JPH01296027A - Heating device for air conditioner - Google Patents

Heating device for air conditioner

Info

Publication number
JPH01296027A
JPH01296027A JP63127315A JP12731588A JPH01296027A JP H01296027 A JPH01296027 A JP H01296027A JP 63127315 A JP63127315 A JP 63127315A JP 12731588 A JP12731588 A JP 12731588A JP H01296027 A JPH01296027 A JP H01296027A
Authority
JP
Japan
Prior art keywords
heat
temperature
air
heating element
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63127315A
Other languages
Japanese (ja)
Inventor
Kenzo Takahashi
健造 高橋
Itsuo Nishiyama
逸雄 西山
Fujio Hitomi
人見 不二夫
Takeyasu Ogawa
小川 剛保
Yukikuni Okawachi
大川内 幸訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63127315A priority Critical patent/JPH01296027A/en
Publication of JPH01296027A publication Critical patent/JPH01296027A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform proper and reliable control of energization during abnormal generation of heat through the self-temperature control function of a heat generating body and to improve safety and reliability, by a method wherein an organic PTC surface heat generating substance having a positive resistance temperature factor is used as an auxiliary heating source. CONSTITUTION:A substance in which a surface heat generating substance 10 is laminated in a plateform or a spiral state is located as a heating device 11 is juxtaposition on the upper side of the upper side of a heat exchanger 6. Similarly, the surface heat generating substance 10 is laminated as a heating device 12 in a state to be wound around a fan casing 4 of a blower 5. This constitution enables auxiliary heating of air, discharged from an air conditioner, in a proper given state by means of an organic PTC surface heat generating substance 10 incorporated as an auxiliary heating source, and actions so as to reduce production of a fluctuation in an ambient temperature through the self-temperature control function thereof. Even when, during abnormal generation of heat, e.g. failure in operation of the blower 5, a safety device, e.g. a temperature fuse, is not motioned, resistance is increased by a heat peak phenomenon, heat generation is substantially stopped, and safety of and reliability on an air condition are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気調和機筐体の内部風路中に組込まれること
で空気を補助加熱する空気調和機用加熱装置に関し、特
に正の抵抗温度係数(PositiveTempera
fura Coefficient)を有する有機PT
C面発熱体を、補助加熱源として用いることで空気調和
機での安全性や信頼性を改善してなる空気調和機用加熱
装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heating device for an air conditioner that is incorporated into the internal air passage of an air conditioner housing to supplementally heat the air, and in particular, relates to a heating device for an air conditioner that is incorporated into the internal air passage of an air conditioner housing to supplementally heat the air. Coefficient (Positive Tempera
Organic PT with fura Coefficient)
The present invention relates to a heating device for an air conditioner that improves the safety and reliability of the air conditioner by using a C-plane heating element as an auxiliary heating source.

〔従来の技術〕[Conventional technology]

従来この種の空気調和機用加熱装置としては、たとえば
第9図(a)に示すような図示しないニクロム線等の発
熱線をシース内部に封入してなるシーズヒータや、同図
(b)に示すように複数の電気ヒータ素線を立設させて
設けてなる電気ヒータ(実公昭81−12507号公報
等参照)などが知られている。このような補助加熱用ヒ
ータを用いてなる空気調和機の概略構成を、第1θ図お
よび第it図を用いて簡単に説明すると、全体を符号1
で示す空気調和機筐体において、この筐体lの下側には
吸込口を形成するエアフィルタ2が設けられ、かつこの
フィルタ2上側には、モータ3、ファン4aおよびファ
ンケーシング4からなる送PIt機5が配設されている
。さらに、この送風機5ヒ方の全体l内空間には、吸込
空気の風路を遮るようにして熱交換器6が傾斜して配設
され、かつこの熱交換5l16の下端部には冷、暖房時
にこの熱交換器6から生じたドレンを処理するドレンパ
ン6aが配設されている。7は熱交換器6の上側面に並
設して設けられた前述したシーズヒータまたは電気ヒー
タ等(第9図(a)、(b)参照)からなる補助加熱装
置で、その−ヒ側で筐体1上部には吹出口8が形成され
ている。なお、図中1aは前パネル、1bは背面パネル
、lc、lcはこれ蔦両パネルla、lbと共に空気通
路(風路)9を形成する側部パネルである。
Conventional heating devices for air conditioners of this type include, for example, a sheathed heater in which a heating wire such as a nichrome wire (not shown) is sealed inside a sheath as shown in FIG. 9(a), and a sheathed heater as shown in FIG. 9(b). As shown, an electric heater (see Japanese Utility Model Publication No. 81-12507, etc.) is known, in which a plurality of electric heater wires are arranged upright. The general structure of an air conditioner using such an auxiliary heater will be briefly explained using Fig. 1θ and Fig. IT.
In the air conditioner housing shown in , an air filter 2 forming a suction port is provided on the lower side of the housing l, and an air filter 2 consisting of a motor 3, a fan 4a, and a fan casing 4 is provided on the upper side of the filter 2. A PIt machine 5 is installed. Furthermore, a heat exchanger 6 is disposed at an angle in the entire space inside the blower 5 so as to block the air path of the intake air, and the lower end of the heat exchanger 5l16 is provided with a cooling and heating device. A drain pan 6a is provided to treat drain generated from the heat exchanger 6 at times. Reference numeral 7 denotes an auxiliary heating device including the aforementioned sheathed heater or electric heater (see FIGS. 9(a) and 9(b)), which is installed in parallel on the upper side of the heat exchanger 6. An air outlet 8 is formed in the upper part of the housing 1 . In the figure, 1a is a front panel, 1b is a back panel, and lc and lc are side panels that form an air passage (air path) 9 together with the two vine panels la and lb.

