JPH01294963A - Temperature compensating system for current limiting circuit - Google Patents

Temperature compensating system for current limiting circuit

Info

Publication number
JPH01294963A
JPH01294963A JP12354688A JP12354688A JPH01294963A JP H01294963 A JPH01294963 A JP H01294963A JP 12354688 A JP12354688 A JP 12354688A JP 12354688 A JP12354688 A JP 12354688A JP H01294963 A JPH01294963 A JP H01294963A
Authority
JP
Japan
Prior art keywords
current
base
transistor
current limiting
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12354688A
Other languages
Japanese (ja)
Inventor
Yoshikazu Tatekawa
竪川 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP12354688A priority Critical patent/JPH01294963A/en
Publication of JPH01294963A publication Critical patent/JPH01294963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To obtain a temperature compensating system excellent in cost performance by supplying emitter voltage of an output power transistor to the base of a current limiting transistor through a positive characteristic resistor element and correcting a current amplification factor for its fluctuation due to a temperature. CONSTITUTION:A negative characteristic resistor element and a positive characteristic resistor element are used in combination serving as a temperature compensating element for a current limiting circuit in an ignition device. That is, the positive characteristic resistor element 12 of large temperature coefficient is connected in series between the base of a transistor 3 and a connection point connecting an output current detecting resistor 6 to the emitter of an output power transistor 2, and a fluctuation of a current amplification factor is corrected. While between the base and the earth, a series-parallel circuit, in which an ordinary resistor 5 is connected in series to a parallel circuit of the negative characteristic resistor element 11 and an ordinary resistor 4, is connected, and a fluctuation of between base-emitter voltage is corrected. In this way, a temperature compensating system for a current limiting circuit excellent in cost performance is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として内燃機関用点火装置における電流制
御回路の温度補償方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention mainly relates to a temperature compensation system for a current control circuit in an ignition device for an internal combustion engine.

〔従来技術〕[Prior art]

従来、この種の分野の技術としては、特開昭51−92
933号公報、特開昭52−114833号公報、特開
昭53−11242号公報、特開昭54−25336号
公報及び特開昭54−30328号公報に開示されたも
のがあり、点火コイルの1次電流が一定値以上になると
その一定値に制限して出力パワートランジスタの保護を
行なうと共に、点火コイルの蓄積エネルギーを一定にす
るものである。
Conventionally, as a technology in this kind of field, Japanese Patent Application Laid-Open No. 51-92
There are some methods disclosed in JP-A-933, JP-A-52-114833, JP-A-53-11242, JP-A-54-25336 and JP-A-54-30328. When the primary current exceeds a certain value, it is limited to that certain value to protect the output power transistor and to keep the energy stored in the ignition coil constant.

第6図は従来の電流制限回路を具備する内燃機関の一回
路構成例を示す回路図であり、第3図は第6図における
入出力1!流波形を示す。
FIG. 6 is a circuit diagram showing an example of a circuit configuration of an internal combustion engine equipped with a conventional current limiting circuit, and FIG. 3 shows input/output 1! in FIG. Shows the flow waveform.

第6図において、1は抵抗器、2は出力パワートランジ
スタ、3はトランジスタ、4,5.6は抵抗器、7は点
火コイノ呟 8はバッテリ、9は点火栓、10は電流制
限回路である。
In Figure 6, 1 is a resistor, 2 is an output power transistor, 3 is a transistor, 4, 5.6 is a resistor, 7 is an ignition driver, 8 is a battery, 9 is a spark plug, and 10 is a current limiting circuit. .

第6図において、入力端子ITに出力パワートランジス
タ2の入力としてベース電流I、を時間TON間印加す
るとコレクタ電流Icは漸増し、−定値■。Lに達する
と、トランジスタ3、抵抗器4、抵抗器5及び抵抗器6
により構成きれる電流制限回路10が作動し、以後、出
力パワートランジスタ2のコレクタ電流■。は前記一定
の制限値ICLに制限される。
In FIG. 6, when a base current I is applied to the input terminal IT as an input of the output power transistor 2 for a time TON, the collector current Ic gradually increases to a -constant value ■. When reaching L, transistor 3, resistor 4, resistor 5 and resistor 6
The current limiting circuit 10 configured by the above operates, and thereafter the collector current of the output power transistor 2 becomes {circle over (2)}. is limited to the certain limit value ICL.

この一定の制限値rctは主にトランジスタ3のベース
−エミッタ間電圧V□と電流増幅率り。に依存するので
温度により、第7図に示すように変動する。即ちコレク
タ電流の制限値I(Lは温度範囲幅150°Cで2.6
A程度変動する。
This fixed limit value rct is mainly determined by the base-emitter voltage V□ of the transistor 3 and the current amplification factor. As shown in FIG. 7, it varies depending on the temperature. In other words, the collector current limit value I (L is 2.6 at a temperature range of 150°C)
It fluctuates by about A.

