JPH01294734A - Basic amide compound - Google Patents

Basic amide compound

Info

Publication number
JPH01294734A
JPH01294734A JP16136988A JP16136988A JPH01294734A JP H01294734 A JPH01294734 A JP H01294734A JP 16136988 A JP16136988 A JP 16136988A JP 16136988 A JP16136988 A JP 16136988A JP H01294734 A JPH01294734 A JP H01294734A
Authority
JP
Japan
Prior art keywords
cad
activity
acid
amino
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16136988A
Other languages
Japanese (ja)
Other versions
JP2568635B2 (en
Inventor
Terumi Nakajima
暉躬 中嶋
Tadashi Yasuhara
義 安原
Setsu Toki
土岐 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP63161369A priority Critical patent/JP2568635B2/en
Publication of JPH01294734A publication Critical patent/JPH01294734A/en
Application granted granted Critical
Publication of JP2568635B2 publication Critical patent/JP2568635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

NEW MATERIAL:A compound of the formula (wherein m, p and q are each 0 or 1, n is 0-4, R1 is H or an acyl group, and R2 is a hydroxy or amino group). USE:A new basic amide compound composed of a basic amino acid or polyamine having a histamine releasing activity. PREPARATION:Poison glands of silk spiders are extracted with a mixed solvent of a dilute aqueous acid solution (e.g., aqueous trifluoroacetic acid solution) with an organic solvent (e.g., acetonitrile), and the extract is purified with a high-performance chromatography of excellent resolution.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はヒスタミン放出活性を有する塩基性アミノ酸
及びポリアミンから構成される新規な塩基性アミド化合
物に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a novel basic amide compound composed of a basic amino acid and a polyamine having histamine-releasing activity.

(ロ)従来の技術 クモ毒はグルタミン酸レセプター阻害作用を示すことが
知られている。この発明者はジョロウグモ毒の示すグル
タミン酸レセプター阻害作用に着目し、その活性本体の
単離及び化学構造の解明、構造活性相関等の研究を行な
ってきた。その結果、グルタミン酸レセプター阻害物質
JSTX。
(b) Prior Art Spider venom is known to exhibit glutamate receptor inhibiting action. The inventor has focused on the glutamate receptor inhibitory effect of the spider venom, and has conducted research such as isolation of its active substance, elucidation of its chemical structure, and structure-activity relationship. As a result, the glutamate receptor inhibitor JSTX.

N5TXが単離され、化学構造を決定した[Y。N5TX was isolated and its chemical structure determined [Y.

Aramaki et at、、 Proc、 Jpn
、 Acad、、 Set、B、62゜359(198
6)、 Y、Aramaki et at、、 Bio
med、 Res、8゜167(1987)、 Y、A
ramaki et at、、 1bid、、 8,2
41゜(1987)コ。
Aramaki et at, Proc, Jpn
, Acad,, Set, B, 62°359 (198
6), Y, Aramaki et at,, Bio
med, Res, 8°167 (1987), Y, A
ramaki et at,, 1 bid,, 8,2
41° (1987).

(ハ)発明が解決しようとする課題 しかしグルタミン酸レセプター阻害作用以外の生物活性
は検討されておらず、他の生理活性物質は見出されてい
なかった。
(c) Problems to be Solved by the Invention However, biological activities other than glutamate receptor inhibitory action have not been investigated, and no other physiologically active substances have been found.

(ニ)課題を解決するための手段 本発明者はジョロウグモ毒について他の生物活性を検討
した結果、毒腺粗抽出物に顕著なヒスタミン放出活性な
らびに神経伝達遮断活性を認め、この活性物質を単離し
、その化学構造の決定に成功した。
(d) Means for Solving the Problems As a result of examining other biological activities of Negro spider venom, the present inventor found that the crude extract of venom glands had remarkable histamine-releasing activity and neurotransmission-blocking activity, and isolated this active substance. , succeeded in determining its chemical structure.

かくして、この発明によれば一般式 %式% は水素原子またはアシル基、Rtはヒドロキシまたはア
ミノ基を表わす)で示される塩基性アミド化合物が提供
される。
Thus, according to the present invention, there is provided a basic amide compound represented by the general formula % (where % represents a hydrogen atom or an acyl group, and Rt represents a hydroxy or amino group).

この発明の化合物は、上記の一般式から明らかなように
、(オルニチン)Ill−アスパラギン酸またはアスパ
ラギンーカタベリンー(プレトアニン)n−(オルニチ
ン)p−(アルギニン)qを構成成分としている。好ま
しい化合物としては、 m=1の場合に、1)n=3.p=0.q=0またはi
ii ) n = 2 、 p = 0 、 q = 
0であり、m=0の場合に、1)n=0.p=l、q=
1; 1i)n−1,p=l、q=l、1ii)n=1
.p=0. q=0 ; iv) n工3. p=0.
 q=o 、およびv)n=2.p=0、q=0の組合
せが挙げられる。
As is clear from the above general formula, the compound of this invention has (ornithine) Ill-aspartic acid or asparagine-kataverine-(pretoanine) n-(ornithine) p-(arginine) q as a constituent component. Preferred compounds include, when m=1, 1) n=3. p=0. q=0 or i
ii) n = 2, p = 0, q =
0 and m=0, then 1) n=0. p=l, q=
1; 1i) n-1, p=l, q=l, 1ii) n=1
.. p=0. q=0; iv) n engineering 3. p=0.
q=o, and v) n=2. An example is a combination of p=0 and q=0.

R1は、水素原子、またはインドール−3−アセチル、
6−ヒトロキシインドールー3−アセチル、2.4−ジ
ヒドロキシフェニルアセチルのようなアシル基が好まし
い。
R1 is a hydrogen atom or indole-3-acetyl,
Acyl groups such as 6-hydroxyindole-3-acetyl and 2,4-dihydroxyphenylacetyl are preferred.

つぎにこの発明の化合物の製造法について説明する。こ
の発明の化合物は、基本的にジョロウグモ(Nephi
la clavata)の毒腺からの抽出工程と精製工
程から得ることができる。
Next, a method for producing the compound of this invention will be explained. The compound of this invention is basically a Nephi spider.
It can be obtained from the extraction and purification steps from the venom glands of S. la clavata.

