JPH0129520B2 - - Google Patents
Info
- Publication number
- JPH0129520B2 JPH0129520B2 JP768485A JP768485A JPH0129520B2 JP H0129520 B2 JPH0129520 B2 JP H0129520B2 JP 768485 A JP768485 A JP 768485A JP 768485 A JP768485 A JP 768485A JP H0129520 B2 JPH0129520 B2 JP H0129520B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- lpg
- diesel
- light oil
- dissolved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 81
- 239000003915 liquefied petroleum gas Substances 0.000 claims description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 38
- 239000003921 oil Substances 0.000 description 38
- 238000002485 combustion reaction Methods 0.000 description 33
- 239000002283 diesel fuel Substances 0.000 description 23
- 239000007789 gas Substances 0.000 description 23
- 239000000779 smoke Substances 0.000 description 17
- 238000002474 experimental method Methods 0.000 description 14
- 239000002828 fuel tank Substances 0.000 description 12
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000009835 boiling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000012899 standard injection Substances 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Description
【発明の詳細な説明】
本発明は、デイーゼルエンジンの始動時、高負
荷時、急加速時などで、排気ガス中に黒煙が多量
に発生する事を無くすための燃料に関し、排ガス
中の黒煙の発生を殆んど無くしたうえ、燃焼効
率・エンジン出力を高め、しかも実施装置の構造
を簡単にして、安価に安全に簡単に実施できるよ
うにする事を目的とするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel for eliminating the generation of large amounts of black smoke in exhaust gas when starting a diesel engine, under high load, during rapid acceleration, etc. The purpose is to almost eliminate the generation of smoke, increase combustion efficiency and engine output, and simplify the structure of the implementation device so that it can be implemented safely and easily at low cost.
大型自動車(バス・トラツク・作業用車輌等)
はエンジンの高出力化・燃料経済性の要請からデ
イーゼルエンジンを装備し、その燃料として専ら
軽油が使用されている。又、一般乗用車のデイー
ゼル車も現に生産されているが、原油価格の高騰
と原油不足で今後一層デイーゼル化が促進される
ものと考えられる。現に各自動車メーカーは競つ
てデイーゼル車の開発を急速に推進している。 Large vehicles (buses, trucks, work vehicles, etc.)
The model is equipped with a diesel engine in order to achieve high engine output and fuel economy, and uses light oil exclusively as its fuel. In addition, although diesel cars for general passenger cars are currently being produced, it is thought that the soaring price of crude oil and the shortage of crude oil will further promote the use of diesel cars in the future. In fact, automobile manufacturers are competing to rapidly promote the development of diesel vehicles.
上記、軽油を燃料とするデイーゼル車における
問題点として、排ガス中の黒煙発生の問題があ
る。デイーゼルエンジンの燃焼は空気過剰・高温
高圧下での燃焼であるため、熱効率を高く、その
排ガス中にCO・HCなどは殆んど含有せず比較的
クリーンな排ガスであるが、始動時及び登坂時や
急速加速時の燃料高負荷時には、黒煙発生量が多
く、その規制が実施されているにも拘らず、デイ
ーゼル車の排ガスの黒煙公害は現在の自動車排気
ガス公害の最大の課題である。 One of the problems with diesel cars that use light oil as fuel is the generation of black smoke in the exhaust gas. Diesel engine combustion is carried out under excess air, high temperature, and high pressure, so the thermal efficiency is high, and the exhaust gas is relatively clean as it contains almost no CO or HC. The amount of black smoke generated is large when the fuel load is high, such as when driving or accelerating rapidly.Despite the regulations being implemented, black smoke pollution from the exhaust gas of diesel vehicles is currently the biggest problem in automobile exhaust gas pollution. be.
上記、デイーゼル車の排ガスの黒煙発生を解決
する為、液化石油ガス(以下、LPGという)を
副燃料として吸気に混入する方法(以下副燃料吸
入方式という)により黒煙排出量を低減し得ると
いうことは、公知技術である。 In order to solve the above-mentioned black smoke generation from exhaust gas of diesel cars, the amount of black smoke emissions can be reduced by mixing liquefied petroleum gas (hereinafter referred to as LPG) into the intake air as an auxiliary fuel (hereinafter referred to as auxiliary fuel intake method). That is, it is a known technique.
