JPH01296170A - Frequency characteristic measuring method of transmission path - Google Patents

Frequency characteristic measuring method of transmission path

Info

Publication number
JPH01296170A
JPH01296170A JP63126003A JP12600388A JPH01296170A JP H01296170 A JPH01296170 A JP H01296170A JP 63126003 A JP63126003 A JP 63126003A JP 12600388 A JP12600388 A JP 12600388A JP H01296170 A JPH01296170 A JP H01296170A
Authority
JP
Japan
Prior art keywords
frequency
level
signal
transmission
transmission path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63126003A
Other languages
Japanese (ja)
Inventor
Toshihiro Kubo
歳弘 久保
Teruichi Mizutani
水谷 照一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP63126003A priority Critical patent/JPH01296170A/en
Publication of JPH01296170A publication Critical patent/JPH01296170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To obtain the characteristic of ripples, by AM-detecting a signal detected at a measuring terminal of a transmission path to be measured when a transmission signal is inputted to an input terminal thereby to obtain the maximum level, and adding mathematic operations to the logarithmic difference between the maximum level and a presumptive level. CONSTITUTION:For example, a BS-IF signal is preliminarily inputted in a calibrating transmission path which is different from a transmission path to be measured, and the signal is AM detected in a narrow band by frequencies at a predetermined interval. Thus, the level of the inputted transmission signal is presumed. Then, in measuring terminals 28-32 of the transmission path to be measured, the level of an outputted transmission signal is obtained through the AM detection in a narrow band by frequencies at a predetermined interval. The difference of logarithmic values between the obtained level of the transmission signal and the preliminarily presumed level is subjected to an operation by Fourier conversion etc., so that the frequency and amplitude of ripples in the transmitting frequency and amplitude characteristic in the transmission path to be measured are obtained. Accordingly, the characteristic of ripples of the transmission path can be known without interrupting signals which are being transmitted.

Description

【発明の詳細な説明】 [産業上の利用分Tn] 本発明は伝送路の周波数特性測定方法に係り、例えばB
S−IF伝送路における周波数振幅特性のリップル解析
に好適な測定方法に関する。
[Detailed Description of the Invention] [Industrial Application Tn] The present invention relates to a method for measuring frequency characteristics of a transmission line, for example, B
The present invention relates to a measurement method suitable for ripple analysis of frequency amplitude characteristics in an S-IF transmission line.

[発明の概要] 本発明は、伝送路(例えば、BS−IF帯におけるケー
ブル伝送路)の伝送周波数特性の測定において、被測定
伝送路とは別個の既知の周波数特性の較正用伝送路に伝
送信号(例えばBS−IF信号)を入力して一定間隔の
周波数で狭帯域AM検波することにより被測定伝送路入
力端における伝送信号の各周波数ごとの最大レベルを予
め推定した後、上記入力端に伝送信号を入力したときの
被測定伝送路の測定端子での検出信号を前者と同じ一定
間隔の周波数で狭帯域AM検波して各々の最大レベルを
求め、予め推定した上記レベルとの対数差分についてフ
ーリエ解析等の演算を実行することにより、被測定伝送
路の伝送周波数振幅特性におけるリップル周波数および
リップル振幅を求めるものであご。このように、伝送さ
れる放送波などの信号を使い測定を行うためヘッドエン
ドに掃引信号などの測定信号を挿入する必要がなく、従
って被測定伝送路を遮断することなく被測定伝送路のリ
ップル特性を知ることができる。
[Summary of the Invention] The present invention provides a method for measuring transmission frequency characteristics of a transmission path (for example, a cable transmission path in the BS-IF band) by transmitting data to a calibration transmission path with known frequency characteristics that is separate from the transmission path under test. After inputting a signal (for example, a BS-IF signal) and performing narrowband AM detection at frequencies at regular intervals, the maximum level for each frequency of the transmission signal at the input end of the transmission line under test is estimated in advance. When the transmission signal is input, the detection signal at the measurement terminal of the transmission line under test is subjected to narrowband AM detection at the same fixed interval frequency as the former, and the maximum level of each is determined, and the logarithmic difference from the above level estimated in advance is calculated. This method calculates the ripple frequency and ripple amplitude in the transmission frequency and amplitude characteristics of the transmission line under test by performing calculations such as Fourier analysis. In this way, since measurements are performed using signals such as transmitted broadcast waves, there is no need to insert measurement signals such as sweep signals into the head end, and therefore ripples on the transmission line under test can be eliminated without interrupting the transmission line under test. You can know the characteristics.

