(S、)と表記し、そして、車体後方側の受光器を受
光器(S、)と表記する。
In the following description, for convenience of explanation, the light receiver on the front side of the vehicle body will be referred to as a light receiver (S,), the light receiver on the rear side of the vehicle body will be referred to as a light receiver (St), and the laser beam projection device will be referred to as a light receiver (St). (B
) The light receiver on the front side of the vehicle body, which is the opposite side to the installation side, is referred to as a light receiver (S, ), and the light receiver on the rear side of the vehicle body is referred to as a light receiver (S, ).

すなわち、第5図に示すように、前記前後−対の受光器
(Sl)、 (St)夫々の上下方向での受光位置から
、上記(ii >式にて、車体前後両側における前記壁
面に対する位置(I!+)、(I12)を求め、それら
両位置(ll)、(j!2)の値と、前記前後−対の受
光器(St)、 (St)の取り付は間隔(La)とか
ら、下記(iii )式に基づいて、前記設定走行軌跡
(m)に対する傾き(ψ)を求めるようにしているので
ある。
That is, as shown in FIG. 5, from the light receiving positions in the vertical direction of the front and rear pair of light receivers (Sl) and (St), the position relative to the wall surface on both the front and rear sides of the vehicle body is determined by the above equation (ii). (I!+), (I12) are calculated, and the values of both positions (ll) and (j!2) and the mounting distance of the front and rear pair of light receivers (St) and (St) are determined by the distance (La). From this, the slope (ψ) with respect to the set traveling trajectory (m) is determined based on the following equation (iii).

ψ=sin−’ ((1、−I! 2) /La)  
−・・・(iii)但し、前記壁面からの位置(1)の
値は、前記前後一対の受光器(St)、 (St)のう
ちの一方の受光位置情報に基づいて求めた位置の値を用
いてもよいが、前記傾き(ψ)の影響を除去するために
、前記両位置(I!l)、(f2)の値の平均値を用い
るようにしてもよい。
ψ=sin−' ((1, −I! 2) /La)
-... (iii) However, the value of the position (1) from the wall surface is the value of the position determined based on the light receiving position information of one of the pair of front and rear light receivers (St), (St). However, in order to remove the influence of the inclination (ψ), the average value of the values of both positions (I!l) and (f2) may be used.

尚、詳述はしないが、求めた位置(lの値は前記壁面か
らの距離であり、各作業行程における設定走行軌跡(m
)に対する横幅方向の位置を直接示す値ではないことか
ら、前記作業車(V)を前記設定走行軌跡(Ill)に
沿って自動走行させるためには、各作業行程における設
定走行軌跡(m)の位置に応じた値に換算して用いるこ
とになる。
Although not explained in detail, the value of the determined position (l is the distance from the wall surface, and the set travel trajectory (m) in each work process is
) is not a value that directly indicates the position in the width direction with respect to It will be converted into a value according to the position and used.

以下、各部の構成について詳述する。The configuration of each part will be explained in detail below.

前記作業車(V)の構成について説明すれば、第6図に
示すように、車体下部の前後左右の夫々に、走行用モー
タ(M、)にて各別に駆動停止自在な走行車輪(7)が
設けられている。
To explain the structure of the work vehicle (V), as shown in FIG. 6, there are running wheels (7) on the front, rear, left and right sides of the lower part of the vehicle body that can be driven and stopped individually by a running motor (M). is provided.

但し、前記走行車輪(7)は、操向用モータ(M2)に
て、夫々左右を一対として、前後で各別に操向するよう
に構成されている。
However, the running wheels (7) are configured to be steered separately at the front and rear by a steering motor (M2), forming a pair of left and right wheels.

前記操向用モータ(M2)による操向操作構成について
説明すれば、第7図に示すように、前記走行車輪(7)
を支持する支持部材(8)の夫々が、縦軸芯周りに揺動
自在に支承され、前記支持部材(8)の上端部に、前記
縦軸芯周りに前記走行車輪(7)の揺動に連動して回動
する回転体(9)の夫々が取り付けられ、それら回転体
(9)の夫々を左右で繋ぐリンク機構(lO)が設けら
れ、前記走行車輪(7)が、左右を一対として向き変更
するようになっている。
To explain the steering operation configuration using the steering motor (M2), as shown in FIG.
Each of the support members (8) supporting the wheels (8) is supported so as to be swingable around the vertical axis, and the upper end of the support member (8) supports the rocking movement of the running wheel (7) around the vertical axis. Rotating bodies (9) that rotate in conjunction with are attached, and a link mechanism (lO) is provided that connects the left and right sides of each of the rotating bodies (9), and the running wheels (7) connect the left and right sides as a pair. It is designed to change direction as follows.