従来の補助加熱装置17を組込んでなる空気調和機は上
述したような構成とされており、空気は送風機5により
フィルタ2から送風機5、熱交換器6、補助加熱装置7
さらに吹出口8を通過して筐体1外部に吹出される。こ
のとき、循環空気は熱交換器6により冷やされたり暖め
られたりするが、暖房運転時に室内または外気温度が低
くて熱交換s6により暖められた空気の温度が低い場合
に前記補助加熱装置17を作動させて暖房を行なうこと
ができるような構成とされていた。
An air conditioner incorporating the conventional auxiliary heating device 17 has the above-mentioned configuration, and the air is transferred from the filter 2 to the blower 5, the heat exchanger 6, and the auxiliary heating device 7.
Further, the air passes through the air outlet 8 and is blown out to the outside of the housing 1 . At this time, the circulating air is cooled or warmed by the heat exchanger 6, but when the indoor or outdoor air temperature is low during heating operation and the temperature of the air warmed by the heat exchanger s6 is low, the auxiliary heating device 17 is activated. It was designed so that it could be activated to provide heating.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述したようなシーズヒータまたは電気ヒー
タ等による従来の補助加熱装W17を組込んでなる空気
調和機において、吹出口8が樹脂成形品等といった耐熱
温度の低い部品である場合に、送風機5の故障やフィル
タ2へのごみ等の付着により風績が減少したりすると、
補助加熱装置7の表面温度が高くなるため周囲温度が高
温となり、これにより耐熱温度の低い吹出口8等が変形
したり、また最悪の場合には発火、発煙等を招く虞れも
あるという安全面からの問題をもつもので、このような
問題点を一掃し得る対策が必要とされている。
By the way, in an air conditioner incorporating the conventional auxiliary heating device W17 such as a sheathed heater or an electric heater as described above, when the blower outlet 8 is a component with a low heat resistance temperature such as a resin molded product, the blower 5 If the wind speed decreases due to failure of the filter 2 or dirt, etc. adhering to the filter 2,
As the surface temperature of the auxiliary heating device 7 increases, the ambient temperature becomes high, which may deform the air outlet 8, which has a low heat-resistant temperature, and in the worst case, there is a risk of ignition, smoke, etc. There is a need for countermeasures that can eliminate these problems.

このような補助加熱装M7の過加熱を防止するために、
従来から温度ヒユーズ等による温度制御用の安全回路等
を、ヒータへの通電回路の一部に付設することが従来か
ら一般に行なわれているが、装置全体が複雑化するとと
もにその組込みスペース等の面から空気調和機全体が大
型化する等といった問題もあり、さらにこのような安全
回路等が作動しない場合の対策も、空気調和機の安全性
や信頼性を確保するうえでは必要とされるもので、この
ような点を考慮しなければならない。
In order to prevent such overheating of the auxiliary heating device M7,
Conventionally, it has been common practice to attach a safety circuit for temperature control using a temperature fuse or the like to a part of the energizing circuit to the heater, but this increases the complexity of the entire device and requires space for its installation. There are also problems such as the overall size of the air conditioner due to the increase in the size of the air conditioner.Furthermore, countermeasures in the event that such safety circuits do not operate are necessary to ensure the safety and reliability of the air conditioner. , these points must be taken into consideration.