このベース−エミッタ間電圧V□の温度特性を補正する
方法として、負特性抵抗素子であるサーミスタをトラン
ジスタ3のベース−接地間に接続し、ベース印加電圧を
補正する対策がとられている。これらの回路と上記一定
値I。L(制限値)の温度特性の一例を第8図(a)、
(b)及び第9図(a)、(b)に示す0図において、
11は前記負特性抵抗素子であるサーミスタを示す。ト
ランジスタのベース−エミッタ間電圧vlllLは、負
特性であり、高温時にその値が低下する。そこで出力電
流検出用抵抗器である抵抗器6の検出電圧を温度係数の
小さい抵抗である抵抗器5と負特性抵抗素子であるサー
ミスタ11で分圧してトランジスタ30ベースに供給し
、ベース−エミッタ間電圧■、の温度補償を行なうもの
である。
As a method of correcting the temperature characteristics of the base-emitter voltage V□, a measure is taken in which a thermistor, which is a negative characteristic resistance element, is connected between the base of the transistor 3 and ground to correct the voltage applied to the base. These circuits and the above constant value I. An example of the temperature characteristics of L (limit value) is shown in Figure 8(a).
(b) and 0 shown in FIGS. 9(a) and (b),
Reference numeral 11 indicates a thermistor which is the negative characteristic resistance element. The base-emitter voltage vllllL of the transistor has a negative characteristic, and its value decreases at high temperatures. Therefore, the voltage detected by the resistor 6, which is a resistor for detecting the output current, is divided by the resistor 5, which is a resistor with a small temperature coefficient, and the thermistor 11, which is a negative characteristic resistance element, and is supplied to the base of the transistor 30. It performs temperature compensation for voltage (2).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記構成の電流制限式点火装置では、イグニッションコ
イルの蓄積エネルギーを略一定とするため前記電流制限
値ICLの変動幅はより小さいことが望ましい。しかし
ながら、上記従来のいずれの方法であっても、温度特性
が直線的に変化するベース−エミッタ間電圧VOに対し
て、サーミスタ11の抵抗値が対数変化するため、電流
制限値ICLを一定に保つことは困難であり、その変動
幅は温度範囲幅150°Cで0.8〜1.3A程度とな
るという問題点があった。
In the current-limited ignition device configured as described above, it is desirable that the fluctuation range of the current limit value ICL be smaller in order to keep the stored energy of the ignition coil substantially constant. However, in any of the above conventional methods, the resistance value of the thermistor 11 changes logarithmically with respect to the base-emitter voltage VO whose temperature characteristics change linearly, so the current limit value ICL is kept constant. There was a problem in that the fluctuation range was about 0.8 to 1.3 A in a temperature range of 150°C.

また、ベース電流の補正を行なっていないので、電流増
幅率h□の温度時性分の変動が発生するという問題点も
あった。
Furthermore, since the base current is not corrected, there is a problem that the current amplification factor h□ varies with temperature.

本発明は上述の点に鑑みてなされたもので、上記サーミ
スタを用いた電流制限回路の電流制限値の温度変動幅が
大きいという欠点を除去し、コストパフォーマンスの優
れた電流制限回路の温度補償方式を提供することにある
The present invention has been made in view of the above points, and is a temperature compensation method for a current limiting circuit that eliminates the drawback that the temperature fluctuation range of the current limiting value of the current limiting circuit using the thermistor is large and has excellent cost performance. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は点火装置における電流
制限回路の温度補償素子として負特性抵抗素子と正特性
抵抗素子を組み合わせて用い、トランジスタ3のベース
−エミッタ間電圧V□の温度特性補償と電流増幅率hF
!の温度特性補償を行なうもので、第1図に示すように
、温度係数の大きい正特性抵抗素子12をトランジスタ
3のベースと出力電流検出用の抵抗器6と出力パワート
ランジスタ2のエミッタの接続点との間に直列に接続し
て電流増幅率り、の変動を補正すると共に、ベース−接
地間に負特性抵抗素子11と通常の抵抗器4との並列回
路に通常の抵抗器5を直列に接続した直並列回路を接続
してベース−エミッタ間電圧vll!の変動を補正する
ものである。
In order to solve the above problems, the present invention uses a combination of a negative characteristic resistance element and a positive characteristic resistance element as a temperature compensation element of a current limiting circuit in an ignition device, and compensates for the temperature characteristic of the base-emitter voltage V□ of the transistor 3 and Amplification factor hF
! As shown in Fig. 1, a positive characteristic resistance element 12 with a large temperature coefficient is connected to the connection point of the base of the transistor 3, the resistor 6 for output current detection, and the emitter of the output power transistor 2. A normal resistor 5 is connected in series between the base and ground to compensate for fluctuations in the current amplification factor, and a normal resistor 5 is connected in series between the base and the ground in a parallel circuit of the negative characteristic resistance element 11 and the normal resistor 4. Connect the connected series-parallel circuits to obtain the base-emitter voltage vll! This is to correct for fluctuations in .