前記左右の回転体(9) の一方の外周には、前記操向
用モータ(M2)にて駆動される操向用ギヤ(11)に
咬合するギヤ部が形成されている。
A gear portion that meshes with a steering gear (11) driven by the steering motor (M2) is formed on the outer periphery of one of the left and right rotating bodies (9).

尚、図中、(12)は前記操向用モータ(M2)と前記
操向用ギヤ(11)とを連係させるためのギヤ式の伝動
部、(Se)は前記走行車輪(7)の現在の操向角を検
出するための操向角検出用ポテンショメータである。
In the figure, (12) is a gear type transmission unit for linking the steering motor (M2) and the steering gear (11), and (Se) is the current state of the running wheels (7). This is a steering angle detection potentiometer for detecting the steering angle of the vehicle.

そして、前記各作業行程では、車体進行方向に対して前
方側となる左右一対の走行車輪(7)のみを操向する2
輪ステアリング形式を用いると共に、次の作業行程に移
動する際には、前記走行車輪(7) の全てを同位相で
且つ同角度に操向する平行ステアリング形式で幅寄せ走
行させ、次の通路に移動する場合には、前記平行ステア
リング形式と前記左右一対の走行車輪(7) の前後が
逆位相で且つ同角度となるように操向する4輪ステアリ
ング形式を用いるようにしである。
In each of the work steps, only the pair of left and right running wheels (7) on the front side with respect to the vehicle traveling direction are steered.
In addition to using a wheel steering system, when moving to the next work process, all of the traveling wheels (7) are steered in the same phase and at the same angle, using a parallel steering system to move across the width of the vehicle, and then proceed to the next passage. When moving, the parallel steering type and the four-wheel steering type are used in which the pair of left and right running wheels (7) are steered so that the front and rear wheels are in opposite phases and at the same angle.

従って、各作業行程では、前記作業車(V)が前記設定
走行軌跡(Ill)に沿って自動走行するように、検出
された前記壁面に対する位置<1>とその壁面に平行な
設定走行軌跡(Ill)に対する傾き(ψ) との値に
基づいて、目8I操向角(θf)を設定して、2輪ステ
アリング形式で操向制御することになる。
Therefore, in each work process, the detected position <1> with respect to the wall surface and the set travel trajectory (Ill) parallel to the wall surface are set so that the work vehicle (V) automatically travels along the set travel trajectory (Ill). Based on the value of the inclination (ψ) with respect to Ill), the steering angle (θf) is set, and the steering is controlled in a two-wheel steering format.

尚、前記目標操向角(of)は、下記(iv)式を用い
て、前記位置(Il)の値と前記傾き(ψ)の値の夫々
が大なるほど大なる値となるようにしである。
The target steering angle (of) is set to a larger value as the value of the position (Il) and the value of the inclination (ψ) increase, using the following formula (iv). .

θr=α1・χ+α2・ψ十α、・β ・・・・・・(
iv)但し、上記(iv)式において、χは、前記位置
<i>の値と現在走行している作業行程の位置に基づい
て算出した前記設定走行軌跡(Ill)に対する車体横
幅方向での位置である。又、βは、前記走行車輪(7)
の現在の操向角、α1.α2.α3は操向特性に応じて
設定した定数である。
θr=α1・χ+α2・ψ1α,・β ・・・・・・(
iv) However, in the above formula (iv), χ is the position in the vehicle body width direction with respect to the set traveling trajectory (Ill) calculated based on the value of the position <i> and the position of the currently traveling work stroke. It is. Moreover, β is the running wheel (7)
The current steering angle of α1. α2. α3 is a constant set according to the steering characteristics.

つまり、上記(iv)式に基づいて目標操向角(θf)
を設定して、車体進行方向に対して前方側となる左右一
対の走行車輪(7)を操向操作する処理が操向制御手段
(101)に対応することになる。
In other words, based on the above formula (iv), the target steering angle (θf)
The process of setting and steering the pair of left and right running wheels (7) on the front side with respect to the vehicle traveling direction corresponds to the steering control means (101).