[従来の技術] 従来、この種の測定方法では、被測定伝送路のヘッドエ
ンドに信号掃引器等による掃引信号を挿入し、被測定伝
送路の測定端子においてスペクトラムアナライザ等で周
波数振幅特性を観測し、リップルを解析することが主に
行われている。
[Prior art] Conventionally, in this type of measurement method, a sweep signal is inserted by a signal sweeper or the like at the head end of the transmission line under test, and the frequency amplitude characteristics are observed at the measurement terminal of the transmission line under test using a spectrum analyzer or the like. However, it is mainly used to analyze ripples.

特に衛星放送を受信する際には、 BSコンバータの出
力端に接続されたケーブルの接続不良などに起因する周
波数振幅特性の乱れにより受信画像に妨害が与えられ、
その度合を知るためには主に衛星放送の1チャンネル分
の帯域内でのリップル特性に注目する必要がある。
Particularly when receiving satellite broadcasting, disturbances are caused to the received image due to disturbances in frequency and amplitude characteristics caused by poor connection of the cable connected to the output end of the BS converter.
In order to understand the extent of this, it is necessary to mainly pay attention to the ripple characteristics within the band for one channel of satellite broadcasting.

[発明が解決しようとする課題] ところが、従来の測定方法では、掃引信号の周波数およ
び周波数偏穆を可変にすることにより、任意の周波数・
帯域幅で周波数振幅特性を観測できるが、放送波を中断
して掃引信号を挿入する必要が生じ、特に共同受信の場
合は、測定中は伝送路の全端末において放送の受信が不
可能となる。
[Problems to be Solved by the Invention] However, in the conventional measurement method, by making the frequency and frequency bias of the sweep signal variable, it is possible to measure any frequency or frequency.
Although the frequency amplitude characteristics can be observed using the bandwidth, it is necessary to interrupt the broadcast wave and insert a sweep signal, and especially in the case of joint reception, it is impossible to receive the broadcast at all terminals on the transmission path during the measurement. .

このような欠点は、衛星放送と共同の伝送路によるll
HF放送やその他の伝送信号受信時についても同様に生
じる。
These drawbacks are due to satellite broadcasting and joint transmission channels.
The same problem occurs when receiving HF broadcasting or other transmission signals.

よって本発明の目的は上述の点に鑑み、伝送信号の伝送
路を遮断することなく周波数振幅特性を測定し得る方法
を提供することにある。
Therefore, in view of the above-mentioned points, an object of the present invention is to provide a method capable of measuring frequency amplitude characteristics without interrupting the transmission path of a transmission signal.

[課題を解決するための手段] かかる目的を達成するために、本発明では画像信号でF
M変調された高周波信号等の伝送信号の伝送路における
周波数振幅特性を測定するにあたり、既知の周波数特性
を有する較正用伝送路に前記伝送信号を一定期間にわた
って入力し、該伝送信号ぞ一定間隔の周波数毎に狭帯域
AM検波して前記一定期間における各々の最大供試レベ
ルを求め、前記既知の周波数特性に基づいて前記各々の
最大供試レベルを補正することにより、被測定伝送路に
入力される伝送信号の各周波数毎における最大レベルを
推定し、当該レベルの対数値を比較用データとして記憶
した後、前記伝送信号を前記一定期間と同等の期間にわ
たって前記被測定伝送路に入力し、前記一定間隔の周波
数ごとに狭帯域AM検波を行って各々の最大測定レベル
を求め、前記比較用データと前記各々の最大測定レベル
の対数値との差を求め、フーリエ変換処理を施すことに
より、前記被測定伝送路の周波数振幅特性におけるリッ
プル周波数およびリップル振幅を測定するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention uses F
To measure the frequency amplitude characteristics of a transmission signal such as an M-modulated high-frequency signal on a transmission path, the transmission signal is input for a certain period of time to a calibration transmission path having known frequency characteristics, and the transmission signal is measured at regular intervals. Narrowband AM detection is performed for each frequency to determine each maximum test level during the certain period, and by correcting each maximum test level based on the known frequency characteristics, After estimating the maximum level for each frequency of the transmission signal and storing the logarithm value of the level as comparison data, inputting the transmission signal to the transmission line under test for a period equivalent to the certain period, Narrowband AM detection is performed for each frequency at regular intervals to determine each maximum measurement level, the difference between the comparison data and the logarithm value of each maximum measurement level is determined, and Fourier transform processing is performed. This method measures the ripple frequency and ripple amplitude in the frequency and amplitude characteristics of the transmission line under test.