〔作用〕[Effect]

上記の如く構成することにより、出力パワートランジス
タ2のエミッタ電圧を正特性抵抗素子を介してトランジ
スタ3のベースに供給するから、電流増幅率り、の温度
に対する補正ができると共に、ベース−接地間に抵抗器
5、負特性抵抗素子11及び抵抗器4からなる直並列回
路を接続し、正特性抵抗素子12と該直並列回路で前記
エミッタ電圧を分圧してトランジスタ3のベースに供給
するから、ベース−エミッタ間電圧vIlKの温度に対
する変動も補正できる。
With the above configuration, since the emitter voltage of the output power transistor 2 is supplied to the base of the transistor 3 via the positive characteristic resistance element, it is possible to correct the current amplification factor for temperature, and also to connect the base to the ground. A series-parallel circuit consisting of a resistor 5, a negative characteristic resistance element 11, and a resistor 4 is connected, and the emitter voltage is divided by the positive characteristic resistance element 12 and the series-parallel circuit and supplied to the base of the transistor 3. - Fluctuations in the emitter voltage vIlK with respect to temperature can also be corrected.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明に係る電流制限回路の温度補償方式を適
用する点火装置の回路構成を示す回路図である。同図に
おいて、1は抵抗器、2は出力パワートランジスタ、3
は前記出力パワートランジスタ2のベース電d(を分流
するトランジスタ、4.5.6は抵抗器、7は点火コイ
ノ呟 8はバッテリ、9は点火栓、10は電流制限回路
、11は負特性抵抗素子、12は正特性抵抗素子である
FIG. 1 is a circuit diagram showing a circuit configuration of an ignition device to which a temperature compensation method of a current limiting circuit according to the present invention is applied. In the same figure, 1 is a resistor, 2 is an output power transistor, and 3 is a resistor.
is a transistor that shunts the base current d of the output power transistor 2, 4.5.6 is a resistor, 7 is an ignition plug, 8 is a battery, 9 is a spark plug, 10 is a current limiting circuit, and 11 is a negative characteristic resistor. Element 12 is a positive characteristic resistance element.

出力パワートランジスタ2のコレクタは出力端子OTを
経由して点火コイル7の一端子に接続され、点火コイル
7の子端子はバッテリ8の子端子に接続されている。点
火フィル7の二次巻線出力端子HVは点火栓9に接続さ
れており、入力信号が印加きれた後、再び遮断された時
に点火栓9が放電し、火花を発生する。
The collector of the output power transistor 2 is connected to one terminal of the ignition coil 7 via the output terminal OT, and the child terminal of the ignition coil 7 is connected to the child terminal of the battery 8. The secondary winding output terminal HV of the ignition filter 7 is connected to the ignition plug 9, and when the input signal is cut off again after the input signal has been applied, the ignition plug 9 discharges and generates a spark.

抵抗器6は出力パワートランジスタ2のコレクタ電流(
出力M、流)を検出するための抵抗器であり、エミッタ
接地間に接続される。正特性抵抗素子12は出力パワー
 トランジスタ2のエミッタとトランジスタ3のベース
の間に直列に接続されている。また、トランジスタ3の
ベースと接地の間には負特性抵抗素子11及び抵抗器4
の並列回路と抵抗器5の直列回路が接続されている。
The resistor 6 is connected to the collector current of the output power transistor 2 (
This is a resistor for detecting the output (M, current) and is connected between the emitter and ground. A positive characteristic resistance element 12 is connected in series between the emitter of output power transistor 2 and the base of transistor 3. Further, a negative characteristic resistance element 11 and a resistor 4 are connected between the base of the transistor 3 and the ground.
A parallel circuit of resistor 5 and a series circuit of resistor 5 are connected.

上記構成の電流制限回路10の動作を第2図を用いて説
明する。同図において、Q、は出力パワートランジスタ
、Qlはトランジスタ3をそれぞれ示し、またR3は抵
抗器6の抵抗、RPは正特性抵抗素子12の抵抗、R8
は負特性抵抗素子11の抵抗、RAは抵抗器5の抵抗、
R3は抵抗器4の抵抗をそれぞれ示す。
The operation of the current limiting circuit 10 having the above configuration will be explained using FIG. 2. In the figure, Q represents the output power transistor, Ql represents the transistor 3, R3 represents the resistance of the resistor 6, RP represents the resistance of the positive characteristic resistance element 12, and R8 represents the resistance of the resistor 6.
is the resistance of the negative characteristic resistance element 11, RA is the resistance of the resistor 5,
R3 indicates the resistance of the resistor 4, respectively.