本発明はこのような事情に鑑みてなされたもので、正の
抵抗温度係数を有する有機PTC材等によって形成され
自己温度制御機能を発揮させ得る有機発熱体を用いるこ
とで、常時は100℃を越える高温とならず、送風機の
故障等による異常時においてたとえその周囲に設置した
安全装置が動作しない場合にあっても、該発熱体自身が
ヒートピーク現象を起こして実質的に通電を停止させる
ように作用し、空気調和機の安全性や信頼性等を向ヒさ
せ得る空IAI!4和機用加熱装置を得ることを目的と
している。
The present invention was made in view of these circumstances, and uses an organic heating element made of an organic PTC material or the like having a positive temperature coefficient of resistance and capable of exhibiting a self-temperature control function. Even if the safety devices installed around the heating element do not operate in the event of an abnormality such as a failure of the blower, the heating element itself will cause a heat peak phenomenon and virtually stop the electricity supply. Air IAI can improve the safety and reliability of air conditioners! The purpose is to obtain a heating device for a 4-way machine.

〔i!IIMを解決するための手段〕[i! Means to solve IIM]

本発明に係る空気調和機用加熱装置は、正の抵抗温度係
数をもつ有機PTC面発熱体を、空気調和機の補助加熱
源として用い、該発熱体のもつ自己温度制御機能により
異常発熱時などにおける通電制御を適切かつ確実に行な
えるように構成したものである。
The heating device for an air conditioner according to the present invention uses an organic PTC surface heating element with a positive temperature coefficient of resistance as an auxiliary heating source for the air conditioner, and uses the self-temperature control function of the heating element to prevent abnormal heat generation. The structure is such that energization control can be performed appropriately and reliably.

〔作用〕[Effect]

本発明によれば、補助加熱源として組込まれた有機PT
C面発熱体等により、空気調和機内で吹出し空気を適宜
補助加熱し得るとともに、この発熱体自身の自己温度制
御機能により周囲温度の変動を低減するように作用し、
送風機故障等といった異常時にたとえ温度ヒユーズ等の
安全装置が動作しない場合にあっても、この発熱体自身
がヒートピーク現象により高抵抗化し発熱を停止する機
能を発揮させ得るため、空気調和機における安全性や信
頼性等を向上させ得るものである。
According to the invention, organic PT incorporated as an auxiliary heating source
The C-plane heating element etc. can appropriately auxiliary heat the blown air in the air conditioner, and the heating element's own temperature control function acts to reduce fluctuations in ambient temperature.
Even if safety devices such as temperature fuses do not operate in the event of an abnormality such as a blower malfunction, the heating element itself can become highly resistant due to the heat peak phenomenon and perform the function of stopping heat generation, which improves safety in air conditioners. This can improve performance, reliability, etc.

〔実施例〕〔Example〕

以下、本発明を図面に示した実施例を用いて詳細に説明
する。
Hereinafter, the present invention will be explained in detail using embodiments shown in the drawings.

第1図ないし第8図は本発明に係る空気調和機用加熱v
cWの実施例を示すものであり、これらの図において前
述した第10図等と同一または相当する部分には同一番
号を付してその説明は省略する。
Figures 1 to 8 show heating v for air conditioners according to the present invention.
cW, and in these figures, the same or corresponding parts as in FIG.

さて、本発明によれば、前述したような空気調和機にお
いてその空気の補助加熱源として、正の抵抗温度係数を
もつ有機PTC材により形成された面発熱体lOを用い
、該発熱体10自身のもつ自己温度制御機能により、送
風機5の故障等といった異常発熱時における通電制御を
適切かつ確実に行なえるように構成したところに特徴を
有している。ここで、第1図では、第2図や第3図に例
示したように、面発熱体10をプレート状またはスパイ
ラル状に間層して形成したものを、加熱装置11として
熱交換器6):側面の−E側に並設した場合と、同様の
面発熱体lOを、加熱装置12として送風機5のファン
ケーシング4に巻付けた状態で貼り合わせた場合を併記
している。
Now, according to the present invention, a surface heating element 1O formed of an organic PTC material having a positive temperature coefficient of resistance is used as an auxiliary heating source for the air in the air conditioner as described above, and the heating element 10 itself is It is characterized by its self-temperature control function, which allows it to appropriately and reliably control energization in the event of abnormal heat generation such as a failure of the blower 5. Here, in FIG. 1, as illustrated in FIGS. 2 and 3, a heat exchanger 6) formed by layering surface heating elements 10 in a plate shape or a spiral shape is used as a heating device 11. : A case in which they are arranged side by side on the −E side of the side surface, and a case in which a similar surface heating element IO is bonded to the fan casing 4 of the blower 5 as the heating device 12 in a state where it is wound around it are both shown.