[作 用] 本発明は、画像信号でFM変調された高周波信号等の伝
送信号の伝送路(例えば、BS−IF帯における伝送路
)の伝送周波数特性の測定において、被測定伝送路であ
る前記伝送路とは別個の較正用伝送路に前記伝送信号(
例えばBS−IF傷信号を入力して一定間隔の周波数で
狭帯域AM検波することにより入力伝送信号の各レベル
を予め推定した後、被測定伝送路の測定端子での出力伝
送信号を前記一定間隔の周波数で狭帯域AM検波して各
レベルを求め、予め推定した上記レベルとの対数値の差
分についてフーリエ変換等の演算を実行することにより
、被測定伝送路の伝送周波数振幅特性におけるリップル
周波数およびリップル振幅を求めることができるので、
掃引信号の代わりに伝送信号(例えば、BS−IF傷信
号を利用することによってそのチャンネル帯域内のりッ
プル特性を知ることができる。これによって伝送中の信
号(例えば放送波)を中断することなく、その周波数振
幅特性測定を行うことができる。
[Function] The present invention is applicable to the measurement of the transmission frequency characteristics of a transmission line (for example, a transmission line in the BS-IF band) of a transmission signal such as a high frequency signal that is FM modulated with an image signal. The transmission signal (
For example, after estimating each level of the input transmission signal in advance by inputting a BS-IF flaw signal and performing narrowband AM detection at frequencies at regular intervals, the output transmission signal at the measurement terminal of the transmission path under test is detected at the regular intervals. By performing narrowband AM detection at a frequency of Since the ripple amplitude can be found,
By using a transmission signal (for example, a BS-IF signal) instead of a sweep signal, it is possible to know the ripple characteristics within the channel band. Frequency amplitude characteristic measurements can be performed.

なお、本発明による測定法が有効な対象としては、前述
の比較用データに相当するものとして適正なものが得ら
れる場合、変調方式はFMに限らない。また、伝送帯域
内周波数振幅特性を問題とする伝送°信号であるかぎり
、変調信号を画像信号に限る必要はなく、同様の伝送路
であるかぎり有線系に限る必要はない。
Note that the modulation method is not limited to FM as long as the measurement method according to the present invention is effective for obtaining suitable data corresponding to the above-mentioned comparison data. Furthermore, as long as the transmission signal is concerned with frequency amplitude characteristics within the transmission band, the modulation signal does not need to be limited to an image signal, and as long as the transmission path is similar, it does not need to be limited to a wired system.

[実施例] 以下、85−IF傷信号共同受信時のケーブル伝送路に
おける実施例に基づいて本発明の詳細な説明する。
[Example] Hereinafter, the present invention will be described in detail based on an example of a cable transmission path during joint reception of 85-IF flaw signals.

第1図は、被測定伝送路の周波数振幅特性の測定に先立
って行うべき手順を示す結線図である。
FIG. 1 is a wiring diagram showing the procedure to be performed prior to measuring the frequency amplitude characteristics of the transmission line under test.