入力端子I?に第3図(b)に示す電流波形の入力電流
I、が印加されると出力端子OTは第3図(a)に示す
漸増するコレクタを流Icが流れる。一方、出力パワー
トランジスタQ1のエミッタ電圧vSIは抵抗値R5と
コレクタ電流Icの積であり、その波形は第3図(a)
のコレクタ電流Icの波形と同様に漸増波形となる。
Input terminal I? When an input current I having a current waveform shown in FIG. 3(b) is applied to the output terminal OT, a current Ic flows through the collector which gradually increases as shown in FIG. 3(a). On the other hand, the emitter voltage vSI of the output power transistor Q1 is the product of the resistance value R5 and the collector current Ic, and its waveform is shown in FIG. 3(a).
The waveform becomes a gradually increasing waveform similar to the waveform of the collector current Ic.

エミッタ電圧VS+を抵抗Rp、RA、R1,RNによ
り分圧してトランジスタQ、のベースに印加する。この
印加する電圧をvslとすると次式が得られる。ここで
抵抗値R5は0.1〜0.2〔Ω〕程度とし、この抵抗
値R3に並列に接続される合成分圧抵抗の値を104・
RS CΩ〕程度とすれば、次式より抵抗値R3は省略
できる。
The emitter voltage VS+ is divided by resistors Rp, RA, R1, and RN and applied to the base of the transistor Q. Letting this applied voltage be vsl, the following equation is obtained. Here, the resistance value R5 is about 0.1 to 0.2 [Ω], and the value of the composite voltage dividing resistor connected in parallel to this resistance value R3 is 104.
RS CΩ], the resistance value R3 can be omitted from the following equation.

vst”’vs+・〔(RA+〈RN−R−/(RN+
RIl))/(Rp”RA”(Rs−Ri)/(RN”
Re) ) :]  ・・・・(1)(1)式において
、 RA+RN−R3/(RN+R11)=Ro・・・・(
2)と置くと(1)式は、(3)式に整理できる。
vst"'vs+・[(RA+〈RN-R-/(RN+
RIl))/(Rp"RA"(Rs-Ri)/(RN"
Re) ) :] ...(1) In formula (1), RA+RN-R3/(RN+R11)=Ro...(
2), equation (1) can be rearranged into equation (3).

Vs*=Vs+ −Rc/ (RP”RC)     
    ・・・・(3)VsxがトランジスタQ、のベ
ース−エミッタ間電圧vll!、を越えると、トランジ
スタQ、は導通し、出力パワートランジスタQ、に流れ
るベース電流rs+はトランジスタQ、に分流される電
流II+1だけ減少する。ベース電流1111が減少す
ると出力パワートランジスタQ1のコレクターエミッタ
間電圧VCtが上昇し、コレクタ電流■。を一定とする
。即ちエミッタ電圧vSlが一定となる如く動作する。
Vs*=Vs+ −Rc/ (RP”RC)
...(3) Vsx is the base-emitter voltage vll of transistor Q! , the transistor Q, becomes conductive and the base current rs+ flowing through the output power transistor Q, decreases by the current II+1 which is shunted into the transistor Q,. When the base current 1111 decreases, the collector-emitter voltage VCt of the output power transistor Q1 increases, and the collector current becomes ■. is constant. That is, it operates so that the emitter voltage vSl remains constant.

この定電流領域が第3図(a)のコレクタ電流I。の波
形の時間t3部分である。このように、電流制限回路1
0は出力パワートランジスタQ、のベース−エミッタ間
に閉ループとして構成されており、トランジスタQ、の
温度特性を簡易に補償できれば部品点数も少なくコスト
パフォーマンスに優れた回路となり得る。
This constant current region is the collector current I in FIG. 3(a). This is the time t3 portion of the waveform. In this way, the current limiting circuit 1
0 is configured as a closed loop between the base and emitter of the output power transistor Q, and if the temperature characteristics of the transistor Q can be easily compensated for, the circuit can have a small number of parts and have excellent cost performance.

一般にトランジスタのベース−エミッタ間電圧V!lt
は、概略0.78V(25°C)−C”−2〜2.2m
 V / ’Cの温度特性であることは公知である。−
方、正特性抵抗素子の最大温度係数は現在5000pp
mのものが製造されており、その抵抗値の温度変化は第
4図(b)に示すように略直線的である。また、負特性
抵抗素子の温度変化は第4図(a)に示すように対数値
である。
In general, the base-emitter voltage of a transistor is V! lt
is approximately 0.78V (25°C)-C"-2~2.2m
It is well known that the temperature characteristic is V/'C. −
On the other hand, the maximum temperature coefficient of positive characteristic resistance elements is currently 5000pp.
m types have been manufactured, and the change in resistance value with temperature is approximately linear as shown in FIG. 4(b). Further, the temperature change of the negative characteristic resistance element is a logarithmic value as shown in FIG. 4(a).