抽出は希酸水溶液と有機溶媒との混合溶媒で行なう。こ
の際、毒腺を混合溶媒中に長時間静置しておいてもよい
し、撹拌器、遠心分離機を用いて短時間で行なってもよ
い。希酸水溶液としては、0.5%以下のトリフルオロ
酢酸、トリクロル酢酸、酢酸、0.05%以下の塩酸等
が使用できる。有機溶媒としては、メタノール、エタノ
ール等のアルコール類、アセトニトリル等のニトリル類
が使用できる。有機溶媒の希酸水溶液への混合比は70
%(V八)以下であることが望ましい。
Extraction is performed using a mixed solvent of a dilute aqueous acid solution and an organic solvent. At this time, the poison glands may be left standing in the mixed solvent for a long time, or may be carried out in a short time using a stirrer or a centrifuge. As the dilute acid aqueous solution, 0.5% or less trifluoroacetic acid, trichloroacetic acid, acetic acid, 0.05% or less hydrochloric acid, etc. can be used. As the organic solvent, alcohols such as methanol and ethanol, and nitriles such as acetonitrile can be used. The mixing ratio of organic solvent to dilute acid aqueous solution is 70
% (V8) or less.

抽出物の精製は複数の活性成分が混在しているため、分
離能に優れた高速液体クロマトグラフィを用いて行なう
。カラムとしては逆相系、陽イオン交換系のものが使用
できる。またこれらのカラムを併用して精製することも
可能である。逆相系カラムでの精製に使用する溶媒とし
ては、毒成分の抽出の際に用いた溶媒系でよいが、有機
溶媒としてはアセトニトリルが最も望ましい。陽イオン
交換系カラムを使用する際は、pi(=6.5〜7.5
のリン酸ナトリウム緩衝液によって吸着させ、塩化ナト
リウム゛等の塩の濃度勾配により各成分を分離、溶出さ
せる。溶離液中の毒成分は、紫外検出器による210n
m〜28Or+mでの吸光度測定により、各ピークに相
当する溶出部分を分取することで得られる。
Since the extract contains multiple active ingredients, high performance liquid chromatography, which has excellent separation ability, is used to purify the extract. As the column, a reverse phase type column or a cation exchange type column can be used. It is also possible to purify by using these columns in combination. The solvent used for purification with a reversed-phase column may be the solvent used for extracting the poisonous component, but acetonitrile is the most desirable organic solvent. When using a cation exchange column, pi (=6.5 to 7.5
The components are adsorbed using a sodium phosphate buffer, and each component is separated and eluted using a concentration gradient of a salt such as sodium chloride. The poisonous components in the eluent were detected using an ultraviolet detector at 210n.
It is obtained by measuring the absorbance at m to 28 Or+m and fractionating the eluted portion corresponding to each peak.

精製された成分は、高速液体クロマトグラフィ、H層り
ロマトグラフィ、電気泳動等の手段により、単一の化合
物であることが確認できる。各成分の化学構造の決定は
、酸部分分解による断片化、アミノ酸、ポリアミン分析
、NMRスペクトル、マススペクトル、IRスペクトル
、U■スペクトルを測定することにより行われる。化合
物の活性検定は精製の各段階で、ラット腹腔内肥満細胞
からのヒスタミン放出を調べることにより行われる。
The purified component can be confirmed to be a single compound by means such as high performance liquid chromatography, H-layer chromatography, and electrophoresis. The chemical structure of each component is determined by fragmentation due to acid partial decomposition, amino acid and polyamine analysis, and measurement of NMR spectrum, mass spectrum, IR spectrum, and U* spectrum. Compound activity is assayed at each stage of purification by examining histamine release from rat intraperitoneal mast cells.

検定法を以下に説明する。ラットはウィスター系、30
0−350gのものを用いる。ラットをエーテル麻酔下
、断頭、脱血した後、腹腔内にマストセルメディウム(
MCMと略す; 150mM NaCl。
The assay method will be explained below. Rat is Wistar, 30
Use 0-350g. After decapitating and exsanguinating the rat under ether anesthesia, mast cell medium (
Abbreviated as MCM; 150mM NaCl.

3.7d KCl、、 3.OmM NatHPO,,
3,5mM Kl、PO,。
3.7d KCl, 3. OmM NatHPO,,
3.5mM Kl, PO.

0.9mM esclg、 0.1%グルコース、0,
2%牛血清アルブミン)20!!Qを注入し、1〜2分
マツサージする。
0.9mM esclg, 0.1% glucose, 0,
2% bovine serum albumin) 20! ! Inject Q and massage for 1-2 minutes.

その後、肥満細胞のMCM懸濁液を腹腔から取り出し、
4℃で1100Orp、 5分間遠心分離する。
Then, the MCM suspension of mast cells was removed from the peritoneal cavity.
Centrifuge at 1100 rpm for 5 minutes at 4°C.

沈渣をさらに2〜3回4x(lのMCMで洗浄し、活性
検定に用いる。沈渣即ち肥満細胞は、10’個/xlJ
の濃度にMCMに懸濁させ、この20μρを、0.9%
NaCl水溶液にとかした検体20μρ中に加え、37
℃、5分間反応させる。その後、水冷し、4000rp
mで5分間遠心分離した上清30μgに55%トリクロ
ル酢酸5μaを加えて撹拌し、110000rpで5分
間遠心分離して、上滑中のヒスタミンを定量する。ヒス
タミン定量は、0PA−ポストカラム検出法を用いて高
速液体り6マトグラフイにより行なう。
The pellet is further washed 2-3 times with 4x (l) of MCM and used for activity assay.
This 20μρ was suspended in MCM to a concentration of 0.9%
Add to 20 μρ of the sample dissolved in NaCl aqueous solution,
℃ for 5 minutes. After that, water cooled and 4000 rpm.
55% trichloroacetic acid is added to 30 μg of the supernatant obtained by centrifugation at 5000 rpm for 5 minutes, stirred, and centrifuged at 110,000 rpm for 5 minutes to quantify histamine in the supernatant. Histamine quantification is performed by high performance liquid chromatography using the 0PA-post-column detection method.