本図において、2は衛星放送電波を受信するための85
アンテナ、4はBS−IF傷信号変換するためのBSコ
ンバータ、6は同軸ケーブル、8は4のBSコンバータ
に直流15Vを供給するための電源部、lOは狭帯域A
M検波器、12は対数変換器である。本図を用いた測定
手順については、第3図および第4図を参照して後に詳
述する。
In this figure, 2 is an 85 for receiving satellite broadcasting radio waves.
Antenna, 4 is a BS converter for converting BS-IF flaw signals, 6 is a coaxial cable, 8 is a power supply unit for supplying DC 15V to the BS converter in 4, IO is a narrow band A
M detector, 12 is a logarithmic converter. The measurement procedure using this diagram will be described in detail later with reference to FIGS. 3 and 4.

第2図は、上記BSコンバータ4に接続された共同受信
システムの系統図を示す。本図において、20はBSブ
ースタ(OSコンバータ用のDC電源を含む)、22お
よび24は混合器、26は分配器、28〜34は直列ユ
ニットの各端子、Rは終端抵抗を示す。
FIG. 2 shows a system diagram of a community reception system connected to the BS converter 4. In this figure, 20 is a BS booster (including a DC power supply for the OS converter), 22 and 24 are mixers, 26 is a distributor, 28 to 34 are terminals of the series unit, and R is a terminating resistor.

本図に示すように、本実施例における被測定伝送路は、
BSコンバータ4の出力端から直列ユニットのいずれか
の端子に至る経路である。
As shown in this figure, the transmission line under test in this example is
This is a path from the output end of the BS converter 4 to any terminal of the series unit.

第3図は、第1図および第2図の各部において得られる
信号波形を示す。
FIG. 3 shows signal waveforms obtained at each part of FIGS. 1 and 2.

まずBSコンバータ4の出力信号を同軸ケーブル6に入
力した場合には(第1図参照)、その同軸ケーブル6を
介して第3図(a)に示す信号がB端子に得られる。ま
た、第3図(b)は同軸ケーブル6を含む2端子A、8
間の周波数振幅特性を示し、例えばA端子に掃引発振器
の出力を入力しB端子にてそのレベルを検出することに
より得られる。
First, when the output signal of the BS converter 4 is input to the coaxial cable 6 (see FIG. 1), the signal shown in FIG. 3(a) is obtained at the B terminal via the coaxial cable 6. In addition, FIG. 3(b) shows two terminals A and 8 including the coaxial cable 6.
It can be obtained, for example, by inputting the output of a sweep oscillator to the A terminal and detecting its level at the B terminal.

第3図(C)に示す波形は、OSコンバータ4の出力端
をBSブースタ20に接続しなおしたとき(第2図参照
)、直列ユニットの各端子28〜32のいずれかから得
られる信号波形である。
The waveform shown in FIG. 3(C) is the signal waveform obtained from any of the terminals 28 to 32 of the series unit when the output end of the OS converter 4 is reconnected to the BS booster 20 (see FIG. 2). It is.

第4図は測定手順を示すものであるが、実際の測定を”
行う前には、比較用データを生成し、メモリ等に記憶す
る予備作業(ステップSO)が必要となる。そして、周
波数振幅特性の解析時には、後に詳述するように、被測
定伝送路に伝送される放送波から得られたデータ(対数
値)と比較用データ(対数値)との差分を求め、一連の
数値解析を実行することにより、リップル特性を求め結
果を出力する。
Figure 4 shows the measurement procedure.
Before performing this, preliminary work (step SO) is required to generate comparison data and store it in a memory or the like. When analyzing the frequency amplitude characteristics, as will be explained in detail later, the difference between the data (logarithmic value) obtained from the broadcast wave transmitted to the transmission line under test and the comparison data (logarithmic value) is determined, and a series of By performing numerical analysis, the ripple characteristics are determined and the results are output.

ここで、測定の対象とする周波数範囲は、1チャンネル
分27MHzの内、CN比のよい25MI(z程度の帯
域幅である。標本数nは、後述する数値解析上の(リッ
プルの)高域成分の分解能に影響するが、帯域幅を25
MHzとした場合n−30以上とすれば、妨害を与える
リップルの解析には実用となる。
Here, the frequency range to be measured is a bandwidth of 25 MI (about z) with a good CN ratio out of 27 MHz for one channel. Although it affects the resolution of the components, the bandwidth can be increased by 25%.
If it is n-30 or more in MHz, it will be practical for analysis of ripples that cause interference.