上記、副燃料吸入方式の場合、100%LPGを副
燃料系統から独立して供給するので、独立の
LPG供給系統が余分に必要となる。 In the case of the above-mentioned auxiliary fuel intake system, 100% LPG is supplied independently from the auxiliary fuel system.
An extra LPG supply system will be required.
このため、耐圧力10Kg/cm2以上の独立のLPG
圧力タンク及びLPG気化器及び制御装置等を装
備する必要があるので、エンジンへの燃料供給系
および運転操作が複雑化して安全性・信頼性が低
下し、同時に実施化の費用が高価になり、しかも
既存デイーゼルエンジンに適用しようとすれば大
幅な改造を要するだけでなく、エンジンの燃料供
給系の構造・配置上相当の困難を伴なうので、実
質上は既存のデイーゼル車に甚だ適用しにくいと
いう諸欠点がある。 For this reason, an independent LPG with a pressure resistance of 10 kg/cm 2 or more
Because it is necessary to equip a pressure tank, LPG vaporizer, control device, etc., the fuel supply system and operation of the engine become complicated, reducing safety and reliability, and at the same time, the cost of implementation becomes high. Moreover, if you try to apply it to existing diesel engines, not only will it require significant modification, but it will also involve considerable difficulties in the structure and layout of the engine's fuel supply system, making it extremely difficult to apply it to existing diesel vehicles. There are various drawbacks.
本発明は上記の諸欠点を解決する為のものであ
り、既存のデイーゼルエンジンの燃料供給系統を
殆んどそつくり使用しながらも、LPG溶解軽油
燃料で上記副燃料吸入方式と同等以上の諸効果を
発揮し得るものである。 The present invention is intended to solve the above-mentioned drawbacks, and while using the fuel supply system of the existing diesel engine with almost no modifications, it uses LPG-dissolved light oil fuel to achieve the same or higher performance than the above-mentioned auxiliary fuel intake system. It can be effective.
次に、本発明の実施例及び実験結果について、
詳しく説明する。 Next, regarding the examples and experimental results of the present invention,
explain in detail.
LPG溶解軽油燃料は、気密圧力容器内で軽油
にLPGを添加して、その蒸気圧下でLPGを軽油
に溶解させる方法で製造される。 LPG-dissolved diesel fuel is produced by adding LPG to diesel oil in an airtight pressure vessel and dissolving the LPG in the diesel oil under its vapor pressure.
LPGが軽油に溶解するという性質は公知であ
るが、LPG溶解軽油燃料の実用化に際し、その
LPG溶解特性及びその燃料の安定性等に関して
実験を行つた結果、LPG溶解軽油燃料は均質に
して安定した液体燃料であり、その粘度・揮発
性・セタン価等に関し良好な結果が得られ、デイ
ーゼルエンジンの燃料として優れたものであるこ
とが確認された。第1図にLPG溶解軽油燃料の
LPG溶解重量比率とLPG蒸気圧の関係の実験デ
ータを示す。実験時の温度は容器外壁温度で19〜
20℃であつた。上記温度条件の場合、例えば10%
LPG溶解燃料の蒸気圧は2.3Kg/cm2Gである。上
記実験データから判るように、LPG溶解軽油燃
料は低圧圧力容器に貯蔵できるので、実用化の面
で有利である。 It is well known that LPG dissolves in diesel fuel, but when putting LPG-dissolved diesel fuel into practical use,
As a result of experiments conducted on LPG dissolution characteristics and the stability of its fuel, it was found that LPG-dissolved diesel fuel is a homogeneous and stable liquid fuel, and good results were obtained regarding its viscosity, volatility, cetane number, etc. It was confirmed that it is an excellent fuel for engines. Figure 1 shows the amount of LPG-dissolved light oil fuel.
Experimental data on the relationship between LPG melt weight ratio and LPG vapor pressure are shown. The temperature during the experiment was the outer wall temperature of the container, which was 19~
It was 20℃. For the above temperature conditions, for example, 10%
The vapor pressure of LPG melted fuel is 2.3Kg/cm 2 G. As can be seen from the above experimental data, LPG-dissolved gas oil fuel can be stored in a low-pressure pressure vessel, which is advantageous in terms of practical application.