各検体の活性は、肥満細胞を0.1%トリトンX−10
020μgと上記のように処理した際のヒスタミン量を
100とし、百分率で表わす。この発明の化合物はこの
検定法により著しいヒスタミン放出活性を示す。
The activity of each sample was determined by 0.1% Triton X-10
The amount of histamine when treated as described above is 100 and is expressed as a percentage. The compounds of this invention exhibit significant histamine-releasing activity by this assay.

同様にヒスタミン放出活性を示すハチ毒中のペプチドで
あるマストパラン等は塩基性アミノ酸に富み、この側鎖
のアミノ基が、活性を発現する上で重要な役割を果して
いるものと考えられている(Y、Hirai et a
l、、 CheIIp、 Phara+、 Bull、
、 27゜1942(1979)、 K、 Takam
atsu et al、、 FEBS、 Lett、。
Similarly, mastoparan, a peptide in bee venom that exhibits histamine-releasing activity, is rich in basic amino acids, and the amino group in this side chain is thought to play an important role in expressing the activity ( Y, Hirai et a
l,, CheIIp, Phara+, Bull,
, 27°1942 (1979), K, Takam
Atsu et al., FEBS, Lett.

月4.123(1983))。Month 4.123 (1983)).

この発明の化合物も塩基性アミノ酸およびポリアミンに
より構成されており、強い塩基性を示すものと考えられ
る。クモ毒からはこの塩基性部分に疎水性の置換基が結
合した状態で得られるが、この置換基は酸で加水分解す
ることにより切断でき、親水性かつ塩基性部分のみを得
ることもできる。この部分もまたらとの化合物と同様に
ヒスタミン放出活性を示し、また同じ置換基をもつ複数
個の化合物のヒスタミン放出活性が、陽イオン交換樹脂
への吸着の強さで判断できる塩基性の強さとほぼ平行し
ていることから、今回の化合物のヒスタミン放出活性に
おいては、塩基性アミノ酸及びポリアミンからなる部分
が重要と考えられる。
The compound of this invention is also composed of a basic amino acid and a polyamine, and is considered to exhibit strong basicity. Spider venom is obtained with a hydrophobic substituent attached to this basic moiety, but this substituent can be cleaved by hydrolysis with an acid to obtain only the hydrophilic and basic moiety. This moiety also exhibits histamine-releasing activity like the other compounds, and the histamine-releasing activity of multiple compounds with the same substituent group is determined by the strength of basicity, which can be judged by the strength of adsorption to the cation exchange resin. Since this is almost parallel to the above, it is thought that the part consisting of basic amino acids and polyamines is important for the histamine-releasing activity of the present compound.

また、クモ毒中から精製した状態では、置換基(R8)
が、インドール骨格等、酸化に対し不安定な部分構造を
もつため、これを切断した後、より安定なアシル基を導
入することにより、活性を損なわず、より安定な化合物
を得ることも可能である。
In addition, in the state purified from spider venom, the substituent (R8)
However, since it has a partial structure that is unstable to oxidation, such as an indole skeleton, it is possible to obtain a more stable compound without losing activity by cutting this and then introducing a more stable acyl group. be.

アシル基としては、アセチル、プロピオニル、ブチリル
、ヘキサノイル、ヘプタノイルのようなアルカノイル;
ベンゾイル、ナフタレンカルボニルのようなアリールカ
ルボニル;メトキシカルボニル、エトキシカルボニル、
ブトキシカルボニルのようなアルコキシカルボニル;フ
ェノキシカルボニルのようなアリールオキシカルボニル
;ベンジルカルボニル、フェネチルカルボニルのような
アラルキルカルボニル等のような有機カルボン酸から誘
導されたアシル基が挙げられる。これらのアシル基の導
入は、常法に従って、有機カルボン酸の活性誘導体(酸
ハライド、酸無水物、活性イミド誘導体、活性エステル
誘導体など)を用いて行うことができる。
As an acyl group, an alkanoyl such as acetyl, propionyl, butyryl, hexanoyl, heptanoyl;
Arylcarbonyl such as benzoyl, naphthalenecarbonyl; methoxycarbonyl, ethoxycarbonyl,
Examples include acyl groups derived from organic carboxylic acids such as alkoxycarbonyl such as butoxycarbonyl; aryloxycarbonyl such as phenoxycarbonyl; aralkylcarbonyl such as benzylcarbonyl and phenethylcarbonyl. Introduction of these acyl groups can be carried out using active derivatives of organic carboxylic acids (acid halides, acid anhydrides, active imide derivatives, active ester derivatives, etc.) according to conventional methods.

(ホ)実施例 以下実施例によりこの発明の詳細な説明する。(e) Examples The present invention will be explained in detail below with reference to Examples.

実施例1 ジョロウグモ10匹から摘出した毒腺を1jIQの0.
1%トリフルオロ酢酸を含む60%アセトニトリル水溶
液中で5分間超音波処理し、均一な懸濁液とした。これ
を1200Orpm、  5分間遠心分離し、上滑を直
接高速液体クロマトグラフィにより分離した。カラムは
東ソー株式会社製、0DS−80TM(4,6X250
zx)を用い、流速1,0xQ1分で0.1%トリフル
オロ酢酸を含む5%アセトニトリルから、001%トリ
フルオロ酢酸を含む60%アセトニトリル水溶液への直
線濃度勾配法により溶出させた。
Example 1 The venom glands removed from 10 Joro spiders were 0.1 jIQ.
Ultrasonication was performed for 5 minutes in a 60% acetonitrile aqueous solution containing 1% trifluoroacetic acid to form a uniform suspension. This was centrifuged at 1200 rpm for 5 minutes, and the supernatant was directly separated by high performance liquid chromatography. The column is manufactured by Tosoh Corporation, 0DS-80TM (4,6X250
Elution was carried out using a linear concentration gradient method from 5% acetonitrile containing 0.1% trifluoroacetic acid to 60% acetonitrile aqueous solution containing 001% trifluoroacetic acid at a flow rate of 1.0 x Q 1 min.