実際の測定に先立って次のような予備作業が必要である
Prior to actual measurement, the following preliminary work is required.

まず、第1図に示した結線を行い、B端子で放送波を狭
帯域(300kHz =IMI(z程度)3M検波し、
一定時間(例えば、5〜6秒)経過内の最大値の対数値
×、+  (+−0〜n−1)を記憶する。測定対象と
なる25MHzの帯域内の標本数により標本間の一定周
波数間隔が決まるが、この一定周波数間隔の標本点にお
ける周波数f I(i−0〜n−1)が検波する周波数
である(第3図(a)参照)。
First, make the connections shown in Figure 1, and detect the broadcast wave in a narrow band (300kHz = IMI (approximately z)) 3M at the B terminal.
The logarithm value x, + (+-0 to n-1) of the maximum value within a certain period of time (for example, 5 to 6 seconds) is stored. A constant frequency interval between samples is determined by the number of samples within the 25 MHz band to be measured, and the frequency f I (i-0 to n-1) at the sampling points of this constant frequency interval is the frequency to be detected (the (See Figure 3(a)).

また、A−B端子間の周波数振幅特性を先に述べたよう
に測定し、fI(i−0〜ロー1)における電圧対数値
×、″(i−0〜n−1)を測定する。標本点の周波数
flとXI’ r XI″の関係を示したのが第3図(
a)。
Further, the frequency amplitude characteristic between the AB terminals is measured as described above, and the voltage logarithm x,'' (i-0 to n-1) at fI (i-0 to low 1) is measured. Figure 3 (
a).

(b)である。(b).

次に、flに対するX−41−x、’  x1″を求め
、比較用データとしてメモリ等に格納する。これまでの
操作が第4図に示す予備作業(ステップS。)である。
Next, X-41-x, 'x1'' for fl is obtained and stored in a memory or the like as data for comparison.The operations so far are the preliminary work (step S) shown in FIG.

ここで、r は同じ手順で測定すれば測定時点にかかわ
らず一定値になることが経験上わかっているので、この
予備作業は!チャンざ°ルにつき1回行っておけばよい
Here, we know from experience that if r is measured using the same procedure, it will be a constant value regardless of the measurement time, so this preliminary work is! You only need to do this once per channel.

次に、実際の測定の手順について説明する。第2図に示
した被測定伝送路での特性を測定するに際し、測定端子
28〜32において第3図(c)のような放送波が得ら
れるとすると、f、(i−0〜n−1)の周波数で狭帯
域(300kHx〜IMHz程度) AM検波し、一定
時間(例えば、5〜6秒)経過内の最大値の対数値xl
”’ (i−0〜n−1)を測定する。ここでx1″′
は、I  と同様に同じ手順で測定すれば測定時点には
無関係である。
Next, the actual measurement procedure will be explained. When measuring the characteristics of the transmission line under test shown in FIG. 2, assuming that broadcast waves as shown in FIG. 3(c) are obtained at the measurement terminals 28 to 32, f, (i-0 to n- 1) Narrow band (approximately 300 kHz to IMHz) AM detection is performed at the frequency of 1), and the logarithm xl of the maximum value within a certain period of time (e.g., 5 to 6 seconds) is detected.
"' (i-0~n-1). Here, x1"'
is unrelated to the time of measurement if it is measured using the same procedure as I .

次いで、flにおける 、 (<) 、x 、IHの差
分であるxl ” Xl”’ −xl (41を求める
(ステップs+) 、 コノm敗データx 、 M周波
数振幅特性のリップル解析用データとなる。
Next, xl ``Xl''' - xl (41), which is the difference between , (<), x, and IH in fl, is obtained (step s+), and the Kono m loss data x becomes data for ripple analysis of the M frequency amplitude characteristic.