このような構成によれば、補助加熱源として組込まれた
有4ilPTC面発熱体10により、空気調和機から吹
出される空気を適宜新雪の状態で補助加熱し得るととも
に、この面発熱体10自身の自己温度制御機能で周囲温
度の変動を低減するように作用し、送風機5の故障等と
いった異常発熱時にたとえ温度ヒユーズ等の安全装置(
図示せず)が動作しない場合にあっても、この発熱体l
O自身がヒートピーク現象により高抵抗化し発熱を実質
的に停止トする機能を発揮させ得るという利点をもち、
空気調和機における安全性や信頼性等を向上させ得るも
のである。すなわち、後述するようなカーボンブラック
を高分子に分散した有機発熱体10は1発熱温度が10
0℃以下と低い上に正の抵抗温度係数を有しているため
に自己温度制御機能を有している。そして、入力電力が
過大となった場合にはヒートピーク現象が生じ、不可逆
的に高抵抗化するという自己温度ヒユーズ機能をも併せ
持ち、安全性、信頼性に優れている。したがって、この
ような発熱体10を空気調和機に採用することで、電気
回路としての安全装置(温度ヒユーズ等)が万一作動し
ない場合にあっても。
According to such a configuration, the PTC surface heating element 10 incorporated as an auxiliary heating source can appropriately auxiliary heat the air blown out from the air conditioner in the state of fresh snow, and the surface heating element 10 itself can The self-temperature control function works to reduce fluctuations in ambient temperature, and in the event of abnormal heat generation such as a failure of the blower 5, safety devices such as a temperature fuse (
(not shown) does not operate, this heating element l
O itself has the advantage of increasing resistance due to the heat peak phenomenon and exhibiting the function of virtually stopping heat generation.
This can improve the safety and reliability of air conditioners. That is, an organic heating element 10 in which carbon black is dispersed in a polymer as described below has an exothermic temperature of 10
It has a self-temperature control function because it has a low temperature of 0°C or less and a positive temperature coefficient of resistance. It also has a self-temperature fuse function in which a heat peak phenomenon occurs when the input power becomes excessive, irreversibly increasing the resistance, making it excellent in safety and reliability. Therefore, by employing such a heating element 10 in an air conditioner, even if a safety device as an electric circuit (temperature fuse, etc.) does not operate.

発熱体自身が自己温度制御機能を発揮し、オーバーロー
ド時には自己温度ヒユーズ機能で発熱源としての機能を
停止するため、きわめて安全な熱源として用いることが
可能となるものである。
The heating element itself exhibits a self-temperature control function, and in the event of an overload, the self-temperature fuse function stops the heating element from functioning as a heat source, making it possible to use it as an extremely safe heat source.

これを詳述すると、正の抵抗温度係数を有する有機PT
C面発熱体lOは、第6図に示すように発熱体の発熱温
度(表面温度)が上昇すると該発熱体の比電気抵抗も上
昇するという性質を有し。
To elaborate on this, organic PT with a positive temperature coefficient of resistance
As shown in FIG. 6, the C-plane heating element IO has a property that as the heat generation temperature (surface temperature) of the heating element increases, the specific electrical resistance of the heating element also increases.

その比電気抵抗(ρ)は次式で表わされる。Its specific electrical resistance (ρ) is expressed by the following formula.

ρ= /) O(t+ ezpK (T−Tc ) )
ここで、Tは発熱温度、Tcは転移温度(第6図では5
0℃)、Kは抵抗温度係数、ρGはTc以下の発熱温度
において比電気抵抗が漸近する一定値(第6図で〜10
2Ωcm)を表わす。
ρ= /) O(t+ezpK (T-Tc))
Here, T is the exothermic temperature, and Tc is the transition temperature (5 in Figure 6).
0°C), K is the temperature coefficient of resistance, and ρG is a constant value at which the specific electrical resistance asymptotes at the heating temperature below Tc (~10°C in Figure 6).
2Ωcm).

この第6図において特性曲線■〜■の抵抗温度係数は、
それぞれ0.4.0.8 、0.8 、1.0および1
.2 1/”Oであり、抵抗温度係数が大きいほど。
In this Figure 6, the resistance temperature coefficients of characteristic curves ■ to ■ are as follows:
0.4, 0.8, 0.8, 1.0 and 1 respectively
.. 2 1/”O, and the larger the temperature coefficient of resistance.

PTC特性に優れていることにな・る。This means that it has excellent PTC characteristics.