溶出液を2xQずつ20両分に分け、各両分についてヒ
スタミン放出活性を調べた。活性検定に際し各画分を一
度乾固させ、2ytQの0.9%NaCl水溶液に改め
てとかし、この20μgをそれぞれ検定に供した。
The eluate was divided into 20 portions of 2×Q, and each portion was examined for histamine release activity. For the activity assay, each fraction was once dried and dissolved again in a 0.9% NaCl aqueous solution of 2ytQ, and 20 μg of each fraction was used for the assay.

活性検定の結果を第1図に示した。第1図中活性を示す
画分7をさらに同じカラムを用いて、0.1%トリフル
オロ酢酸を含む18%アセトニトリル水溶液を溶離液と
して再分離し、220nmでの吸収を示す各ピークを分
取し、6種のピークを得た。各ピーク中の成分は同一条
件で高速液クロ分析し、単一成分であることを確認した
。分析の際にフォトダイオードアレイ検出器(日本分光
、MULTI 320)を用いてUVスペクトルを測定
した結果、いずれの成分も、220nm、 2g0r+
m、 29Or+mに吸収極大を示した。これらの成分
の一部を採り、5゜7N−HCI中130℃、9時間加
水分解した後、東ソー株式会社製、IEX−215(4
,Ox 5D、w)を用いたアミノ酸分析計により、ア
ミノ酸及びポリアミン組成を求めた。
The results of the activity assay are shown in Figure 1. Fraction 7 showing activity in Figure 1 was further separated using the same column using an 18% acetonitrile aqueous solution containing 0.1% trifluoroacetic acid as an eluent, and each peak showing absorption at 220 nm was separated. Six types of peaks were obtained. The components in each peak were subjected to high performance liquid chromatography analysis under the same conditions and confirmed to be a single component. As a result of measuring the UV spectrum using a photodiode array detector (JASCO Corporation, MULTI 320) during analysis, all components were found to have a wavelength of 220 nm, 2g0r+.
It showed an absorption maximum at 29Or+m. A portion of these components was taken and hydrolyzed in 5°7N-HCI at 130°C for 9 hours.
, Ox 5D, w), the amino acid and polyamine compositions were determined.

結果を表1に示した。つぎにこれらの成分を5.7N−
HCI中10(1℃、20分間加水分解して成分の断片
化を行なった。加水分解後、東ソー株式会社製、0DS
−80TMカラムを用いた高速液体クロマトグラフィに
より各断片を分離し、210nmに吸収をもつ各ピーク
を分取した。各断片のアミノ酸及びポリアミン組成を前
述の方法で求め、各断片のアミノ末端残基をダンシル化
により調べた。即ち、各断片を0.1Mトリエチルアミ
ン−炭酸緩衝液(pH=8.2) 10μQ中ダンシル
クロリド(100μ9/litりアセトン溶液IOμg
を加え、37℃、1時間反応させた。
The results are shown in Table 1. Next, add these ingredients to 5.7N-
The components were fragmented by hydrolysis in HCI at 1°C for 20 minutes. After hydrolysis, 0DS (manufactured by Tosoh Corporation)
Each fragment was separated by high performance liquid chromatography using a -80TM column, and each peak having an absorption at 210 nm was fractionated. The amino acid and polyamine compositions of each fragment were determined by the method described above, and the amino terminal residues of each fragment were examined by dansylation. That is, each fragment was mixed with IOμg of dansyl chloride (100μ9/lit in acetone solution) in 10μQ of 0.1M triethylamine-carbonate buffer (pH=8.2).
was added and reacted at 37°C for 1 hour.

反応後溶媒を留去し、残渣を5.7N−HCI中130
℃、9時間加水分解した後、分解物中のダンシル化アミ
ノ酸、ポリアミンを、東ソー株式会社製、オクタデシル
−4PWカラム(4,0X150zx)を用いた高速液
体クロマトグラフィにより同定した。以上の検討により
判明した各成分の断片および各成分の配列を表2−1,
2−2に示した。この配列中のアスパラギン酸とアスパ
ラギンの判別は、ピストリフルオロアセトキシ−ヨード
ベンゼン(BTI)を用いることにより行なった。即ち
、50%アセトニトリル水溶液20μQに各クモ毒成分
100 p moleから1 n moleをとかし、
BTIのアセトニトリル溶液(5mM)20μgを加え
、60℃、8〜IO分間反応さける。反応後アセトン3
0μgを加え、60℃で10分間加熱し過剰のBTIを
分解する。
After the reaction, the solvent was distilled off and the residue was dissolved in 5.7N-HCI at 130%
After hydrolysis for 9 hours at °C, dansylated amino acids and polyamines in the decomposition product were identified by high performance liquid chromatography using an octadecyl-4PW column (4,0x150zx) manufactured by Tosoh Corporation. Table 2-1 shows the fragments of each component and the sequence of each component found through the above study.
It is shown in 2-2. Discrimination between aspartic acid and asparagine in this sequence was performed using pitrifluoroacetoxy-iodobenzene (BTI). That is, 100 p mole to 1 n mole of each spider venom component was dissolved in 20 μQ of 50% acetonitrile aqueous solution,
Add 20 μg of BTI acetonitrile solution (5 mM), and react at 60° C. for 8 to 10 minutes. Acetone 3 after reaction
Add 0 μg and heat at 60° C. for 10 minutes to decompose excess BTI.