以後、公知の数値解析手法により、まず列数データXi
から低域成分(直流分)を除去しくステップS2)、次
に適当な窓関数を乗じ(ステップS3)、離散的フーリ
エ変換(FFTもしくはD FT)を実行する(ステッ
プS4)、この結果を基に、各リップル周波数における
リップル振幅を計算する(ステップSs)。その計算結
果については、デイスプレィ表示などの適当な方法によ
り出力する(ステップSs)。
Thereafter, using a well-known numerical analysis method, first the column number data Xi
(Step S2) to remove the low frequency component (DC component) from Next, the ripple amplitude at each ripple frequency is calculated (step Ss). The calculation results are output by an appropriate method such as display (step Ss).

なお、AM検波には専用の回路を用いることも可能であ
るが、スペクトラムアナライザ等を検波器とすることも
できる。さらに、検波器にマイクロコンピュータを接続
して自動測定を行うことも可能である。
Although it is possible to use a dedicated circuit for AM detection, a spectrum analyzer or the like can also be used as a detector. Furthermore, it is also possible to perform automatic measurements by connecting a microcomputer to the wave detector.

[発明の効果] 集合住宅など共同受信での衛星放送受信者が現在増加し
てきており、共同受信用の有線伝送路における周波数特
性のリップルが原因で受信画質劣化が見受けられる設備
が少なくない。従って、近い将来受信者がさらに増加し
た状況では、放送波を中断せずに特性を測定できること
が望まれるが、従来の測定方法では放送波を中断せざる
を得なかった。
[Effects of the Invention] The number of satellite broadcast receivers using communal reception, such as apartment complexes, is currently increasing, and there are many facilities where deterioration in received image quality is observed due to ripples in frequency characteristics in wired transmission lines for communal reception. Therefore, in a situation where the number of receivers will further increase in the near future, it will be desirable to be able to measure characteristics without interrupting the broadcast wave, but with conventional measurement methods, the broadcast wave has no choice but to be interrupted.

これに対して本発明では、測定用の信号に放送波そのも
のを用いているため、測定端子以外の端末での放送波を
中断することなく測定を行うことができる。
In contrast, in the present invention, since the broadcast wave itself is used as the measurement signal, measurement can be performed without interrupting the broadcast wave at terminals other than the measurement terminal.

なお、前記リップルの現れる主な原因はケーブルとコネ
クタ、分配器その他の機器との接合部で生じる゛インピ
ーダンス不整合であり、リップル特性を明らかにするこ
とにより、前記不整合個所を推定できるので、本発明は
実用的な受信改善対策として極めて有効である。
The main cause of the ripple is the impedance mismatch that occurs at the joints between cables, connectors, distributors, and other equipment, and by clarifying the ripple characteristics, the location of the mismatch can be estimated. The present invention is extremely effective as a practical measure for improving reception.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較用データを生成するためのブロックダイア
ダラム、 第2図は被測定伝送路の一例を示す図、第3図は第1図
および第2図の各測定点において得られるデータと周波
数の関係を示す図、第4図は本発明に従った処理手順の
一例を示す図である。 2・・・BSアンテナ、 4・・・BSコンバータ、 6・・・同軸ケーブル、 8・・・電源部、 10・・・狭帯域AM検波器、 12・・・対数変換器、 20・・・BSブースタ、 22.24・・・混合器、 26・・・分配器、 28〜34・・・直列ユニットの各端子、R・・・終端
抵抗。
Figure 1 shows a block diagram for generating comparison data, Figure 2 shows an example of a transmission line under test, and Figure 3 shows data obtained at each measurement point in Figures 1 and 2. FIG. 4, which is a diagram showing the relationship between frequencies, is a diagram showing an example of the processing procedure according to the present invention. 2... BS antenna, 4... BS converter, 6... Coaxial cable, 8... Power supply section, 10... Narrowband AM detector, 12... Logarithmic converter, 20... BS booster, 22.24...Mixer, 26...Distributor, 28-34...Each terminal of series unit, R...Terminal resistor.