第2図はデイーゼルエンジンの燃料供給装置の
概略構成の一例を示し、デイーゼルエンジンの燃
焼室1に燃料タンク2を燃料供給路9・燃料ろ過
器3・燃料噴射ポンプ4及び燃料噴射器5を介し
て連通連結し、燃料タンク2を密閉圧力タンクで
構成して、LPGを軽油に溶解させた燃料を収容
可能にし、この密閉圧力燃料タンク2の入口管7
に燃料補給用の弁6を取付け、燃料補給用の弁6
の入口側に燃料補給用の気密継手8を設け、燃料
補給タンク(図示省略)の燃料補給管の先端の気
密継手を、密閉圧力燃料タンク2の燃料補給用の
気密継手8に接続し、かつ燃料補給用の弁6を開
いた状態で、燃料補給タンク内の燃料を燃料補給
タンクから密閉圧力燃料タンク2に、燃料補給用
の気密継手8及び弁6を通じて注入可能に構成
し、密閉圧力燃料タンク2内に収容したLPG溶
解軽油燃料を液状に保ちながら、圧力燃料タンク
2から燃料供給路9に導出し、現用の燃料フイー
ドポンプによる昇圧を必要とせず直接に燃料ろ過
器3でろ過し、燃料噴射ポンプ4により、燃料噴
射器5から液状で燃焼室1に噴射可能に構成す
る。 FIG. 2 shows an example of a schematic configuration of a fuel supply system for a diesel engine, in which a fuel tank 2 is connected to a combustion chamber 1 of a diesel engine via a fuel supply path 9, a fuel filter 3, a fuel injection pump 4, and a fuel injector 5. The fuel tank 2 is configured as a sealed pressure tank and can contain fuel made by dissolving LPG in light oil, and the inlet pipe 7 of the sealed pressure fuel tank 2 is
Attach the refueling valve 6 to the refueling valve 6.
An airtight joint 8 for refueling is provided on the inlet side of the tank, and the airtight joint at the tip of the refueling pipe of the refueling tank (not shown) is connected to the airtight joint 8 for refueling of the closed pressure fuel tank 2, and With the refueling valve 6 open, the fuel in the refueling tank is configured to be injectable from the refueling tank into the closed pressure fuel tank 2 through the airtight joint 8 for refueling and the valve 6. While keeping the LPG-dissolved light oil fuel stored in the tank 2 in a liquid state, it is led out from the pressure fuel tank 2 to the fuel supply path 9, and is directly filtered by the fuel filter 3 without the need for pressure increase by the currently used fuel feed pump, and the fuel is The injection pump 4 is configured so that the fuel can be injected into the combustion chamber 1 in liquid form from the fuel injector 5.
燃料噴射器5の潤滑用燃料分は流路10から圧
力燃料タンク2へ戻るように形成する。 The lubricating fuel portion of the fuel injector 5 is formed so as to return to the pressure fuel tank 2 through a flow path 10.
圧力燃料タンク2と供給路9との連結部分には
取出弁12を設ける。圧力燃料タンク2には液面
計14・圧力計15・安全弁16及びドレン抜き
コツク13を設ける。 A take-out valve 12 is provided at the connection between the pressure fuel tank 2 and the supply path 9. The pressure fuel tank 2 is provided with a liquid level gauge 14, a pressure gauge 15, a safety valve 16, and a drain pot 13.
尚、上記の燃料供給装置の変形例として、軽油
燃料タンク及び100%LPG燃料タンクを設け、軽
油とLPGを所定の比率で溶解させ、そのLPG溶
解軽油燃料を燃料供給路へ導出し、燃料ろ過器・
燃料噴射ポンプ・燃料噴射器を経て、燃焼室へ供
給するように構成することができる。 In addition, as a modification of the above fuel supply device, a diesel fuel tank and a 100% LPG fuel tank are provided, diesel oil and LPG are dissolved in a predetermined ratio, and the LPG-dissolved diesel fuel is led out to the fuel supply path, and the fuel filtration is carried out. vessel·
The fuel can be configured to be supplied to the combustion chamber via a fuel injection pump/fuel injector.