BTIは末端アミド基を一部アミンに変換する反応に用
いられている。この反応で、アスパラギンは、塩基性ア
ミノ酸(β−アミノ−アラニン)となり、加水分解後、
アスパラギン酸と区別ができる。即ち、BTI処理後加
水分解し、アスパラギン酸が検出されればアスパラギン
酸が、β−アミノ−アラニンが検出されればアスパラギ
ンが配列中に含まれていることになる。各毒成分につい
て検討を行った結果、成分1.2がアスパラギン酸、成
分3,4,5.6がアスパラギンを含むことが判明した
。なお、表2−2に示したR1はアミノ酸、ポリアミン
を含まず、フォトダイオードアレイ検出器によるUVス
ペクトルは、吸収極大が220nm、 280nm、 
290nsと、もとの成分と同じものであった。もとの
各成分のアミノ末端をダンシル化により調べたところ、
ダンシル−アスパラギン酸、α−ダンシル−オルニチン
が検出されないことから、もとの成分のアミノ末端残基
のα−アミノ基にこのR,が結合していることが判明し
た。そこでR8を液体クロマトグラフィで分取し、’ト
NMRを測定した。測定はDtO中、日本電子製GX−
400を用いて行ない、シグナルは、3.83(s)、
7.12(t)。
BTI is used in reactions that partially convert terminal amide groups into amines. In this reaction, asparagine becomes a basic amino acid (β-amino-alanine), and after hydrolysis,
It can be distinguished from aspartic acid. That is, if aspartic acid is detected after hydrolysis after BTI treatment, it means that aspartic acid is contained in the sequence, and if β-amino-alanine is detected, asparagine is contained in the sequence. As a result of examining each toxic component, it was found that component 1.2 contained aspartic acid, and components 3, 4, and 5.6 contained asparagine. Note that R1 shown in Table 2-2 does not contain amino acids or polyamines, and the UV spectrum measured by a photodiode array detector has absorption maximums of 220 nm, 280 nm,
290 ns, which was the same as the original component. When the amino terminals of each of the original components were examined by dansylation, we found that
Since dansyl-aspartic acid and α-dansyl-ornithine were not detected, it was revealed that this R was bonded to the α-amino group of the amino terminal residue of the original component. Therefore, R8 was fractionated by liquid chromatography and its NMR was measured. Measurement was performed using JEOL GX- in DtO.
400, the signal was 3.83 (s),
7.12(t).

7.20(t)、7.26(s)、7.46(d)、7
.57(d)にそれぞれ観測された。また逆相高速液体
クロマトグラフィでの溶出位置、およびUVスペクトル
を比較することにより、R3はインドール−3−酢酸と
判明した。
7.20(t), 7.26(s), 7.46(d), 7
.. 57(d) respectively. Further, by comparing the elution position in reverse phase high performance liquid chromatography and the UV spectrum, R3 was found to be indole-3-acetic acid.

これらの各成分のヒスタミン放出活性を表3に示した。Table 3 shows the histamine release activity of each of these components.

Put;ブトレ1ニン   、Arg;アルギニンCa
dHカダベリン 2      RI−0rn−Asp−Cad−Put
−Put3      R,−^sx−Cad−Orn
−Arg4      R,−Asx−Cad−Put
−Arg5      R,−^5x−Cad−Orn
ASX;7人パラキン  Orn;オルニチノPut;
プトレにン  Arg;フルXコン  Cad;カダベ
リン2      Asp−Cad−Put−Put、
0rn−Asx−Cad、RI−3Asx−Cad、C
ad−Orn−Arg、Asx−Cad−Orn−Ar
g、RI−4Asx−Cad、Asx−Cad−Put
−Arg、RI−5Asx−Cad、R,一 実施例2 実施例1の第1図に示した両分5.6をさらに東ソー株
式会社製、IEX−510K(4,OX 300zz)
ヲ用イた陽イオン交換クロマトグラフィーにより分離し
た。分析条件及びクロマトグラムを第2図に示した。
Put; Butre1nin, Arg; Arginine Ca
dH Cadaverine 2 RI-0rn-Asp-Cad-Put
-Put3 R, -^sx-Cad-Orn
-Arg4 R, -Asx-Cad-Put
-Arg5 R, -^5x-Cad-Orn
ASX; 7 people Parakin Orn; Ornitino Put;
Putrenine Arg; Full X Con Cad; Cadaverine 2 Asp-Cad-Put-Put,
0rn-Asx-Cad, RI-3Asx-Cad, C
ad-Orn-Arg, Asx-Cad-Orn-Ar
g, RI-4Asx-Cad, Asx-Cad-Put
-Arg, RI-5Asx-Cad, R, Example 2 Both parts 5.6 shown in FIG.
Separation was performed using cation exchange chromatography. The analytical conditions and chromatogram are shown in Figure 2.

第2図中ビーク5’、7’、8’をさらに前述のODS
−80TMカラムを用いて精製し、1″〜5″の5成分
を得た。
The beaks 5', 7', and 8' in Fig. 2 are further connected to the above-mentioned ODS.
Purification was performed using a -80TM column to obtain five components ranging from 1'' to 5''.

精製の際のクロマトグラム及び条件を図3に示した。精
製に際して各成分のUVスペクトルをフォトダイオード
アレイ検出器で測定したところ、220nm、 255
nll、 280+vに吸収極大が見られた。各成分の
一部を採り、5.7N−HCI中130℃、9時間加水
分解した後、アミノ酸ポリアミン分解を行なったところ
、表4に示した組成が得られた。つぎにこれらの成分を
5.7N−HCI中100℃、20分加水分解して断片
化した後、前述のODS−80TMカラムを用いて断片
を分離し、断片のアミノ酸ポリアミン組成を調べた。さ
らに各断片のアミノ末端残基をダンシル化により調べた
。以上の検討により判明した各成分のアミノ酸ポリアミ
ン配列を表5−11各成分より得られた断片を表5−2
に示した。
The chromatogram and conditions during purification are shown in FIG. During purification, the UV spectrum of each component was measured using a photodiode array detector, and the results were 220 nm, 255 nm.
nll, absorption maximum was observed at 280+v. A portion of each component was taken and hydrolyzed in 5.7N-HCI at 130° C. for 9 hours, followed by amino acid polyamine decomposition, and the compositions shown in Table 4 were obtained. Next, these components were fragmented by hydrolysis in 5.7N-HCI at 100° C. for 20 minutes, and the fragments were separated using the aforementioned ODS-80TM column, and the amino acid polyamine composition of the fragments was investigated. Furthermore, the amino terminal residues of each fragment were investigated by dansylation. Table 5-11 shows the amino acid polyamine sequences of each component found through the above studies. Table 5-2 shows the fragments obtained from each component.
It was shown to.