また、このような有@PTC面発熱体lOの通電発熱特
性を、第7図に示している。すなわち、周囲温度を一2
0℃から40℃の範囲で変化させながら、発熱体の発熱
温度を測定した結果を表わし、特性的i!1(I)およ
び(II)は抵抗温度係数がそれぞれ1.0および0.
4の場合を表わし、特性曲線(III)は抵抗温度係数
が0、つまりPTC特性を持たない発熱体の場合を表わ
す、この第7図から明らかなようにPTC特性に優れる
発熱体10自身度の変動に対する発熱温度の変化が少な
く、自己温度制御機能を有すると言える。一方、有機P
TC面発熱体lOは過大な電力を供給すると。
Further, the current heating characteristics of such @PTC surface heating element IO are shown in FIG. In other words, if the ambient temperature is -2
It represents the results of measuring the heat generation temperature of the heating element while varying it in the range of 0°C to 40°C, and the characteristic i! 1(I) and (II) have resistance temperature coefficients of 1.0 and 0.0, respectively.
4, and the characteristic curve (III) represents the case where the temperature coefficient of resistance is 0, that is, the heating element does not have PTC characteristics.As is clear from this FIG. It can be said that it has a self-temperature control function, with little change in heat generation temperature due to fluctuations. On the other hand, organic P
If the TC surface heating element lO supplies too much power.

発熱と放熱あるいは熱拡散のバランスが崩れて電極間の
中央付近に高温の部分を生じる。高温の部分はPTC特
性により高抵抗化するために、他の部分よりジュール熱
(ilR)の発生量が多く、さらに高温になるという正
帰還が働き、ついには部分的にマトリックスが溶融する
というヒートピーク現象を発生する。第8図に軟化温度
110度のポリエチレンをマトリックスとし、カーボン
ブラックを導電性フィラーとして電極間距離を3゜5、
?および10cmとした有機PTC面発熱体lOを恒温
槽に入れて通電した時のヒートピークが発生する直前の
最大入力電力を測定した結果を示す、同図中A、B、C
およびDは、電極間距離3.5.7および10c■に対
応している特性を示す、そして、この特性図から明らか
なように、最大入力電力は周囲温度が高くなるほど減少
し、マトリックスの軟化温度〜110度付近で〜0とな
ることが確認された。したがって、この最大入力電力は
電極間距離が小さいほど放熱し易くなるため大きくなり
、たとえば電極間距離3C■の発熱体を20℃の績温槽
に入れて通電すると、約5KW/m!の入力電力の時に
ヒートピーク現象を起こし、発熱体自身が高抵抗化する
ため電流は約1/20に激減する結果となった。そして
、このヒートピーク現象が自己温度ヒユーズの機能を果
たし、安全性を確保するという非常に大きなメリットと
なる。すなわち、軟化温度が〜110℃のベースポリマ
ーを用いた有機PTC面発熱体lOを空気調和機の補助
加熱源等に用いた場合、何らかの原因で発熱体の発熱温
度が上昇した時に通常は空気調和機に取付けられた温度
ヒユーズ等の安全装置が作動するが、万一この温度ヒユ
ーズ等の安全装置が作動しない場合には、この発熱体1
0自身がヒートピーク現象を起こして高抵抗化し1発熱
を停市するというきわめて安全な発熱体として動作する
結果となる。
The balance between heat generation and heat radiation or heat diffusion is disrupted, creating a high temperature area near the center between the electrodes. Because high-temperature parts have high resistance due to PTC characteristics, more Joule heat (ilR) is generated than other parts, and a positive feedback effect occurs in which the temperature becomes even higher, eventually causing heat to partially melt the matrix. A peak phenomenon occurs. Figure 8 shows a matrix of polyethylene with a softening temperature of 110 degrees, carbon black as a conductive filler, and a distance between electrodes of 3 degrees.
? A, B, and C in the same figure show the results of measuring the maximum input power just before the heat peak occurs when an organic PTC surface heating element IO of 10 cm in length is placed in a thermostatic chamber and energized.
and D show characteristics corresponding to inter-electrode distances of 3.5.7 and 10c. As is clear from this characteristic diagram, the maximum input power decreases as the ambient temperature increases, and the softening of the matrix It was confirmed that the value becomes 0 when the temperature is around 110 degrees. Therefore, this maximum input power increases as the distance between the electrodes becomes smaller, as it becomes easier to dissipate heat. For example, when a heating element with a distance between the electrodes of 3C is placed in a thermostat at 20°C and energized, it is approximately 5KW/m! A heat peak phenomenon occurred at an input power of This heat peak phenomenon functions as a self-temperature fuse, which is a huge advantage in ensuring safety. In other words, when an organic PTC surface heating element IO using a base polymer with a softening temperature of ~110°C is used as an auxiliary heating source for an air conditioner, if the heat generation temperature of the heating element rises for some reason, the air conditioner will normally be turned off. Safety devices such as a temperature fuse installed on the machine operate, but in the event that the temperature fuse and other safety devices do not operate, this heating element 1
0 itself causes a heat peak phenomenon, becomes high in resistance, and stops generating 1 heat, resulting in it operating as an extremely safe heating element.