次に、上記LPG溶解軽油燃料の燃焼室内での
燃焼特性について詳しく説明する。 Next, the combustion characteristics of the LPG-dissolved gas oil fuel in the combustion chamber will be explained in detail.
LPG溶解軽油燃料が燃料噴射器から燃焼室内
に噴射された場合、このLPG溶解軽油燃料は軽
油に比べて低粘性なので分散性が良く、しかも
LPGは低沸点(−44〜−40℃)で軽油(沸点240
〜350℃)に比べて揮発性が極めて高いので、瞬
時に可燃ガス化して急速度に拡散すると同時に、
その拡散で軽油の分散霧化を促進する。他方、燃
焼室内温度はLPGの着火温度(燃焼室内の高圧
条件下における)よりも十分高温であり、且つ、
LPGの可燃濃度は空気中大気圧下でも2.3%と極
めて低くてよいので、LPGガスは噴射直後に瞬
時に着火して、このLPG燃焼による発熱が霧化
した軽油の油粒のガス化を急速に促進する。しか
も、軽油中に均一に溶解しているLPGは可燃ガ
ス化する瞬間にLPGと軽油の分子間引力の作用
で軽油油粒の表面張力の均衡を乱してこれを分裂
させて、一層の微粒化を促進するので、油粒の表
面積も増加し、軽油油粒の可燃ガス化が一層促進
される。このため軽油可燃ガスは燃焼用空気と急
速に混合し、早期に着火する。 When LPG-dissolved diesel fuel is injected into the combustion chamber from a fuel injector, this LPG-dissolved diesel fuel has a lower viscosity than diesel oil, so it has better dispersibility.
LPG has a low boiling point (-44 to -40℃) and is a light oil (boiling point 240℃).
Because it has extremely high volatility compared to temperatures (up to 350℃), it instantly turns into a flammable gas and quickly diffuses.
Its diffusion promotes the dispersion and atomization of light oil. On the other hand, the temperature in the combustion chamber is sufficiently higher than the ignition temperature of LPG (under high pressure conditions in the combustion chamber), and
The flammable concentration of LPG is extremely low at 2.3% even in air under atmospheric pressure, so LPG gas ignites instantly immediately after injection, and the heat generated by LPG combustion rapidly gasifies the atomized light oil droplets. to promote. Moreover, at the moment when LPG, which is uniformly dissolved in light oil, turns into combustible gas, the intermolecular attraction between LPG and light oil disturbs the balance of surface tension of the light oil particles, causing them to break up and become even finer particles. Since the surface area of the oil particles increases, the conversion of light oil particles to combustible gas is further promoted. For this reason, the light oil combustible gas rapidly mixes with the combustion air and ignites early.
上記の可燃ガス化の促進による急速拡散によ
り、燃焼率が向上し、実質エンジン出力が向上す
る。しかも、軽油が早期着火する即ち着火遅れが
短縮するため着火までに噴射される燃料の量が少
なくなるので、着火時の燃焼室内の異常圧力上昇
(デイーゼルノツク)を防止できる。 Rapid diffusion due to the promotion of combustible gasification improves the combustion rate and improves the actual engine output. Furthermore, since the light oil ignites early, that is, the ignition delay is shortened, the amount of fuel injected before ignition is reduced, so that an abnormal pressure rise (diesel knock) in the combustion chamber at the time of ignition can be prevented.
上記の如く、着火遅れが短縮し、燃焼室内での
燃料の燃焼性が格段に向上するので、後続の噴射
燃料の燃焼期間も十分となつて、可燃ガス化して
燃焼用空気とよく混合し燃焼し得るので、黒煙の
生成が少なく燃焼率が向上して実質エンジン出力
が向上する。従つて燃料消費率も低減する。 As mentioned above, since the ignition delay is shortened and the combustibility of the fuel in the combustion chamber is significantly improved, the combustion period of the subsequent injected fuel is also sufficient, and it becomes a combustible gas, mixes well with the combustion air, and combusts. Therefore, the generation of black smoke is reduced, the combustion rate is improved, and the actual engine output is improved. Therefore, the fuel consumption rate is also reduced.