表5−2中のR1−はもとの成分と同じ、220nm。R1- in Table 5-2 is the same as the original component, 220 nm.

255r++s、 2g0nII+に吸収極大をもち、
またもとの成分のアミノ末端残基のα−アミノ基がダン
シル化されないことから、R,−は各成分のアミノ末端
残基のα−アミノ基に結合した置換基と判明した。
255r++s, has an absorption maximum at 2g0nII+,
Furthermore, since the α-amino group of the amino terminal residue of the original components was not dansylated, R,- was found to be a substituent bonded to the α-amino group of the amino terminal residue of each component.

このRI−を液体クロマトグラフィで分取し、FD−M
Sスペクトルを測定したところ、分子量は191と判明
した。
This RI- was fractionated by liquid chromatography and FD-M
When the S spectrum was measured, the molecular weight was found to be 191.

さらにRI−をジアゾメタンでメチル化した後、GC−
マススペクトルを測定した際の開裂パターンおよびUV
スペクトル、高速液クロでの溶出位置から、R1−は6
−ヒトロキシインドールー3−酢酸と判明した。
Furthermore, after methylating RI- with diazomethane, GC-
Cleavage pattern and UV when measuring mass spectra
From the spectrum and elution position in high-performance liquid chromatography, R1- is 6
- It turned out to be hydroxyindole-3-acetic acid.

重水中での’H−NMRを測定したところ、3.90p
pm(2H,s)、7.05ppa+(IH,s)、7
.10ppm(IH,s)が観測されたが、これはイン
ドール環の6位に水酸基が存在し、重水中での置換によ
り、5位、7位のプロトンが重水素置換されたため検出
できず、メチレンプロトン、インドール環の2位、4位
のプロトンのみが現れているものと考えられる。また実
施例1に述べた方法で、配列中のアスパラギン酸、アス
パラギンの判別を行ったところ、すべてアスパラギンと
判明した。またこれらの成分について、ラット腹腔内肥
満細胞からのヒスタミン放出活性を調べたところ、いず
れも顕著な活性を示した。
When 'H-NMR was measured in heavy water, it was 3.90p.
pm(2H,s), 7.05ppa+(IH,s), 7
.. 10 ppm (IH, s) was observed, but this could not be detected because there is a hydroxyl group at the 6-position of the indole ring, and the protons at the 5- and 7-positions were replaced with deuterium due to substitution in heavy water. It is thought that only the protons at the 2nd and 4th positions of the indole ring appear. Furthermore, when aspartic acid and asparagine in the sequence were distinguished by the method described in Example 1, all of them were found to be asparagine. Furthermore, when these components were examined for their histamine release activity from rat intraperitoneal mast cells, they all showed significant activity.

結果を表6に示した。The results are shown in Table 6.

2″   R+−0rn−Asx−Cad−Put−P
ut3″   R,−0rn−Asx−Cad−Put
−Put−Put4’     R+−Asx−Cad
−Put−Put−Put2″  Asx−Cad−P
ut−Put 、0rn−Asx−Cad、 R+ −
3″  Asx−Cad−Put−Put−Put 、
0rn−Asx−Cad、 R+ −4’   Asx
−Cad、Asx−Cad−Put−Put−Put、
R+一実施例3 ジョロウグモ毒腺20匹分を1m5の0.1%トリフル
オロ酢酸水溶液で抽出し、抽出液を東ソー株式会社製0
DS−PAKに添加し、さらに2J112の0.1%ト
リフルオロ酢酸水溶液で洗浄した後、0.1%トリフル
オロ酢酸を含む30%アセトニトリル水溶液2xQで洗
浄し、溶出する成分を集め、更に前述のODS−80T
Mカラムを用いた逆相高速液体クロマトグラフィにより
分離した。クロマトグラムおよび分離条件を第4図に示
した。第4図中ピーク3を分取し、同じカラムを用いて
0.1%トリフルオロ酢酸を含む5%アセトニトリル水
溶液を溶離液として精製し、1″′及び2″′の2成分
を得た。フォトダイオードアレイ検出器でUVスペクト
ルを測定した結果、21On11.280nmに吸収極
大を示した。これらの成分を府と同様な方法で加水分解
した後、アミノ酸、ポリアミン組成を求めた。結果を表
7に示した。また各成分を5.7N−HCI中ioo℃
、20分加水分解して断片化した後、各断片を分離し、
各断片のアミノ酸、ポリアミン組成およびアミノ末端残
基を既述の方法で調べた。その結果、表8−■に示すよ
うな配列が得られた。また表8−2に各断片を示した。
2″ R+-0rn-Asx-Cad-Put-P
ut3″R,-0rn-Asx-Cad-Put
-Put-Put4' R+-Asx-Cad
-Put-Put-Put2″ Asx-Cad-P
ut-Put, 0rn-Asx-Cad, R+-
3″ Asx-Cad-Put-Put-Put,
0rn-Asx-Cad, R+ -4' Asx
-Cad, Asx-Cad-Put-Put-Put,
R+1 Example 3 The venom glands of 20 spider spiders were extracted with 1 m5 of 0.1% trifluoroacetic acid aqueous solution, and the extract was extracted with Tosoh Co., Ltd.
After adding to DS-PAK and washing with 2J112 0.1% trifluoroacetic acid aqueous solution, washing with 30% acetonitrile aqueous solution 2xQ containing 0.1% trifluoroacetic acid, collecting the eluted components, and further washing as described above. ODS-80T
Separation was performed by reverse phase high performance liquid chromatography using an M column. The chromatogram and separation conditions are shown in FIG. Peak 3 in FIG. 4 was separated and purified using the same column using a 5% acetonitrile aqueous solution containing 0.1% trifluoroacetic acid as an eluent to obtain two components, 1"' and 2"'. As a result of measuring the UV spectrum with a photodiode array detector, 21On showed an absorption maximum at 11.280 nm. After hydrolyzing these components in the same manner as Fu, the amino acid and polyamine compositions were determined. The results are shown in Table 7. In addition, each component was dissolved in 5.7N-HCI at iooo℃.
, after 20 minutes of hydrolysis and fragmentation, each fragment was separated,
The amino acids, polyamine composition, and amino terminal residues of each fragment were investigated using the methods described above. As a result, the arrangement shown in Table 8-■ was obtained. Further, each fragment is shown in Table 8-2.