又、第6図に示すように、前記作業車(V)の前後左右
夫々の側面部には、車体の周囲にある障害物を非接触に
検出する超音波センサ(sb)と、車体に他物が接触す
るに伴って非常停止させる ・ためのバンパー型の接触
センサ(SC)とが設けられている。又、前記作業車(
V)が階段等の段差がある箇所で落下しないようにする
ために、車体下部の前記走行車輪(7) よりも車体外
側となる箇所の夫々に、床面までの距離が設定値内にあ
るか否かを非接触に検出する超音波センサ利用の段差セ
ンサ(Sd)が設けられている。
Further, as shown in FIG. 6, ultrasonic sensors (sb) for non-contact detection of obstacles around the vehicle body are installed on each side of the front, rear, left and right sides of the work vehicle (V). A bumper-type contact sensor (SC) is provided to cause an emergency stop when an object comes into contact with the vehicle. In addition, the work vehicle (
In order to prevent V) from falling on a place with steps such as stairs, the distance to the floor is within a set value at each location on the outside of the vehicle body from the running wheels (7) at the bottom of the vehicle body. A step sensor (Sd) using an ultrasonic sensor is provided to non-contactly detect whether or not it is.

但し、前記車体周囲に設けた障害物検出用の超音波セン
サ(Sb)のうちの車体前後に設けられたセンサは、後
述の如く、通路長手方向の両端側の作業行程終端位置を
検出するための手段に兼用されている。
However, among the ultrasonic sensors (Sb) for detecting obstacles provided around the vehicle body, the sensors installed at the front and rear of the vehicle body are used to detect the end position of the work stroke at both ends in the longitudinal direction of the passage, as described later. It is also used as a means of

尚、第6図中、(13)は清掃用の回転ブラシ、(14
)は車体前後の夫々に設けられた吸水装置、(15)は
前記作業車(V)が走行状態にある時に点滅する警告灯
、(16)は警報ブザ−、(17)は前記走行用モータ
(M、)や前記操向用モータ(モ)等に対する作動用電
力を外部からも供給できるように、電源コード(18)
を給電用コンセント (図示せず)からの距離に応じて
繰り出し自在なコードリールである。
In Fig. 6, (13) is a rotating brush for cleaning, and (14) is a rotating brush for cleaning.
) is a water absorption device installed at the front and rear of the vehicle body, (15) is a warning light that flashes when the work vehicle (V) is running, (16) is a warning buzzer, and (17) is the drive motor. (M), the steering motor (M), etc., so that the power cord (18) can be supplied with operating power from outside.
This is a cord reel that can be freely fed out depending on the distance from the power supply outlet (not shown).

前記レーザ光投射装置(8)について説明すれば、第8
図及び第9図に示すように、前記壁面への取り付は用部
材に兼用のケース(19)の内部に、光源としての半導
体レーザ(20)と、その半導体レーザ(20)から投
射されるレーザ光を前記誘導用ビーム光(A)として、
前記ケース(19)の側面に形成されたビーム光投射用
の窓(21)から、前記作業車(V)の走行面となる前
記通路の床面に平行で且つビーム光投射位置を通る仮想
面に対して45度よりも小さな値に設定された前記設定
角度(θ)を傾斜した方向に向けて、前記作業車(V)
を走行させる設定走行軌跡(m)の長さ方向つまり前記
通路の長手方向に沿って走査するためのポリゴンミラー
(22)と、そのポリゴンミラー(22)を回転駆動す
る走査用モータ(23)と、前記半導体レーザ(20)
及び前記走査用モータ(23)の駆動装置(24)とが
設け“られている。尚、図中、(25)はこのレーザ光
投射装置(B)の作動及び停止の操作用スイッチである
To explain the laser beam projection device (8), the eighth
As shown in FIG. 9 and FIG. 9, a semiconductor laser (20) as a light source and a light beam projected from the semiconductor laser (20) are installed inside the case (19) which also serves as a member for mounting on the wall surface. Using the laser light as the guiding beam light (A),
From the beam light projection window (21) formed on the side surface of the case (19), a virtual plane that is parallel to the floor surface of the passageway, which is the traveling surface of the work vehicle (V), and passes through the beam light projection position. The working vehicle (V) is oriented in a direction in which the set angle (θ) is set to a value smaller than 45 degrees with respect to
a polygon mirror (22) for scanning along the length direction of a set travel trajectory (m), that is, the longitudinal direction of the passage; and a scanning motor (23) for rotationally driving the polygon mirror (22). , the semiconductor laser (20)
and a drive device (24) for the scanning motor (23). In the figure, (25) is a switch for operating and stopping the laser beam projection device (B).