次に、LPG溶解軽油燃料を自動車用デイーゼ
ルエンジンで燃焼させて行つた実験結果について
説明する。 Next, we will explain the results of an experiment conducted by burning LPG-dissolved light oil fuel in an automobile diesel engine.
1 実験方法の概要:
(1) デイーゼルエンジン:60PS、直列4気筒4
サイクル、総排気量2530c.c.、圧縮比=21、トラ
ツク用デイーゼルエンジン、
(2) 燃料:軽油(JIS1号軽油)、LPG(JISい号液
化プロパン)、LPG溶解軽油燃料(重量比率7
%及び20%のLPGを溶解させたもの)、
2 実験データ
フルスロツトル燃料噴射量で実験[]及び
[]を、実施して得た排気ガスの黒煙度、軸ト
ルク、軸出力、燃料消費量の実験データを各々第
3図〜第6図及び第7図・第8図に示す。実験
[]では燃料供給ガバナーを上記エンジン標準
設定とし、実験[]では多量噴射に設定したも
のである。1 Overview of experimental method: (1) Diesel engine: 60PS, inline 4-cylinder 4
Cycle, total displacement 2530 c.c., compression ratio = 21, diesel engine for trucks, (2) Fuel: Light oil (JIS No. 1 light oil), LPG (JIS No. 1 liquefied propane), LPG-dissolved light oil fuel (weight ratio 7)
% and 20% LPG dissolved), 2 Experimental data Exhaust gas black smoke level, shaft torque, shaft output, and fuel consumption obtained by conducting experiments [] and [] with full-throttle fuel injection amount. The experimental data are shown in Figs. 3 to 6 and Figs. 7 and 8, respectively. In experiment [], the fuel supply governor was set to the engine standard setting, and in experiment [], it was set to high-volume injection.
3 実験結果
実験[]の結果、第3図〜第6図に示すよう
に、軽油燃料の場合に比べて、7%LPG溶解軽
油燃料は優れたデイーゼルエンジン用燃料である
ことが判る。即ち、全回転数域即ち各種負荷の全
域に亘つて、黒煙度が20〜35%低減し(第3図)、
燃料消費率が4〜6%低減する(第6図)。軸ト
ルク、軸出力は第4図・第5図に示すように、軽
油使用時と略同じ値となり、外部負荷の大きい領
域では、これを上回る結果を得た。黒煙度の大幅
減少の理由は、燃焼室内での燃焼特性の項で記載
したことを実証するものである。LPG溶解軽油
燃料では、上記の如く完全燃焼に近づき、黒煙発
生量が格段に減少する、即ち、軽油燃料では黒煙
の形で無駄に排出されていた燃料が燃焼すること
によりエンジン出力に寄与するので、この分だけ
実質エンジン出力が増加し、ひいては燃料消費率
が改善されて減少することを実証するものであ
る。3 Experimental Results As shown in Figures 3 to 6, the results of the experiment [] show that 7% LPG-dissolved diesel fuel is a superior fuel for diesel engines compared to diesel fuel. In other words, the degree of black smoke is reduced by 20 to 35% over the entire rotation speed range, that is, the entire range of various loads (Figure 3),
The fuel consumption rate is reduced by 4-6% (Figure 6). As shown in Figures 4 and 5, the shaft torque and shaft output were approximately the same values as when using light oil, and in areas with large external loads, results were obtained that exceeded these values. The reason for the significant decrease in black smoke level is to verify what was described in the section on combustion characteristics in the combustion chamber. With LPG-dissolved diesel fuel, as mentioned above, the combustion approaches complete combustion, and the amount of black smoke generated is significantly reduced.In other words, the fuel that was wasted in the form of black smoke with diesel fuel is combusted, contributing to engine output. This proves that the actual engine output increases by this amount, which in turn improves and reduces the fuel consumption rate.
尚、LPGの発熱量は軽油の発熱量よりも単位
重量当りで僅かに多いが、7%LPG溶解軽油燃
料で単位重量当たり0.4%の発熱量増加でしかな
い。 The calorific value of LPG is slightly higher per unit weight than that of diesel oil, but the calorific value increases by only 0.4% per unit weight with 7% LPG-dissolved diesel fuel.