次に本発明の各定数の設定例を示すと、第2図において
、出力パワートランジスタQ1のエミッ夕電圧V S 
Iを約IV、コレクタ電流■。の制限値■cLを7Aと
するためにはRS = V s+/ I CLΦ0.1
5[Ω〕とすればよい。
Next, to show an example of setting each constant of the present invention, in FIG. 2, the emitter voltage V S of the output power transistor Q1
I is about IV, collector current ■. To set the limit value ■cL to 7A, RS = V s+/I CLΦ0.1
It may be set to 5 [Ω].

前述の如く抵抗R3と並列に接続される合成抵抗の値は
104・R3程度とすると、800〜1500Ωの範囲
と仮に設定する。負特性抵抗素子11の抵抗R8は低温
での抵抗値が大となるので、25°Cにおける基準抵抗
値はなるべく低く設定する。但し高温での抵抗値が急激
に0〔Ω〕とならない範囲とする。本実施例では200
〔Ω〕(25°C)とした。負特性抵抗素子11の抵抗
RNを特定すれば補償温度範囲内での抵抗値を算出、或
いはグラフより推定できる。第4図(a)に示すように
この負特性抵抗素子11の抵抗R,は、1200〔Ω)
(−30℃)〜12〔Ω)(120°C)と変化範囲が
大きいので、高温側補正抵抗RA(抵抗器5の抵抗)を
直列に低温側補正抵抗R,(抵抗器4の抵抗)を並列に
接続する。
Assuming that the value of the combined resistance connected in parallel with the resistor R3 is about 10@4 ·R3 as described above, it is tentatively set in the range of 800 to 1500 Ω. Since the resistance R8 of the negative characteristic resistance element 11 has a large resistance value at low temperatures, the reference resistance value at 25° C. is set as low as possible. However, the resistance value at high temperatures should not suddenly drop to 0 [Ω]. In this example, 200
[Ω] (25°C). By specifying the resistance RN of the negative characteristic resistance element 11, the resistance value within the compensation temperature range can be calculated or estimated from a graph. As shown in FIG. 4(a), the resistance R of this negative characteristic resistance element 11 is 1200 [Ω].
(-30°C) to 12 [Ω) (120°C), so the high temperature side correction resistance RA (resistance of resistor 5) is connected in series with the low temperature side correction resistance R, (resistance of resistor 4). Connect in parallel.

次に、正特性抵抗素子12の抵抗R4をエミッタ電圧V
 51、コレクタ電流I。の制限値I。、出力パワート
ランジスタQ、の電流増幅率り、及びトランジスタQ、
の電流増幅率h□等の緒特性より算出し、設定する。本
実施例では240〔Ω〕(25°C)、温度係数+45
00ppmを選定して、正特性抵抗素子12の抵抗RP
を特定すれば、補償温度範囲内での抵抗値を算出できる
Next, the resistor R4 of the positive characteristic resistance element 12 is set to the emitter voltage V
51, collector current I. The limit value I. , the current amplification factor of the output power transistor Q, and the transistor Q,
Calculate and set the current amplification factor h□ and other characteristics. In this example, 240 [Ω] (25°C), temperature coefficient +45
By selecting 00ppm, the resistance RP of the positive characteristic resistance element 12 is
By specifying , the resistance value within the compensation temperature range can be calculated.

ここで、上記(3)式より次式を得る。Here, the following equation is obtained from the above equation (3).

Rc= (Vsz/ (Vst−Vst) ) ・Rp
     ・= 44)更に、Vs*=Vst(Qt)
と置き次式を得る。
Rc= (Vsz/ (Vst-Vst)) ・Rp
・= 44) Furthermore, Vs*=Vst(Qt)
and obtain the following expression.

RC= (Vllt(Qt)/(Vst−Vllt(Q
z) ) −RP −・(s)(5)式において、トラ
ンジスタQ、のベース−エミッタ間電圧V。(Q、)及
び正特性抵抗素子12の抵抗R2の温度補償範囲内での
各温度における値を代入すれば、合成抵抗の抵抗値R6
を算出できることになる。抵抗値R6を算出後、(2)
式よりRA、R,を算出設定する。きらに選定した出力
パワートランジスタQ、及びトランジスタQ!の特性に
よって各定数を補正する。
RC= (Vllt(Qt)/(Vst-Vllt(Q
z) ) -RP - (s) In equation (5), the base-emitter voltage V of the transistor Q. (Q, ) and the value at each temperature within the temperature compensation range of the resistance R2 of the positive characteristic resistance element 12, the resistance value of the combined resistance R6
This means that it is possible to calculate After calculating the resistance value R6, (2)
Calculate and set RA and R from the formula. Output power transistor Q and transistor Q selected for Kira! Each constant is corrected according to the characteristics of

上記の如く設定及び算出した各抵抗値の一例を下記に示
す。
An example of each resistance value set and calculated as described above is shown below.