表8−2に示す断片R6−は、もとの成分と同じ21O
nI11,280nmに吸収を示し、またアミノ末端の
アスパラギン酸、オルニチンのα−アミノ基がダンシル
化されないことから、R8−はこれらアミノ末端残基の
α−アミノ基に結合した置換基と判明した。またこの置
換基は、高速液体クロマトグラフィでの溶出位置および
UVスペクトルから、2,4−ジヒドロキシフェニル酢
酸と判明した。これらの成分についてラット腹腔内肥満
細胞からのヒスタミン放出活性を調べたところいずれも
顕著な活性を示した。結果を表9に示した。
Fragment R6- shown in Table 8-2 has the same 21O
It showed absorption at nI11, 280 nm, and since the α-amino groups of aspartic acid and ornithine at the amino terminals were not dansylated, R8- was found to be a substituent bonded to the α-amino groups of these amino-terminal residues. Further, this substituent was found to be 2,4-dihydroxyphenylacetic acid from the elution position in high performance liquid chromatography and the UV spectrum. When these components were examined for their histamine release activity from rat intraperitoneal mast cells, they all showed significant activity. The results are shown in Table 9.

1″’   R+−Asx−Cad−Orn−Arg2
″’   R+−0rn−Asx−Cad−Put−P
utR,;2,4−ジtFa4ジフェニルーアセチル基
表8−2 1”    Asx−Cad−Orn−^rg、Asx
−Cad、R+−実施例4 実施P11で得られた成分3を5.7N 1ICI中1
00℃、15分加水分解して断片化し、前述のODS−
80TMカラムを用いて各断片を精製し、置換基を除い
た部分のみを得た。また実施例2で得た成分l″、2″
、3″を5.7N−HCI中100℃、20分加水分解
して断片化しODS−8OTMカラムを用いて精製し、
置換基を除いた部分を同様に薄だ。これらの塩基性部分
についてラット腹腔内肥満細胞からのヒスタミン放出活
性を測定したところ、いずれも活性を示した。結果及び
得られた塩基性部分のアミノ酸、ポリアミン配列を表1
0に示した。
1'' R+-Asx-Cad-Orn-Arg2
″' R+-0rn-Asx-Cad-Put-P
utR, ;2,4-ditFa4 diphenylacetyl group Table 8-2 1” Asx-Cad-Orn-^rg, Asx
-Cad, R+-Example 4 Component 3 obtained in Example P11 in 5.7N 1ICI
00°C for 15 minutes to fragment the ODS-
Each fragment was purified using an 80TM column to obtain only the portion from which the substituents were removed. In addition, the components l″ and 2″ obtained in Example 2
, 3″ was fragmented by hydrolysis in 5.7N-HCI at 100°C for 20 minutes, and purified using an ODS-8OTM column.
The part excluding the substituents is similarly thin. When the histamine release activity of these basic moieties from rat intraperitoneal mast cells was measured, all showed activity. Table 1 shows the results and the amino acid and polyamine sequences of the basic part obtained.
0.

神経伝達遮断活性 クモ毒は、節足動物のグルタミン酸レセプターを遮断す
ることにより神経伝達を阻害する作用をもつが、今回の
ヒスタミン放出活性成分についてイセエピ多脚の神経筋
シナプスを用い、神経伝達に対する影響を調べた。イセ
エピ多脚の伸張筋に記録電極を刺入し、支配神経を単一
線維に分離し、刺激することによって、興奮性後シナプ
ス電位(EPSP)を発生させ、各成分を、神経線維に
投与し、毒成分がEPSPに与える影響を調べた。
Neurotransmission-blocking spider venom has the effect of inhibiting neurotransmission by blocking glutamate receptors in arthropods.This time, we investigated the effects of the histamine-releasing active ingredient on neuromuscular synapses of the spiny polypod, and on neurotransmission. I looked into it. By inserting a recording electrode into the extensor muscle of the Isepi multipod, separating the innervating nerve into single fibers and stimulating them, an excitatory postsynaptic potential (EPSP) is generated, and each component is administered to the nerve fiber. , investigated the effects of toxic components on EPSP.

その結果、実施例1における3、4、実施例2における
2″、3″、4″および実施例3におけるど′がEPS
Pの振幅を著しく減少させた。即ち、これらの毒成分は
、ヒスタミン放出だけでなく、節足動物の神経伝達を遮
断する活性も示すことが判明した。
As a result, 3 and 4 in Example 1, 2'', 3'', 4'' in Example 2, and 0' in Example 3 were EPS.
The amplitude of P was significantly decreased. That is, it has been found that these toxic components not only release histamine, but also exhibit the activity of blocking nerve transmission in arthropods.

各成分のアミノ酸、ポリアミン配列と、EPSPの減少
とを表11に示した。
Table 11 shows the amino acid and polyamine sequences of each component and the decrease in EPSP.