また、実験[]の燃料噴射量は自動車用デイ
ーゼルエンジン実機のものに対応する標準噴射量
としているので、実際のデイーゼル車に合致する
ものであり、実際のデイーゼル車は黒煙度を法定
測定器で50%以下にするように、その燃料噴射量
を制限しているのでエンジン出力が制限されるの
に対し、黒煙発生量の少ないLPG溶解軽油燃料
を用いることによつて、その燃料噴射量を増加し
得るので、エンジン出力の向上又はエンジン小型
化を実現することも可能となる。 In addition, the fuel injection amount in the experiment [] is a standard injection amount that corresponds to that of an actual automobile diesel engine, so it matches an actual diesel car. However, by using LPG-dissolved diesel fuel, which generates less black smoke, the fuel injection amount can be reduced by limiting the amount of fuel injected to 50% or less, which limits the engine output. Since the engine power can be increased, it is also possible to improve engine output or reduce the size of the engine.
実験[]の結果は、第7図、第8図に示すよ
うに、実験[]の結果と略同様の良好な傾向を
示している。この実験[]はエンジンのガバナ
ーの燃料供給限界調整機構を外して多量の燃料を
噴射して行つたものである。 The results of experiment [], as shown in FIGS. 7 and 8, show a good tendency that is substantially the same as the results of experiment []. This experiment [] was conducted by removing the fuel supply limit adjustment mechanism of the engine governor and injecting a large amount of fuel.
本発明によるLPG溶解軽油燃料は上記の構成
になり、上記のように作用するので、次の効果を
奏する。 The LPG-dissolved gas oil fuel according to the present invention has the above-described structure and operates as described above, so that it has the following effects.
イ 本発明の実施により実質エンジン出力を向上
させることができる。B By implementing the present invention, the actual engine output can be improved.
即ち、LPGは低沸点(−44〜−40℃)故に
軽油(沸点240〜350℃)に比べて、極めて揮発
性が高く、エンジン燃焼室内に噴射の直後に瞬
時に可燃ガス化して急速度で拡散すると同時に
軽油をも分散させ、LPGが速やかに着火する
とともに、このLPG燃焼による発熱が分散し
た軽油の油粒の可燃ガス化を急速に速進する。
しかも、軽油中に均一溶解しているLPGは、
軽油油粒中から可燃ガスとなつて蒸発する瞬間
にLPGと軽油の分子間引力の作用で軽油の油
粒を分裂させ、軽油油粒の一層の微細化を促進
するので、軽油の可燃ガス化が促進される。 In other words, LPG has a low boiling point (-44 to -40℃), so it is extremely volatile compared to diesel oil (boiling point 240 to 350℃), and it instantly turns into a flammable gas immediately after being injected into the engine combustion chamber. At the same time as it is diffused, the light oil is also dispersed, LPG quickly ignites, and the heat generated by this LPG combustion rapidly accelerates the conversion of the dispersed light oil droplets into combustible gas.
Moreover, LPG, which is uniformly dissolved in light oil,
At the moment when the light oil particles turn into combustible gas and evaporate, the light oil particles are split by the action of intermolecular attraction between LPG and light oil, promoting further miniaturization of the light oil particles, thereby converting the light oil into combustible gas. is promoted.
このように、軽油油粒の可燃ガス化が促進さ
れ早期化することによつて、(i)軽油可燃ガスと
燃焼用空気の均一混合、及び、(ii)軽油可燃ガス
の早期着火が実現する。(i)の結果として、空気
利用率の向上で燃焼効率が向上し、実質エンジ
ン出力が向上する。従つて燃料消費率が低減す
る。 In this way, by promoting and speeding up the conversion of light oil particles into combustible gas, (i) uniform mixing of light oil combustible gas and combustion air, and (ii) early ignition of light oil combustible gas is realized. . As a result of (i), the combustion efficiency improves due to the improvement in the air utilization rate, and the real engine output increases. Therefore, the fuel consumption rate is reduced.