特に、このようなヒートピーク現象は、発熱体10のP
TC特性に起因するものであり、その正の抵抗温度係数
が高いほど起こり易くなる。この正の抵抗温度係数は導
電性フィラーであるカーボン量とマトリックスであるベ
ースポリマーにより決まる特性値であるが、少なくとも
0.81/”C以上のものであれば充分に機能するもの
である。したがって、有機PTC面発熱体lOとしては
軟化温度が100〜160℃の熱可塑性高分子が好適に
用いられ、たとえばポリエチレンやポリプロピレン等の
ポリオレフィンが好適である。また、導電性フィラーと
しては、カーボンのほかにもカーボンや金属の微細な繊
謔も用いられるが、高い抵抗温度係数を確保するにはカ
ーボンブラックが好適である。また、自己温度制御機能
をコントロールするために低融点の有機化合物が第三成
分として添加されるが、これには低分子量のポリエチレ
ンワックス等のポリオレフィンワックスが好適に用いら
れる。
In particular, such a heat peak phenomenon occurs when the P of the heating element 10
This is caused by the TC characteristics, and the higher the positive temperature coefficient of resistance, the more likely it is to occur. This positive temperature coefficient of resistance is a characteristic value determined by the amount of carbon, which is the conductive filler, and the base polymer, which is the matrix, but it functions satisfactorily as long as it is at least 0.81/''C or higher. As the organic PTC surface heating element 1O, a thermoplastic polymer having a softening temperature of 100 to 160°C is preferably used, for example, polyolefin such as polyethylene or polypropylene is suitable.In addition, as the conductive filler, in addition to carbon, Fine fibers of carbon or metal are also used for this purpose, but carbon black is preferred to ensure a high temperature coefficient of resistance.In addition, organic compounds with a low melting point are used as a tertiary material to control the self-temperature control function. Although it is added as a component, a polyolefin wax such as a low molecular weight polyethylene wax is suitably used.

そして、このような結果に基づき、たとえばベースポリ
マーにカーボンを20〜30重量%混合した組成物を、
バンバリーミキサ−等で均一に混練した後、Tダイより
押出し成形してシート状の面発熱体を製造するとよい、
また、必要に応じて低分子量ポリエチレンを20〜30
重破%添加するとよい、このようにして製造された面発
熱体のPTC特性は組成および混線、押出し成形条件に
依存するが、正の抵抗温度係数が0.8 17”C以上
のものは容易に製造し得るものである。
Based on these results, for example, a composition in which 20 to 30% by weight of carbon is mixed with a base polymer,
After uniformly kneading with a Banbury mixer etc., it is preferable to extrude from a T-die to produce a sheet-like surface heating element.
In addition, if necessary, add 20 to 30% of low molecular weight polyethylene.
The PTC characteristics of the surface heating element manufactured in this way depend on the composition, crosstalk, and extrusion molding conditions, but it is easy to add one with a positive temperature coefficient of resistance of 0.8 17"C or more. It can be manufactured in

また、このように製造された面発熱体lOに対し幅が5
11の電解銅箔13を電極として、第5図(a)、(b
)に示すように熱溶着して固定するとよい、ここで、電
極間距離は、@8図から明らかなように小さい方が最大
入力電力を大きく取ることができるが、コストは高くな
る0本実施例では5c■のものを製作した。さらに、電
気絶縁性を与えるために、前記電極材きの面発熱体を膜
厚12IL虐のポリプロピレンフィルムで挟み込み。
In addition, the width of the surface heating element IO manufactured in this way is 5
5 (a) and (b) using the electrolytic copper foil 13 of No. 11 as an electrode.
) As shown in Figure 8, the smaller the distance between the electrodes, the greater the maximum input power can be obtained, but the cost will be higher. In this example, a 5c model was manufactured. Furthermore, in order to provide electrical insulation, the heating element on the surface of the electrode material was sandwiched between polypropylene films with a thickness of 12 mils.

その端部をヒートシールして帯状のヒータを製作すると
よい、このようなヒータ構造を、第2図あるいは第3図
に示すように、波板状のセパレータと共に、プレート状
あるいはスパイラル状に積層して空気調和機mJWi熱
装置として用いるとよいものである。なお、これらの図
において符号14は加熱装置11を構成するヒータで、
また15は空気の通路を確保するための波板状のセパレ
ータを表わすが、第2図ではこのセパレータ15を省略
した場合を示している。
It is best to heat-seal the ends to produce a band-shaped heater.Such a heater structure is laminated in a plate or spiral shape with a corrugated separator, as shown in Figure 2 or Figure 3. It is good to use it as an air conditioner mJWi heat device. In addition, in these figures, the reference numeral 14 is a heater constituting the heating device 11.
Further, numeral 15 represents a corrugated separator for ensuring an air passage, but FIG. 2 shows a case where this separator 15 is omitted.