表11Table 11

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1による溶出画分のヒスタミン放出活
性を示すグラフ図、第2図は、実施例1による溶出画分
5.6のクロマトグラム図、第3図は実施例2によるピ
ーク5′、7′、8′についてのクロマトグラム図およ
び第4図は実施例3による溶出画分のクロマトグラム図
を示すしのである。 第1図 1令1号) 第2図 第3図 (分)
FIG. 1 is a graph showing the histamine release activity of the elution fraction according to Example 1, FIG. 2 is a chromatogram of elution fraction 5.6 according to Example 1, and FIG. 3 is the peak according to Example 2. Chromatograms for 5', 7', and 8' and FIG. 4 are chromatograms of the elution fraction according to Example 3. Figure 1, Order No. 1) Figure 2, Figure 3 (minutes)

Claims (10)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ (m、p、qは0または1、nは0から4を、R_1は
水素原子またはアシル基、R_2はヒドロキシまたはア
ミノ基を表わす)で示される塩基性アミド化合物。
(1) General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (m, p, q are 0 or 1, n is 0 to 4, R_1 represents a hydrogen atom or an acyl group, R_2 represents a hydroxy or amino group) A basic amide compound represented by
(2)R_1がインドール−3−アセチル基であり、m
=1、n=3、p=0、q=0である請求項1記載の化
合物。
(2) R_1 is an indole-3-acetyl group, m
2. The compound according to claim 1, wherein: =1, n=3, p=0, q=0.
(3)R_1がインドール−3−アセチル基であり、m
=1、n=2、p=0、q=0である請求項1記載の化
合物。
(3) R_1 is an indole-3-acetyl group, m
2. The compound according to claim 1, wherein: =1, n=2, p=0, q=0.
(4)R_1がインドール−3−アセチル基であり、m
=0、n=0、p=1、q=1である請求項1記載の化
合物。
(4) R_1 is an indole-3-acetyl group, m
The compound according to claim 1, wherein: =0, n=0, p=1, q=1.
(5)R_1がインドール−3−アセチル基であり、m
=0、n=1、p=1、q=1である請求項1記載の化
合物。
(5) R_1 is an indole-3-acetyl group, m
The compound according to claim 1, wherein: =0, n=1, p=1, q=1.
(6)R_1がインドール−3−アセチル基であり、m
=0、n=1、p=0、q=0である請求項1記載の化
合物。
(6) R_1 is an indole-3-acetyl group, m
The compound according to claim 1, wherein: =0, n=1, p=0, q=0.
(7)R_1が水素原子であり、m=0、n=3、p=
0、q=0である請求項1記載の化合物。
(7) R_1 is a hydrogen atom, m=0, n=3, p=
0, q=0.
(8)R_1が水素原子であり、m=0、n=2、p=
0、q=0である請求項1記載の化合物。
(8) R_1 is a hydrogen atom, m=0, n=2, p=
0, q=0.
(9)R_1が水素原子であり、m=0、n=1、p=
1、q=1である請求項1記載の化合物。
(9) R_1 is a hydrogen atom, m=0, n=1, p=
1. The compound according to claim 1, wherein q=1.
(10)R_1が水素原子であり、m=0、n=0、p
=1、q=1である請求項1記載の化合物。
(10) R_1 is a hydrogen atom, m=0, n=0, p
The compound according to claim 1, wherein q=1.
JP63161369A 1988-01-23 1988-06-29 Basic amide compound Expired - Lifetime JP2568635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63161369A JP2568635B2 (en) 1988-01-23 1988-06-29 Basic amide compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-13463 1988-01-23
JP1346388 1988-01-23
JP63161369A JP2568635B2 (en) 1988-01-23 1988-06-29 Basic amide compound

Publications (2)

Publication Number Publication Date
JPH01294734A true JPH01294734A (en) 1989-11-28
JP2568635B2 JP2568635B2 (en) 1997-01-08

Family

ID=26349268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63161369A Expired - Lifetime JP2568635B2 (en) 1988-01-23 1988-06-29 Basic amide compound

Country Status (1)

Country Link
JP (1) JP2568635B2 (en)

Also Published As

Publication number Publication date
JP2568635B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
DE69913242T2 (en) Peptide analogs of glucagon-like-peptide-1 (7-37), their preparation and pharmaceutical compositions
US4021481A (en) Amido derivatives of 2,4,6-triiodobenzoic acids containing at least one N-hydroxyalkyl and at least two hydroxyl groups
Lagarias et al. Cyclopeptide alkaloids. Synthesis of the ring system and its ion affinity
SE466200B (en) TREO-3-PROTECTED AMINO-2-HYDROXY-4-OXO-ACID ACID OR ITS ESTER AND A SEAT FOR PREPARATION THEREOF
ARAMAKI et al. Chemical structure of Joro spider toxin (JSTX)
EP0051301A1 (en) 1-Carboxy-azaalkyl-indolin-2-carboxylic acids, process for preparing them, pharmaceutical compositions containing them and their therapeutical use
Teng et al. Synthesis and biological evaluation of unique stereodimers of sinomenine analogues as potential inhibitors of NO production
Fujioka et al. Isolation and identification of L-pipecolic acid and nicotinamide as flower-inducing substances in Lemna
JPH01294734A (en) Basic amide compound
Marchesini et al. Synthesis, spectral properties and enzymatic hydrolysis of fluorescent derivatives of cerebroside sulfate containing long-wavelength-emission probes
JPS5841892A (en) Novel cyclophosphamide derivative
Godfroid et al. Structure-activity relationship in PAF-acether. 3. Hydrophobic contribution to agonistic activity
Gibbs et al. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes
EP0267179B1 (en) Cystin compounds, their preparation and their use
Bellosta et al. Synthesis of (2-deoxy-α-d-glyc-2-enopyranosyl) arenes by stereospecific counjugate-addition of organocopper reagents to peracetylated hex-1-enopyran-3-uloses
Becker et al. An expedient synthesis of 3-amino-5-hydroxy-benzoic acid and its N-alkyl analogues
Madhu et al. An efficient synthesis of Nα-protected amino and peptide acid aryl amides via iodine-mediated oxidative acylation of Nα-protected amino and peptide thioacids
JPH0558943A (en) New bioactive substance derived from propolis
JPS58203982A (en) Vitamin e-amino acid ester and its preparation
SU1240362A3 (en) Method of producing hydantoin derivatives
Jorgensen et al. Thyroxine analogs. XIX. 3, 5-dimethyl-3'-isopropyl-DL-thyronine
JPH07223964A (en) Phospholipase a2 inhibitor
JPS62246575A (en) Method for purifying pyrroloquinolinequinone
Oloyede et al. Hispanamide: an antioxidant phenolic propanamide from the leaves of Acalypha hispida (burn. f)
Shirota et al. Potential inhibitors of collagen biosynthesis. 5, 5-Difluoro-DL-lysine and 5, 5-dimethyl-DL-lysine and their activation by lysyl-tRNA ligase