Claims (1)

【特許請求の範囲】 1)高周波伝送信号の伝送路における周波数振幅特性を
測定するにあたり、 既知の周波数特性を有する較正用伝送路に前記伝送信号
を一定期間にわたって入力し、該伝送信号を一定間隔の
周波数毎に狭帯域AM検波して前記一定期間における各
々の最大供試レベルを求め、前記既知の周波数特性に基
づいて前記各々の最大供試レベルを補正することにより
、前記較正用伝送路に入力された前記伝送信号の各周波
数毎における最大レベルを求め、当該レベルの対数値を
比較用データとして記憶し、 前記伝送信号を前記一定期間と同等の期間にわたって被
測定伝送路に入力し、前記較正用伝送路における場合と
同様に狭帯域AM検波を行って各周波数毎の最大測定レ
ベルを求め、 前記比較用データと前記各々の最大測定レベルの対数値
との差を求め、 数値計算処理を施すことにより、前記伝送路の周波数振
幅特性におけるリップル周波数およびリップル振幅を測
定することを特徴とする測定方法。
[Claims] 1) In measuring the frequency amplitude characteristics of a high-frequency transmission signal on a transmission path, the transmission signal is input over a certain period of time to a calibration transmission path having known frequency characteristics, and the transmission signal is transmitted at certain intervals. Narrowband AM detection is performed for each frequency of , to determine each maximum test level during the certain period, and by correcting each maximum test level based on the known frequency characteristics, the calibration transmission line is Find the maximum level for each frequency of the input transmission signal, store the logarithmic value of the level as comparison data, input the transmission signal to the transmission line under test for a period equivalent to the certain period, and As in the case of the calibration transmission line, perform narrowband AM detection to find the maximum measurement level for each frequency, find the difference between the comparison data and the logarithm value of each maximum measurement level, and perform numerical calculation processing. A measuring method characterized in that the ripple frequency and ripple amplitude in the frequency amplitude characteristic of the transmission path are measured by performing the following steps.
JP63126003A 1988-05-25 1988-05-25 Frequency characteristic measuring method of transmission path Pending JPH01296170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63126003A JPH01296170A (en) 1988-05-25 1988-05-25 Frequency characteristic measuring method of transmission path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63126003A JPH01296170A (en) 1988-05-25 1988-05-25 Frequency characteristic measuring method of transmission path

Publications (1)

Publication Number Publication Date
JPH01296170A true JPH01296170A (en) 1989-11-29

Family

ID=14924322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63126003A Pending JPH01296170A (en) 1988-05-25 1988-05-25 Frequency characteristic measuring method of transmission path

Country Status (1)

Country Link
JP (1) JPH01296170A (en)

Similar Documents

Publication Publication Date Title
US6344749B1 (en) Test system for measuring frequency response and dynamic range on cable plant
US4630228A (en) Transmission line analyzer for automatically identifying the severities and locations of multiple mismatches
US6636048B2 (en) Method for diagnosing performance problems in cabling
US11387920B2 (en) Methods and apparatuses for measuring the distance to a passive intermodulation source
KR20060085947A (en) Insulation degradation diagnosis apparatus
EP0216941B1 (en) Apparatus for analysing two-channel transmission/reflection characteristics
JP6254720B2 (en) Method and measuring device for intermodulation measurement
CN110581741B (en) Standing wave abnormal position detection method, equipment and medium
US6525545B2 (en) Frequency domain reflection measurement device
US6396287B1 (en) Process for measuring output harmonic relative to output fundamental with enhanced accuracy
KR101610066B1 (en) apparatus and method for detecting defection of cable
JPH01296170A (en) Frequency characteristic measuring method of transmission path
US7822579B2 (en) Interference rejection through circle fitting
CA1194547A (en) Electronic instrument for measuring the overall phase and amplitude distortion of a transmission channel
JPH0470573A (en) Method for measuring partial discharge
CN114217148B (en) Pulse modulation wave phase noise calibration device and method based on PRF spectral line
JP2000235059A (en) Partial discharge measuring method
JPS63155990A (en) Method for measuring intermediate frequency disturbance
JPS6238696A (en) Buzz simulator for television radio wave detector
JPH067149B2 (en) Partial discharge measurement method
SU1089525A1 (en) Device for locating electric power line damage
Whitaker Testing Coaxial Transmission Line
Dunford Conducted EMI Measurements
JPS60236074A (en) Optical-electric conversion tuning type partial discharge measuring device
Hoover et al. Conversion Gain Measurement of an LMDS Transmitter