(ii)の結果として、最初の噴射燃料の着火まで
の時間即ち着火遅れ時間が短縮されて着火時の
燃焼室内の異常圧力上昇(デイーゼルノツク)
が防止されて、エンジン振動・騒音が改善され
ると同時に、実質エンジン出力も向上する。 As a result of (ii), the time until the first injected fuel ignites, that is, the ignition delay time, is shortened, resulting in an abnormal pressure rise in the combustion chamber at the time of ignition (diesel lock).
is prevented, engine vibration and noise are improved, and at the same time, the actual engine output is also improved.
更に、(ii)の結果として、後続の噴射燃料の可
燃ガス化と早期着火の促進で燃焼室内における
燃料の燃焼時間をより長くとり得るので可燃ガ
スと燃焼空気との混合が促進され、不完全燃焼
が解消してエンジン出力が向上すると同時に、
黒煙の発生量も大幅に改善され、エンジン出力
が向上して燃料消費率が低減する。 Furthermore, as a result of (ii), the combustion time of the fuel in the combustion chamber can be extended by promoting the subsequent combustible gasification and early ignition of the injected fuel, which promotes the mixing of combustible gas and combustion air, resulting in incomplete combustion. Combustion is eliminated and engine output increases, while at the same time
The amount of black smoke produced is also significantly improved, resulting in higher engine output and lower fuel consumption.
更に、LPGを単独でガス化して吸気に混合
吸入する場合に比べて、吸入可能な燃焼用空気
の量が多くできるので、エンジン出力の面でよ
り有利である。 Furthermore, compared to the case where LPG is gasified alone and mixed into intake air, the amount of combustion air that can be taken in can be increased, which is more advantageous in terms of engine output.
しかもLPGの単位重量当りの価格は、軽油
に比べ高価であるが、上記のように燃料消費率
が低減するから、燃料費が大幅に安価になる。 Moreover, although the price per unit weight of LPG is higher than that of diesel oil, as the fuel consumption rate is reduced as mentioned above, the fuel cost becomes significantly cheaper.
ロ LPG溶解軽油燃料供給装置の安全性が向上
する。即ち、従来技術の副燃料吸入方式では、
100%LPG燃料の貯蔵用に約10Kg/cm2G以上の
圧力タンクが不可欠となるのに対し、本発明の
LPG溶解軽油燃料を使用する場合、LPG溶解
比率・温度条件によるが約2〜4Kg/cm2Gの圧
力タンクで済ませることができるので、安全性
が格段に高く、従つて自動車のデイーゼルエン
ジンに適用する場合に特に有利である。この場
合、燃料タンク以外は既存の軽油用デイーゼル
エンジンの給気および燃料供給系統をそのまま
用いて実施することができる。即ち、燃料タン
クをLPG溶解軽油燃料用の低圧の圧力タンク
に改造するだけで、既存のデイーゼルエンジン
に適用し得るから、極めて容易にしかも安価に
実施することが出来る。(b) The safety of the LPG-dissolved diesel fuel supply system will be improved. That is, in the conventional auxiliary fuel intake system,
While a pressure tank of approximately 10 kg/cm 2 G or more is essential for storing 100% LPG fuel, the present invention
When using LPG-dissolved diesel fuel, a pressure tank with a pressure of approximately 2 to 4 kg/cm 2 G is sufficient depending on the LPG dissolution ratio and temperature conditions, making it extremely safe and suitable for automobile diesel engines. This is particularly advantageous when In this case, the air supply and fuel supply systems of the existing light oil diesel engine can be used as they are except for the fuel tank. That is, it can be applied to existing diesel engines by simply modifying the fuel tank to a low-pressure tank for LPG-dissolved light oil fuel, so it can be implemented extremely easily and at low cost.
第1図は本発明によるLPG溶解軽油燃料の
LPG溶解重量比率とLPG蒸気圧の関係を示す実
験データの線図、第2図はデイーゼルエンジンの
燃料供給装置の概略構成図、第3図〜第6図は実
験[]に関し、各々黒煙度・軸トルク・軸出
力・燃料消費率の実験値の線図であり、第7図・
第8図は実験[]に関し、各々黒煙度・燃料消
費率の実験値の線図である。
Figure 1 shows the LPG-dissolved light oil fuel according to the present invention.