前記作業車(V)を、前記受光器(Sa)による誘導用
ビーム光(A)の受光位置情報に基づいて自動走行させ
るための制御構成について説明すれば、第1図に示すよ
うに、前記制御装置(4)によって、前記操向用の受光
器(Sa)や各種センサによる検出情報に基づいて、前
記走行用モータ(Ml)及び前記操向用モータ(M2)
を制御するように構成されている。
The control configuration for automatically driving the work vehicle (V) based on the light receiving position information of the guiding beam light (A) by the light receiver (Sa) will be explained as shown in FIG. The control device (4) controls the driving motor (Ml) and the steering motor (M2) based on information detected by the steering light receiver (Sa) and various sensors.
is configured to control.

尚、第1図中、(26)は前記回転ブラシ(13)の駆
動装置、(27)は前記走行用モータ(Ml)夫々の回
転を検出するロータリーエンコーダ、(28)は前記作
業車(v)を自動走行させる通路夫々における作業行程
数、前記傾斜角度(θ)、及び、通路幅等の各種走行制
御情報を設定入力するための操作パネルでる。
In FIG. 1, (26) is a drive device for the rotating brush (13), (27) is a rotary encoder that detects the rotation of each of the traveling motors (Ml), and (28) is a drive device for the working vehicle (v). ) is an operation panel for setting and inputting various traveling control information such as the number of work strokes, the angle of inclination (θ), and the width of the passage for each passage in which the vehicle automatically travels.

ところで、詳述はしないが、前記作業車(V)を手動操
作で走行させる場合には、前記操作パネル(28)に設
けられることになる各種操作用レバーやスイッチを手動
操作することになる。
Incidentally, although not described in detail, when the work vehicle (V) is manually operated, various operation levers and switches provided on the operation panel (28) are manually operated.

次に、第10図に示すフローチャートに基づいて、前記
制御装置(4) の動作を説明しながら、前記作業車(
v)の自動走行について詳述する。
Next, while explaining the operation of the control device (4) based on the flowchart shown in FIG.
v) Automatic driving will be explained in detail.

先ず、第4図にも示すように、走行開始前に、前記作業
車(V)を作業範囲となる通路内に位置させた状態で、
各通路毎の作業行程数や通路幅、及び、各通路毎の前記
誘導用ビーム光(A)の傾斜角度(θ)の値等の走行制
御情報を、前記操作パネル(28)を利用して入力して
おくことになる。
First, as shown in FIG. 4, before starting traveling, with the work vehicle (V) positioned within the passageway that is the work area,
Travel control information such as the number of work strokes for each passage, the passage width, and the value of the inclination angle (θ) of the guiding beam light (A) for each passage can be obtained using the operation panel (28). You will have to enter it.

次に、スタートスイッチ(図示せず)をON操作して走
行開始させた後、前記受光器(Sa)の4個全ての受光
状態に基づいて、何れの受光器が前記誘導用ビーム光(
A)を受光しているかを判別し、前記誘導用ビームt 
(A)を受光している前後2個の受光器つまり前記ビー
ム光投射装置(B)側に位置する前記前後一対の受光器
(S、)。
Next, after turning on a start switch (not shown) to start running, which light receiver receives the guiding beam light (Sa) based on the light receiving state of all four light receivers (Sa).
A) is detected, and the guiding beam t is detected.
The two front and rear light receivers receiving light (A), that is, the pair of front and rear light receivers (S,) located on the beam light projection device (B) side.

(S2)を用いるように、使用する受光器の組みを設定
する。
The set of light receivers to be used is set so as to use (S2).

そして、前述の如く、前記前後一対の受光器(Sl)、
 (S2)夫々の受光位置情報に基づいて、前記壁面に
対する位置<i>と通路長手方向に対する傾き(ψ)と
を求め、それらの情報に基づいて、前記作業車(V)を
、前記通路の一方の角部に設定されたスタートポイント
まで誘導することになる。
As mentioned above, the pair of front and rear light receivers (Sl),
(S2) Based on the respective light receiving position information, determine the position <i> with respect to the wall surface and the inclination (ψ) with respect to the longitudinal direction of the passage, and based on these information, move the work vehicle (V) along the passage. The driver will be guided to the starting point set at one corner.