また、このような有機PTC面発熱体10は、前述した
ように発熱体内部に温度分布を生じるとPTC特性に起
因するヒートピーク現象を生じるが1発熱体10に熱伝
導率の高いアルミ箔等を貼り合わせることで温度分布の
発生をある程度抑えることが可能である。その結果、必
要以上にヒートピークの発生を抑制でき、ヒータの寿命
を延ばすことが可能となる。
In addition, such an organic PTC surface heating element 10 causes a heat peak phenomenon due to the PTC characteristics when a temperature distribution occurs inside the heating element as described above. By bonding these together, it is possible to suppress the occurrence of temperature distribution to some extent. As a result, the occurrence of heat peaks can be suppressed more than necessary, and the life of the heater can be extended.

さらに、上述した有機PTC面発熱体10によれば、こ
れを第1図や第4図に示すように、送風115でアルシ
ロッコファンのファンケーシング4に貼り合わせて使用
することもできる。そして。
Further, according to the above-described organic PTC surface heating element 10, it can also be used by bonding it to the fan casing 4 of an Arshirocco fan using an air blower 115, as shown in FIGS. 1 and 4. and.

このような構成とすると、金属製のファンケーシング4
が均熱板としての機能を持つために発熱体の寿命が延び
るとともに、発熱体が空気流の中に置かれるため、放熱
の効率が高い、また、補助加熱装置としての発熱体のた
めの専用のスペースも不要であり、コンパクトな加熱源
として簡便に用いられるという利点がある。
With such a configuration, the metal fan casing 4
Since the heating element functions as a heat equalizing plate, the life of the heating element is extended, and the heating element is placed in the airflow, so the efficiency of heat dissipation is high. It has the advantage that it does not require space and can be easily used as a compact heating source.

なお、本発明は上述した実施例構造に限定されず、空気
調和機を始めとして加熱装置各部の形状、構造等を、適
宜変形、変更することは自由で、種々の変形例が考えら
れよう。
Note that the present invention is not limited to the structure of the above-described embodiments, and the shape, structure, etc. of each part of the heating device, including the air conditioner, may be modified and changed as appropriate, and various modifications may be considered.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る空気調和機用加熱装置
によれば、正の抵抗温度係数をもつ有機PTC面発熱体
を、空気調和機の補助加熱源として用い、該発熱体のも
つ自己温度制御機能により異常発熱時における通電制御
を適切かつ確実に行なえるように構成したので、簡単か
つ安価な構成にもかかわらず、補助加熱源として組込ま
れた面発熱体で所要の補助加熱源としての機能を確保す
る一方、この発熱体自身の自己温度1tJI御機能によ
り周囲温度の変動を低減するように作用し、送風機故障
等といった異常発熱時にたとえ温度ヒユーズ等の安全装
置が動作しない場合にあっても、この発熱体自身がヒー
トピーク現象により高抵抗化し発熱を1!質的に停止す
る機能を発揮させ得るため、空気調和機における安全性
や信頼性等を従来に比べて大幅に向上させ得る等といっ
た種々優れた効果がある。
As explained above, according to the heating device for an air conditioner according to the present invention, an organic PTC surface heating element having a positive temperature coefficient of resistance is used as an auxiliary heating source for the air conditioner, and the self-temperature of the heating element is The control function is configured to appropriately and reliably control energization in the event of abnormal heat generation, so despite the simple and inexpensive configuration, the surface heating element built in as an auxiliary heating source can be used as the required auxiliary heating source. While ensuring the function, the self-temperature 1tJI control function of this heating element itself acts to reduce fluctuations in ambient temperature, even if safety devices such as temperature fuses do not operate in the event of abnormal heat generation such as a blower failure. However, this heating element itself has a high resistance due to the heat peak phenomenon and generates heat! Since the function of stopping the air conditioner can be exhibited qualitatively, there are various excellent effects such as the ability to significantly improve the safety and reliability of the air conditioner compared to conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る空気調和機用加熱1Jtllの一
実施例を示す空気調和機の概略構成図、第2図ないし第
4図は木発[JJに係る有機発熱体による加熱装置を例
示する概略図、第5図(a)、(b)はその発熱体構成
を説明するための図、第6図ないし第8図はPTC特性
、自己温度制御機能および通電発熱特性をそれぞれ示す
特性図、flS9図(a)。 (b)は従来の空気調和機用として用いていた補助加熱
装置の二個を示す概略図、第1O図および第11図は従
来の補助加熱!eitを採用してなる空気調和機の概略
構成を示す要部側断面図および前パネルを取外した正面
図である。 l・・・・空気調和機筐体、2・・・・エアフィルタ、
4・・・・ファンケーシング、5・・・・送風機、6・
・・・熱交換器、8・・・・吹出口、9・・・・空気通
路(風路)、lO・・・・有機発熱体(有機PTC面発
熱体)、11.12・・・・加熱装置。
Fig. 1 is a schematic configuration diagram of an air conditioner showing an embodiment of heating 1Jtll for an air conditioner according to the present invention, and Figs. Figures 5(a) and 5(b) are diagrams for explaining the configuration of the heating element, and Figures 6 to 8 are characteristic diagrams showing the PTC characteristics, self-temperature control function, and current heating characteristics, respectively. , flS9 figure (a). (b) is a schematic diagram showing two auxiliary heating devices used for conventional air conditioners, and Figures 1O and 11 are conventional auxiliary heating devices! FIG. 2 is a side cross-sectional view of main parts and a front view with the front panel removed, showing a schematic configuration of an air conditioner employing the EIT. l...Air conditioner housing, 2...Air filter,
4...Fan casing, 5...Blower, 6...
... Heat exchanger, 8... Air outlet, 9... Air passage (air path), lO... Organic heating element (organic PTC surface heating element), 11.12... heating device.