Rs: 0.15 、R,: 240Ω(+4500p
pm)、R,: 200Ω、RA:430Ω、RBニア
50Ω。
Rs: 0.15, R: 240Ω (+4500p
pm), R: 200Ω, RA: 430Ω, RB near 50Ω.

第5図は上記の如く設定及び算出した各抵抗値を有する
第1図の回路でコレクタ電流I。の制限値IcLの変動
状態を示す図であり、同図から明らかなように、制限値
■。Lの変動幅は温度範囲幅150°Cで、0.3A程
度と従来の温度補償方式に比較し大幅に改善きれること
が分かる。
FIG. 5 shows the collector current I in the circuit of FIG. 1 having each resistance value set and calculated as described above. It is a diagram showing the fluctuation state of the limit value IcL, and as is clear from the figure, the limit value ■. It can be seen that the fluctuation width of L is about 0.3 A in a temperature range of 150°C, which is a significant improvement compared to the conventional temperature compensation method.

上記の如く、本実施例によれば、トランジスタ3 (Q
t)のベースに供給する電圧を出力バワートランシスタ
2のエミッタ電圧(VS、)を正特性抵抗素子12 (
RP)と負特性抵抗素子11(RN)とを組合せて分圧
し供給し、ベース−エミッタ間電圧v0の温度補償を行
なうようにしたので、従来例より一層ベースーエミッタ
間電圧VB1温度変化に近似させることが可能となる。
As described above, according to this embodiment, the transistor 3 (Q
The emitter voltage (VS, ) of the power transistor 2 is output as the voltage supplied to the base of the positive characteristic resistance element 12 (
RP) and the negative characteristic resistance element 11 (RN) are combined to divide the voltage and supply it, and to compensate for the temperature of the base-emitter voltage v0, the temperature change of the base-emitter voltage VB1 is more closely approximated than in the conventional example. It becomes possible to do so.

この結果、本実施例を電流制限方式の点火装置に適用し
た場合、電流制限値が略全温度範囲で略一定となり、点
火エネルギーを安定させることが期待できる。このこと
は、第7図(補償素子なしの場合)、第8図及び第9図
(負特性抵抗素子を用いた場合)、第5図(本実施例)
の各々のコレクタN、流■。の制限値IcLの変動状態
からみても明らかである。
As a result, when this embodiment is applied to a current-limiting type ignition device, the current limit value becomes substantially constant over substantially the entire temperature range, and it is expected that the ignition energy will be stabilized. This is shown in Figure 7 (without compensation element), Figures 8 and 9 (with negative characteristic resistance element), and Figure 5 (in this example).
Each collector N, flow■. This is also clear from the fluctuation state of the limit value IcL.

また、上記実施例では内燃機関用の点火装置の電流制限
回路を例に説明したが、本発明に係る電流制限回路の温
度補償方式はこれに限定されるものではなく、ソレノイ
ド等の誘導負荷を出力パワートランジスタで駆動するよ
うな駆動回路にも適用することが可能である。
Further, in the above embodiment, the current limiting circuit of an ignition device for an internal combustion engine was explained as an example, but the temperature compensation method of the current limiting circuit according to the present invention is not limited to this, and the inductive load such as a solenoid is It can also be applied to a drive circuit driven by an output power transistor.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明によれば下記のような優れ
た効果が得られる。
As explained above, according to the present invention, the following excellent effects can be obtained.

■出力電流検出抵抗器で検出された出力パワートランジ
スタのエミッタ電圧を正特性抵抗素子を介して電流制限
用トランジスタのベースに供給するから、電流増幅率の
温度による変動を補正することが可能となり、電流増幅
率の変動による制限電流の変動が小さくなる。
■Since the emitter voltage of the output power transistor detected by the output current detection resistor is supplied to the base of the current limiting transistor via the positive characteristic resistance element, it is possible to correct temperature-related fluctuations in the current amplification factor. Fluctuations in the limited current due to fluctuations in the current amplification factor are reduced.

■ベースー接地間に負特性抵抗素子を具備する抵抗回路
を接続、正特性抵抗素子と該抵抗回路でエミッタ電圧を
分圧して電流制限用トランジスタのベースに供給するか
ら、ベース−エミッタ間電圧の温度に対する変動を補正
することが可能となり、ベース−エミッタ間電圧の変動
による制限i流の変動が小さくなる。
■A resistor circuit equipped with a negative characteristic resistance element is connected between the base and ground, and the emitter voltage is divided by the positive characteristic resistance element and the resistor circuit and supplied to the base of the current limiting transistor, so the temperature of the base-emitter voltage This makes it possible to correct fluctuations in the limit i current due to fluctuations in the base-emitter voltage.