尚、前記作業車(V)がスタートポイントに到着したか
否かは、前記スタートポイント側にある超音波センサ(
Sb)による測距情報を利用して判別させることになる
It should be noted that whether or not the work vehicle (V) has arrived at the start point is determined by the ultrasonic sensor (
The distance measurement information obtained by Sb) is used to make the determination.

そして、前記作業車(V)がスタートポイントに達した
後は、前記回転ブラシ(13)や前記吸水装置(14)
を作動させて清掃を開始すると共に、前記前後一対の受
光器(Sl)、 (S2)夫々の受光位置情報に基づい
て検出される前記壁面に対する位置<1>と通路長手方
向に対する傾き(ψ)との情報に基づいて、前記作業車
(V)が第1作業行程での設定走行軌跡(m)に沿って
、前記スタートポイントに対向する壁面方向に向かって
自動走行するように操向制御することになる。
After the working vehicle (V) reaches the starting point, the rotating brush (13) and the water absorption device (14)
is activated to start cleaning, and the pair of front and rear light receivers (Sl), (S2) are detected based on the light receiving position information of each of the positions <1> with respect to the wall surface and the inclination (ψ) with respect to the longitudinal direction of the passage. Based on the information, the steering control is performed so that the work vehicle (V) automatically travels in the direction of the wall facing the start point along the travel trajectory (m) set in the first work stroke. It turns out.

但し、走行開始後において、前記作業車(V)を前記ス
タートポイントに対向する壁面方向に向かって走行させ
る場合には、現在作業をしている通路に対して交差する
方向となる次の通路に設けられたビーム光投射装置(B
)から投射される誘導用ビーム光(A)  と、その誘
導用ビーム光(A)の投射側に位置し且つ車体後方側に
位置する前記操向用の受光器(S、)の受光位置情報に
基づいて、作業行程の終端部に達したか否かを判別させ
、一方、前記スタートポイント側に向かう作業行程では
、前記障害物検出用の超音波センサ(Sb)にて作業行
程の端部側に位置する壁面までの距離を検出させて、そ
の検出距離の値に基づいて作業行程の終端部に達したか
否かを判別させるようにしである。
However, when the work vehicle (V) is driven toward the wall facing the start point after starting traveling, the work vehicle (V) is moved to the next passage that intersects with the passage currently being worked on. A beam light projection device (B
) and the light receiving position information of the steering light receiver (S, ) located on the projection side of the guidance beam (A) and on the rear side of the vehicle body. On the other hand, in the work process toward the start point, the ultrasonic sensor (Sb) for detecting an obstacle detects the end of the work process. The distance to the wall located on the side is detected, and based on the value of the detected distance, it is determined whether or not the end of the work stroke has been reached.

つまり、−行程毎に、前記操向用の受光器(S3)の受
光位置情報による作業行程終端までの距離計測と前記障
害物検出用の超音波センサ(Sb)による作業行程終端
までの距離計測とを切り換えながら、作業行程の終端部
に達したか否かを判別させることになる。   ・ そして、作業行程の終端部に達したことを判別するに伴
って、走行停止並びに清掃停止すると共に、全作業行程
を終了したか否かを判別し、全作業行程を終了していな
い場合には、平行ステアリング形式にて次の作業行程に
幅寄せ移動させることになる。
In other words, for each stroke, the distance to the end of the working stroke is measured by the light receiving position information of the steering light receiver (S3), and the distance to the end of the working stroke is measured by the ultrasonic sensor (Sb) for detecting obstacles. While switching between the two, it is determined whether or not the end of the work process has been reached. - Then, when it is determined that the end of the work process has been reached, it stops traveling and cleaning, and also determines whether or not the entire work process has been completed, and if the entire work process has not been completed, will be moved closer to the next work stroke using parallel steering.

説明を加えれば、作業行程の終端部に達するに伴って、
前後進を切り換えると共に平行ステアリング形式で、通
路内側方向へ作業幅分の距離を次の作業行程側に移動さ
せ、再度、前後進を切り換えて、前記操向用の受光器〈
S、)の受光位置情報又は前記障害物検出用の超音波セ
ンサ(Sb)による測距情報に基づいて、次の作業行程
の始端部となる作業行程終端部まで移動させた後、再度
前後進を切り換えて、次の作業行程における走行並びに
清掃作業を開始させることになる。
To explain, as we reach the end of the process,
At the same time as switching between forward and backward motion, the steering wheel is moved inward of the aisle by a distance equivalent to the working width to the next working stroke using parallel steering, and then the steering light receiver is switched back and forth again.
Based on the light reception position information of S,) or the distance measurement information from the ultrasonic sensor (Sb) for detecting obstacles, the vehicle is moved to the end of the work process, which is the starting point of the next work process, and then it moves forward and backward again. The next step is to switch to start the traveling and cleaning work in the next work process.