Claims (1)

【特許請求の範囲】[Claims] 空気調和機筐体内の風路中に配設されて空気を補助加熱
する空気調和機用加熱装置において、正の抵抗温度係数
を有する有機発熱体を、前記風路中での空気補助加熱源
として設け、この発熱体の自己温度制御機能により送風
機の故障等による異常運転時に、該発熱体自身のヒート
ピーク現象で実質的に通電を停止させるように構成した
ことを特徴とする空気調和機用加熱装置。
In a heating device for an air conditioner that is disposed in an air path in an air conditioner housing to auxiliary heat the air, an organic heating element having a positive temperature coefficient of resistance is used as an air auxiliary heating source in the air path. Heating for an air conditioner, characterized in that the self-temperature control function of the heating element is configured to substantially stop energization due to the heat peak phenomenon of the heating element itself during abnormal operation due to failure of the blower, etc. Device.
JP63127315A 1988-05-25 1988-05-25 Heating device for air conditioner Pending JPH01296027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127315A JPH01296027A (en) 1988-05-25 1988-05-25 Heating device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127315A JPH01296027A (en) 1988-05-25 1988-05-25 Heating device for air conditioner

Publications (1)

Publication Number Publication Date
JPH01296027A true JPH01296027A (en) 1989-11-29

Family

ID=14956898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127315A Pending JPH01296027A (en) 1988-05-25 1988-05-25 Heating device for air conditioner

Country Status (1)

Country Link
JP (1) JPH01296027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164472A (en) * 1990-01-18 1992-11-17 The Dow Chemical Company Hydroxy-functional polyethers as thermoplastic barrier resins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164472A (en) * 1990-01-18 1992-11-17 The Dow Chemical Company Hydroxy-functional polyethers as thermoplastic barrier resins

Similar Documents

Publication Publication Date Title
EP0417097B1 (en) Heating element and method for making such a heating element
US5471034A (en) Heater apparatus and process for heating a fluid stream with PTC heating elements electrically connected in series
US3143640A (en) Sheet-type heater and overheat protection device
JP4119159B2 (en) Temperature protection element
JPH01296027A (en) Heating device for air conditioner
WO2012114739A1 (en) Planar heating element
JP2743570B2 (en) Blower volume control resistor
JPH09163592A (en) Switching member with protective function and control circuit unit employing it
KR101902787B1 (en) NTC device assembly and self-regulating heating apparatus having the same
CN216048064U (en) Electric heating device, equipment and air conditioner
JP2526610B2 (en) Heating device
US7609142B2 (en) Thermistor
JP3368615B2 (en) Heating equipment
JPS5926562Y2 (en) Device for current control
JPH0417368Y2 (en)
JPS6242460Y2 (en)
CN113328175A (en) Battery heating system
JPH01151189A (en) Heating device
JPH04121558A (en) Electronic refrigeration arrangement
JPH0329911Y2 (en)
JPS6337735Y2 (en)
JPH01151187A (en) Temperature self-control type face heater device
JPS5914665Y2 (en) Blower control device
JP3024372B2 (en) Hot air generator
JPS6350814Y2 (en)