A diagram of experimental data showing the relationship between the LPG melt weight ratio and LPG vapor pressure, Figure 2 is a schematic diagram of the fuel supply system of a diesel engine, and Figures 3 to 6 are related to the experiment [], and each shows the black smoke degree.・It is a diagram of experimental values of shaft torque, shaft output, and fuel consumption rate, and is shown in Figure 7.
FIG. 8 is a diagram of experimental values of black smoke degree and fuel consumption rate, respectively, regarding experiment [].
Claims (1)
して、その蒸気圧下で液化石油ガスを軽油に溶解
させ、この液化石油ガスを溶解した軽油をデイー
ゼルエンジンの燃料に用いる事を特徴とするデイ
ーゼルエンジン用液化石油ガス溶解軽油燃料。1. A diesel that is characterized by adding liquefied petroleum gas to light oil in a sealed pressure vessel, dissolving the liquefied petroleum gas in light oil under the vapor pressure, and using the light oil in which the liquefied petroleum gas is dissolved as fuel for a diesel engine. Liquefied petroleum gas dissolved light oil fuel for engines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP768485A JPS60168791A (en) | 1985-01-19 | 1985-01-19 | Gas oil fuel containing liquefied petroleum gas dissolved therein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP768485A JPS60168791A (en) | 1985-01-19 | 1985-01-19 | Gas oil fuel containing liquefied petroleum gas dissolved therein |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP791280A Division JPS56106048A (en) | 1980-01-25 | 1980-01-25 | Fuel supply for diesel engine, fuel supplier therefor and liquid petroleum gas solved light oil fuel used therein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60168791A JPS60168791A (en) | 1985-09-02 |
JPH0129520B2 true JPH0129520B2 (en) | 1989-06-12 |
Family
ID=11672613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP768485A Granted JPS60168791A (en) | 1985-01-19 | 1985-01-19 | Gas oil fuel containing liquefied petroleum gas dissolved therein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60168791A (en) |
-
1985
- 1985-01-19 JP JP768485A patent/JPS60168791A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60168791A (en) | 1985-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ecklund et al. | State-of-the-art report on the use of alcohols in diesel engines | |
US6679224B2 (en) | Method and apparatus for operating a diesel engine under stoichiometric or slightly fuel-rich conditions | |
US5178119A (en) | Combustion process and fuel supply system for engines | |
Nagarajan et al. | Emission and performance characteristics of neat ethanol fuelled Dl diesel engine | |
SK284555B6 (en) | Aqueous fuel for internal combustion engines and process for producing thereof | |
JPS6210464A (en) | Method of operating internal combustion engine | |
JPH06506744A (en) | liquid fuel combustion | |
Yilmaz et al. | Some perspectives on alcohol utilization in a compression ignition engine | |
Kouremenos et al. | Comparative performance and emission studies for vaporized diesel fuel and gasoline as supplements in swirl-chamber diesel engines | |
WO1986004111A1 (en) | Internal combustion engine | |
Klett et al. | Internal combustion engines | |
Zelenka et al. | Development and optimization of methanol fueled compression ignition engines for passenger cars and light duty trucks | |
JPH0129520B2 (en) | ||
Enright et al. | A Critical review of spark ignited diesel combustion | |
Shenghua et al. | Development of compressed natural gas/diesel dual-fuel turbocharged compression ignition engine | |
Alternate Fuels Committee of the Engine Manufacturers Association | A technical assessment of alcohol fuels | |
Bhiogade et al. | A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode | |
CN101929364A (en) | Diffusion combustion method for knock-resisting compression ignition of equivalence-ratio gasoline direct injection engine | |
JPS5827314B2 (en) | Liquefied petroleum gas dissolved light oil fuel for diesel engines | |
CN1936308A (en) | Lighting-Ignition type uni-alcohol fuel electric-control multi-point gas-duct jetting engine | |
US2695011A (en) | Method of operating compression ignition engines | |
CN210106034U (en) | Internal combustion engine | |
Syamsulbahri et al. | Effects of Fuel Additive on Combustion, Performance and Emissions of Internal Combustion Engine | |
CN101052800B (en) | Method for controlling power of internal-combustion engine | |
CN200975289Y (en) | Emblazing single alcohol fuel electric control multi-point air flue injection engines |