一方、全作業行程が終了している場合には、前記操向用
の受光器(S、)による次の通路における誘導用ビーム
光(A)の受光位置情報に基づいて、次の通路における
最初の作業行程の位置に対応する箇所まで、現在走行し
ている作業行程における設定走行軌跡に沿って後退させ
た後、4輪ステアリング形式に切り換えて、次の通路方
向に移動させることになる。
On the other hand, when all the work processes have been completed, the first position in the next passage is determined based on the light receiving position information of the guiding beam light (A) in the next passage by the steering light receiver (S,). After the vehicle is moved backward along the travel trajectory set in the currently running work stroke to a location corresponding to the position of the work stroke, the vehicle is switched to four-wheel steering mode and moved in the direction of the next passage.

但し、次の通路の始端部側で作業を終了する場合には、
現在走行している作業行程における設定走行軌跡に沿っ
て後退させることなく、作業行程の終端部に達するに伴
って、4輪ステアリング形式に切り換えて、次の通路方
向に移動させることになる。
However, when finishing the work at the starting end of the next passage,
Instead of retreating along the set travel locus for the currently running work stroke, as the end of the work stroke is reached, the vehicle switches to the four-wheel steering mode and moves in the direction of the next passage.

次の通路に移動した後は、その次の通路における各種走
行制御情報を設定して、前記誘導用ビーム光(A)を受
光する前後一対の受光器(S、)。
After moving to the next passage, various travel control information for the next passage is set, and a pair of front and rear light receivers (S,) receive the guiding beam light (A).

〈S2)の受光位置情報に基づいて、作業開始位置に誘
導した後、その通路における清掃作業を開始させること
になる。
After guiding to the work start position based on the light receiving position information in <S2), the cleaning work in that passage is started.

〔別実施例〕[Another example]

上記実施例では、受光手段を構成するに、−個のPSD
素子を用いた受光器(Sa)を、その受光面が車体上下
方向に長くなるように付設した場合を例示したが、複数
個のPSD素子を車体上下方向に直列に並べたり、ある
いは、−個の受光素子を、各作業行程での受光位置範囲
に応じて、上下方向に移動させて使用するようにしても
よく、受光手段の具体構成は各種変更できる。
In the above embodiment, the light receiving means includes - PSDs.
Although the case where the light receiver (Sa) using a PSD element is attached so that its light receiving surface becomes long in the vertical direction of the vehicle body is illustrated, it is also possible to arrange multiple PSD elements in series in the vertical direction of the vehicle body, or The light-receiving element may be used by moving it in the vertical direction depending on the light-receiving position range in each work process, and the specific configuration of the light-receiving means can be changed in various ways.

又、上記実施例では、誘導用ビーム光(A)を車体横側
方から投射して、車体上下方向での受光位置を判別させ
るようにした場合を例示したが、例えば、天井側から誘
導用ビーム光(A)を設定走行軌跡に沿って、車体前後
方向に走査しながら投射し、そして、前記受光器(Sa
)を、その受光面の長さ方向が車体横幅方向に向く状態
で、車体上面に設けて、車体横幅方向での受光位置を判
別させるようにしたり、誘導用ビーム光(A)を、作業
範囲の一端側から上下方向に走査しながら、車体前方側
又は車体後方側から投射して、車体横幅方向での受光位
置を判別させるようにしてもよく、誘導用ビーム光(A
)の走査方向や投射方向の具体的な形態、及び、受光手
段の配置の具体構成は、各種変更できる。
In addition, in the above embodiment, the case where the guidance beam light (A) is projected from the side of the vehicle body and the light receiving position in the vertical direction of the vehicle body is determined, but for example, the guidance beam light (A) is projected from the ceiling side. The beam light (A) is projected while scanning in the longitudinal direction of the vehicle body along a set traveling locus, and is projected onto the light receiver (Sa).
) on the top of the vehicle body with the length direction of its light-receiving surface facing in the width direction of the vehicle body, and the light receiving position in the width direction of the vehicle body can be determined. The guidance beam light (A
) The specific configuration of the scanning direction and projection direction and the specific configuration of the arrangement of the light receiving means can be changed in various ways.