■また、上記のような温度補償が正特性抵抗素子、負特
性抵抗素子及び通常の抵抗器の組合わせにより実現でき
るからコストも極めて安価となる。
(2) Furthermore, since the temperature compensation described above can be realized by a combination of a positive characteristic resistance element, a negative characteristic resistance element, and a normal resistor, the cost is extremely low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電流制限回路の温度補償方式を適
用する点火装置の回路構成を示す回路図、第2図は第1
図の電流制限回路の動作を説明するための回路図、第3
図(a)は出力パワートランジスタのコレクタ電流波形
を示す図、同図J (b)は入力電流波形を示す図、第4図(a)ff負特
性抵抗素子の温度特性を示す図、同図(b)は正特性抵
抗素子の温度特性を示す図、第5図は本実施例のコレク
タ電流の制限値I。、の変動状態を示す図、第6図は従
来の電流制御回路を具備する内燃機関の点火装置におけ
る一回路構成例を示す回路図、第7図は第6図の電流制
限回路によるコレクタ電流の制限値I。Lの変動状態を
示す図、第8図(a)は従来の1!流制御回路を具備す
る内燃機関の点火装置の他の回路構成例を示す回路図、
同図(b)はこの電流制限回路によるコレクタ電流の制
限値ICLの変動状態を示す図、第9図(a)は従来の
電流制御回路を具備する内燃機関の点火装必篇の回路構
成例を示す回路図、同図(b)はこの電流制限回路によ
るコレクタ電流の制限値ICLの変動状態を示す図であ
る。 図中、1・・・・抵抗器、2・・・・出力パワートラン
ジスタ、3・・・・トランジスタ、4・・・・抵抗器、
5・・・抵抗器、6・・・・抵抗器、7・・・・点火コ
イル、8・・・・バッテリ、9・・・・点火栓、10・
・・・電流制限回路、11・・・・負特性抵抗素子、1
2 ・・・正特性抵抗素子。 、1.v:η訃f嶽剖策回玲l腸ずう7ぞ人長夏第1図 第2図 夜し1威制ア回斧i具鋤1つ、ぞ、NJ(λ) ra   r’(:) (b) 第8 図
FIG. 1 is a circuit diagram showing the circuit configuration of an ignition device to which the temperature compensation method of the current limiting circuit according to the present invention is applied, and FIG.
Circuit diagram for explaining the operation of the current limiting circuit shown in Figure 3.
Figure 4 (a) shows the collector current waveform of the output power transistor, Figure 4 (b) shows the input current waveform, and Figure 4 (a) shows the temperature characteristics of the negative characteristic resistance element. (b) is a diagram showing the temperature characteristics of the positive characteristic resistance element, and FIG. 5 is the limit value I of the collector current of this embodiment. , FIG. 6 is a circuit diagram showing an example of a circuit configuration in an ignition system for an internal combustion engine equipped with a conventional current control circuit, and FIG. Limit value I. A diagram showing the fluctuation state of L, FIG. 8(a) shows the conventional 1! a circuit diagram showing another circuit configuration example of an ignition device for an internal combustion engine including a flow control circuit;
9(b) is a diagram showing the fluctuation state of the collector current limit value ICL by this current limiting circuit, and FIG. 9(a) is an example of the circuit configuration of an ignition system required for an internal combustion engine equipped with a conventional current control circuit. FIG. 2B is a circuit diagram showing the fluctuation state of the collector current limit value ICL by this current limiting circuit. In the figure, 1...Resistor, 2...Output power transistor, 3...Transistor, 4...Resistor,
5...Resistor, 6...Resistor, 7...Ignition coil, 8...Battery, 9...Ignition plug, 10...
...Current limiting circuit, 11...Negative characteristic resistance element, 1
2...Positive characteristic resistance element. , 1. v: η 訃f 嶽 dissection cycle L intestine 7 zo human long summer 1 figure 2 figure 2 night shift 1 power ax i tool plow, zo, NJ(λ) ra r'(: ) (b) Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)出力パワートランジスタのエミッタと接地間に接
続した出力電流検出用抵抗器と、該出力パワートランジ
スタのベースにコレクタが接続され、前記出力電流検出
抵抗器で検出された電圧が所定以上になると作動し、前
記出力パワートランジスタのベース電流を分流して出力
パワートランジスタの出力電流を一定値以下に制限する
電流制限用トランジスタを具備する電流制限回路におい
て、前記出力電流検出用抵抗器で検出される出力パワー
トランジスタのエミッタ電圧を正特性抵抗素子を介し前
記電流制限用トランジスタのベースに供給して電流増幅
率の温度による変動を補正することを特徴とする電流制
限回路の温度補償方式。
(1) An output current detection resistor is connected between the emitter of the output power transistor and ground, and the collector is connected to the base of the output power transistor, and when the voltage detected by the output current detection resistor exceeds a predetermined value, In a current limiting circuit comprising a current limiting transistor that operates to shunt the base current of the output power transistor to limit the output current of the output power transistor to a certain value or less, the output current is detected by the output current detection resistor. A temperature compensation method for a current limiting circuit, characterized in that the emitter voltage of the output power transistor is supplied to the base of the current limiting transistor via a positive characteristic resistance element to correct temperature-induced fluctuations in current amplification factor.
(2)前記電流制限用トランジスタのベースと接地間に
は負特性抵抗素子を具備する抵抗回路を接続し、ベース
−エミッタ間電圧の温度による変動を補正することを特
徴とする請求項(1)記載の電流制限回路の温度補償方
式。
(2) Claim (1) characterized in that a resistance circuit including a negative characteristic resistance element is connected between the base of the current limiting transistor and the ground to correct variations in the base-emitter voltage due to temperature. Temperature compensation scheme for the current limiting circuit described.
(3)前記抵抗回路は負特性抵抗素子と通常の抵抗の並
列回路に通常の抵抗が直列に接続されてなる直並列回路
からなることを特徴とする請求項(2)記載の電流制限
回路の温度補償方式。
(3) The current limiting circuit according to claim (2), wherein the resistance circuit comprises a series-parallel circuit in which a normal resistance is connected in series to a parallel circuit of a negative characteristic resistance element and a normal resistance. Temperature compensation method.
JP12354688A 1988-05-20 1988-05-20 Temperature compensating system for current limiting circuit Pending JPH01294963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12354688A JPH01294963A (en) 1988-05-20 1988-05-20 Temperature compensating system for current limiting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12354688A JPH01294963A (en) 1988-05-20 1988-05-20 Temperature compensating system for current limiting circuit