又、上記実施例では、車体進行方向に対して前方側とな
る走行車輪(7) のみを操向するように、いわゆる2
輪ステアリング形式で走行させるように構成した場合を
例示したが、例えば、前記車体横幅方向での位置(χ)
の修正は、前後夫々の走行車輪(7) を同位相で同角
度を操向する平行ステアリング形式で行わせ、前記傾き
(ψ)の修正は、前後夫々の走行車輪(7)を逆位相で
同角度を操向する4輪ステアリング形式で行わせるよう
にしてもよい。又、−個の受光器(Sa)の受光位置情
報に基づいて、車体横幅方向での位置(χ)のみを修正
するように、2輪ステアリング形式で操向制御するよう
にしてもよく、操向制御手段(101)の具体構成は各
種変更できる。
In addition, in the above embodiment, so-called two
Although the case where the vehicle is configured to run with wheel steering is illustrated, for example, the position (χ) in the width direction of the vehicle body
The correction of the inclination (ψ) is performed by steering the front and rear wheels (7) in the same phase and at the same angle using a parallel steering method, and the correction of the inclination (ψ) is performed by steering the front and rear wheels (7) in opposite phases. It may be possible to use a four-wheel steering system that steers at the same angle. Furthermore, the steering may be controlled in a two-wheel steering format so that only the position (χ) in the vehicle width direction is corrected based on the light receiving position information of - number of light receivers (Sa). The specific configuration of the direction control means (101) can be modified in various ways.

又、本発明は、清掃用の作業車以外の各種の作業車にも
同様にして適用できるものであって、各部の具体構成は
各種変更できる。
Furthermore, the present invention can be similarly applied to various types of work vehicles other than cleaning work vehicles, and the specific configuration of each part can be modified in various ways.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るビーム光利用の作業車誘導装置の実
施例を示し、第1図は制御構成を示すブロック図、第2
図は受光位置判別処理のフローチャート、第3図は作業
行程の概略平面図、第4図は誘導用ビーム光と受光器と
の関係を示す正面図、第5図は同平面図、第6図は作業
車の概略斜視図、第7図は操向操作構成を示す要部斜視
図、第8図はビーム光投射装置の切欠側面図、第9図は
同正面図、第10図は制御作動のフローチャートである
。 (A)・・・・・・誘導用ビーム光、(B)・・・・・
・ビーム光投射手段、(V)・・・・・・作業車、(S
a)・・・・・・受光手段、(II)、 ([2)・・
・・・・一対の受光信号、(5)・・・・・・受光強度
判別手段、(100)・・・・・・受光位置判別手段、
(101)・・・・・・操向制御手段。
The drawings show an embodiment of the work vehicle guiding device using beam light according to the present invention, and FIG. 1 is a block diagram showing the control configuration, and FIG. 2 is a block diagram showing the control configuration.
The figure is a flowchart of the light receiving position determination process, Figure 3 is a schematic plan view of the work process, Figure 4 is a front view showing the relationship between the guiding beam light and the light receiver, Figure 5 is the same plan view, and Figure 6 is a schematic perspective view of the working vehicle, FIG. 7 is a perspective view of main parts showing the steering operation configuration, FIG. 8 is a cutaway side view of the beam light projection device, FIG. 9 is a front view of the same, and FIG. 10 is a control operation. This is a flowchart. (A)...Guiding beam light, (B)...
・Beam light projection means, (V)... Work vehicle, (S
a)... Light receiving means, (II), ([2)...
. . . a pair of light reception signals, (5) . . . light reception intensity determination means, (100) . . . light reception position determination means,
(101) Steering control means.

Claims (1)

【特許請求の範囲】[Claims] 地上側に、誘導用ビーム光(A)を走査しながら投射す
るビーム光投射手段(B)が設けられ、作業車側に、前
記誘導用ビーム光(A)の走査方向に交差する方向に沿
う受光面を備えると共に、入射光量に応じた強度で、且
つ、入射光の位置に対応する比となる一対の受光信号(
I_1)、(I_2)を出力する受光手段(Sa)が設
けられ、前記受光手段(Sa)から出力される一対の受
光信号(I_1)、(I_2)に基づいて前記誘導用ビ
ーム光(A)の受光位置を判別する受光位置判別手段(
100)と、前記作業車(V)が設定走行軌跡に沿って
自動走行するように、前記受光位置判別手段(100)
の情報に基づいて操向制御する操向制御手段(101)
とが設けられているビーム光利用の作業車誘導装置であ
って、前記一対の受光信号(I_1)、(I_2)の和
の値が設定値より大であるか否かを判別する信号強度判
別手段(5)が設けられ、前記受光位置判別手段(10
0)は、前記信号強度判別手段(5)の検出情報に基づ
いて、前記一対の受光信号(I_1)、(I_2)の和
の値が前記設定値より大である時の前記一対の受光信号
(I_1)、(I_2)夫々から、前記和の値が設定値
より大でない時の前記一対の受光信号(I_1)、(I
_2)を減算した値に基づいて、前記誘導用ビーム光(
A)の受光位置を判別するように構成されているビーム
光利用の作業車誘導装置。
A beam light projection means (B) that scans and projects the guidance beam light (A) is provided on the ground side, and a beam light projection means (B) that projects the guidance beam light (A) while scanning is provided on the work vehicle side along a direction intersecting the scanning direction of the guidance beam light (A). A pair of light-receiving signals (having a light-receiving surface and having an intensity corresponding to the amount of incident light and a ratio corresponding to the position of the incident light)
A light receiving means (Sa) for outputting signals I_1) and (I_2) is provided, and the guidance beam light (A) is light receiving position determination means (
100), and the light receiving position determining means (100) so that the work vehicle (V) automatically travels along a set travel trajectory.
Steering control means (101) that performs steering control based on the information of
A work vehicle guidance device using beam light is provided with a signal strength determination device for determining whether the sum of the pair of light reception signals (I_1) and (I_2) is greater than a set value. Means (5) is provided, and the light receiving position determining means (10
0) is the pair of light reception signals when the sum value of the pair of light reception signals (I_1) and (I_2) is larger than the set value, based on the detection information of the signal strength determining means (5). From (I_1) and (I_2), the pair of light reception signals (I_1) and (I
Based on the value obtained by subtracting _2), the guiding beam light (
A) A work vehicle guiding device using beam light configured to determine the light receiving position.
JP63128028A 1988-05-25 1988-05-25 Work wagon guiding device utilizing beam light Pending JPH01296317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128028A JPH01296317A (en) 1988-05-25 1988-05-25 Work wagon guiding device utilizing beam light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128028A JPH01296317A (en) 1988-05-25 1988-05-25 Work wagon guiding device utilizing beam light

Publications (1)

Publication Number Publication Date
JPH01296317A true JPH01296317A (en) 1989-11-29

Family

ID=14974711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128028A Pending JPH01296317A (en) 1988-05-25 1988-05-25 Work wagon guiding device utilizing beam light

Country Status (1)

Country Link
JP (1) JPH01296317A (en)

Similar Documents

Publication Publication Date Title
JP3135587B2 (en) Wall cleaning device
US5377106A (en) Process for navigating an unmanned vehicle and a vehicle for the same
US20160170412A1 (en) Autonomous mobile device and method for controlling same
JPH01316808A (en) Steering controller for self-traveling vehicle
JP2019141313A (en) Self-propelled vacuum cleaner
JPH01296317A (en) Work wagon guiding device utilizing beam light
JPH01296316A (en) Work wagon guiding device utilizing beam light
JP2771366B2 (en) Traveling vehicle safety devices
JP2506146B2 (en) Work vehicle guidance system using beam light
JP3079686B2 (en) Mobile work robot
JP2518888B2 (en) Beam light projection device for guiding work vehicles
JP2506158B2 (en) Work vehicle guidance system using beam light
JPH10222225A (en) Unmanned travel body and its travel method
JPH0253113A (en) Work vehicle guiding device using beam light
JP2731054B2 (en) Work vehicle guidance system using beam light
JP2825239B2 (en) Automatic guidance control device for moving objects
JP2506145B2 (en) Work vehicle travel control device
JPH01250110A (en) Position detector for work vehicle guiding device using beam light
KR200293712Y1 (en) Positioning detectors for articulated welding robot
JP2506149B2 (en) Work vehicle guidance system using beam light
JP2602065B2 (en) Travel position control device for self-propelled vehicles
JPH0542002B2 (en)
JP4304588B2 (en) Goods transport vehicle
JPH0721728B2 (en) Work vehicle guidance system using beam light
JPH01298408A (en) Working vehicle guiding device for beam light utilization