Publications (1)

Publication Number Publication Date
JPH01294963A true JPH01294963A (en) 1989-11-28

Family

ID=14863274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12354688A Pending JPH01294963A (en) 1988-05-20 1988-05-20 Temperature compensating system for current limiting circuit

Country Status (1)

Country Link
JP (1) JPH01294963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148061A (en) * 1990-10-12 1992-05-21 Mitsubishi Electric Corp Ignition device for internal combustion engine
JP2006238313A (en) * 2005-02-28 2006-09-07 Sanyo Electric Co Ltd Integrated circuit for starting load
JP2006238312A (en) * 2005-02-28 2006-09-07 Sanyo Electric Co Ltd Integrated circuit for starting load

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148061A (en) * 1990-10-12 1992-05-21 Mitsubishi Electric Corp Ignition device for internal combustion engine
JP2006238313A (en) * 2005-02-28 2006-09-07 Sanyo Electric Co Ltd Integrated circuit for starting load
JP2006238312A (en) * 2005-02-28 2006-09-07 Sanyo Electric Co Ltd Integrated circuit for starting load
JP4601455B2 (en) * 2005-02-28 2010-12-22 三洋電機株式会社 Load start integrated circuit

Similar Documents

Publication Publication Date Title
SU1005668A3 (en) Method for controlling fuel supply in internal combustion engines
EP0039215B1 (en) Temperature compensating voltage generator circuit
US5359891A (en) Thermal type flowmeter
JPH02223672A (en) Diagnostic circuit for unit for giving current regulation and protection against excessive heat dessipation in semiconductor power device
JPH0150138B2 (en)
JPS5875809A (en) Controller for electromagnetic load
US20040085697A1 (en) Thermal overload protection circuit for an automotive ignition system
JPH0474731B2 (en)
JP3125916B2 (en) Load drive circuit with surge protection function
JP2749714B2 (en) Ignition device for internal combustion engine
JPS5949425B2 (en) Ignition system for internal combustion engines
JPH01294963A (en) Temperature compensating system for current limiting circuit
EP0040688B1 (en) Supply-voltage-compensated contactless ignition system for internal combustion engines
JP2010063264A (en) Voltage balance correcting circuit of serial storage cell
US5616843A (en) Method and circuit configuration for protecting a heated temperature-dependent sensor resistor against overheating
JPS62128307A (en) Thermal protection circuit
US6285258B1 (en) Offset voltage trimming circuit
JP3340345B2 (en) Constant voltage generator
JPH03136112A (en) Regulated power supply circuit
JP3928473B2 (en) Current clamp circuit
JP2668875B2 (en) Internal combustion engine ignition device
JP3335984B2 (en) Current generator
JP4403630B2 (en) Power circuit equipment
JPS6145625Y2 (en)
JP2598266B2 (en) Bias circuit