JPH01294575A - Production of ceramic molded article - Google Patents

Production of ceramic molded article

Info

Publication number
JPH01294575A
JPH01294575A JP62307493A JP30749387A JPH01294575A JP H01294575 A JPH01294575 A JP H01294575A JP 62307493 A JP62307493 A JP 62307493A JP 30749387 A JP30749387 A JP 30749387A JP H01294575 A JPH01294575 A JP H01294575A
Authority
JP
Japan
Prior art keywords
silicon
powder
sic
group
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62307493A
Other languages
Japanese (ja)
Inventor
Masayoshi Ito
正義 伊藤
Akira Takeuchi
亮 武内
Kenji Iwata
健二 岩田
Mineo Kobayashi
小林 峰生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62307493A priority Critical patent/JPH01294575A/en
Priority to KR1019880701187A priority patent/KR910001078B1/en
Priority to PCT/JP1988/000065 priority patent/WO1988005779A1/en
Priority to EP88901299A priority patent/EP0301099B1/en
Priority to DE3855646T priority patent/DE3855646T2/en
Priority to KR1019900702572A priority patent/KR920001354B1/en
Priority to KR1019900702573A priority patent/KR910008295B1/en
Priority to CA000559220A priority patent/CA1340699C/en
Publication of JPH01294575A publication Critical patent/JPH01294575A/en
Priority to US08/383,712 priority patent/US5596117A/en
Priority to US08/413,169 priority patent/US5620934A/en
Priority to US08/413,115 priority patent/US5508363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To increase bulk density and strength and improve oxidation resistance at high temperature, etc., by baking a mixture of silicon-containing polymeric compound containing repeating structural unit expressed by the general formula and powder of SiC or Si3N4 at fixed temperature. CONSTITUTION:A silicon-containing polymeric compound having repeating structural unit expressed by the general formula (with a proviso that, m; 0 or 1-10 positive integer, n; 1, 2 or 3, R1: hydrogen, alkyl group or aryl group, R2: alkylene group or phenylene group) is prepared. Said compound is mixed with SiC powder or Si3N4 powder and molded. Next, said molded material is baked at a temperature; 500-2500 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、易加工性で側鎖にシリル基を含有する特定の
含ケイ素高分子化合物とSiCあるいは5isNa粉末
との混合物からセラミックス成形体を製造する方法に関
する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for producing a ceramic molded body from a mixture of a specific silicon-containing polymer compound that is easy to process and contains a silyl group in its side chain, and SiC or 5isNa powder. Relating to a method of manufacturing.

(従来の技術および発明が解決しようとする問題点) 近年、含ケイ素セラミックスの技術開発状況は著しいも
のがあり、例えば炭化ケイ素(SiC)、窒化ケイ素(
SiJ4) 、サイアロン、Si −Ti −C−O系
セラミックス(チラノ繊維、宇部興産)、SiCBJC
系セラミックス、5tsNa  SiC複合系セラミッ
クスなどが所謂ファインセラミックとして注目されてい
る。
(Prior art and problems to be solved by the invention) In recent years, the state of technological development of silicon-containing ceramics has been remarkable. For example, silicon carbide (SiC), silicon nitride (
SiJ4), Sialon, Si-Ti-C-O ceramics (Tirano Fiber, Ube Industries), SiCBJC
5tsNa-SiC composite ceramics and the like are attracting attention as so-called fine ceramics.

これらの中にあって、特にSiCや5izN4は需要量
も多く、また今後その伸展が期待されている。
Among these, demand for SiC and 5izN4 is especially large, and demand is expected to increase in the future.

これらセラミックスにおいては、−Sに粉末を橿めて高
圧(例えば1000気圧以上の高圧)で圧縮成型後、高
温で焼結する成形方法がとられているため、大型で高価
な圧縮成形機を必要とするかあるいは圧縮成形のため複
雑な形状のものは得られないなどの問題点があった。こ
れを解決する方法としてセラミックス粉末と易加工性の
有機化合物などの添加剤を混合し、混合物を射出成型し
た後、高温で焼結(脱添加剤もしくは予備焼結を含む)
する方法が開発されてきた。過去に発表されている有機
系の添加剤の主なものはポリスチレン、スチレンとブタ
ジェンの共重合物、ステアリン酸のような滑剤ともっと
も分解連発しやすいジエチルフタレートのような可塑剤
とを適当な割合で配合するもの、さらに前者に熱硬化性
樹脂(フェノール樹脂)を添加したもの、熱硬化性樹脂
(フェノール樹脂、エポキシ樹脂、クマロンインデン樹
脂など)にワックスを混合したもの、モノオレフィン重
合体とエチレングライコールを混合したもの、ナフタリ
ンのような昇華性物質を主体とする組成物などである。
These ceramics require a large and expensive compression molding machine because the molding method used is to mix powder into -S, compression mold it under high pressure (for example, over 1000 atmospheres), and then sinter it at high temperature. There were problems in that it was difficult to obtain products with complicated shapes because of compression molding. To solve this problem, ceramic powder is mixed with additives such as easily processable organic compounds, the mixture is injection molded, and then sintered at high temperature (including removal of additives or pre-sintering).
A method has been developed to do so. The main organic additives announced in the past are polystyrene, copolymers of styrene and butadiene, lubricants such as stearic acid, and plasticizers such as diethyl phthalate, which are most prone to decomposition, in appropriate proportions. Those that are mixed with thermosetting resin (phenol resin), those that are mixed with wax to thermosetting resin (phenol resin, epoxy resin, coumaron indene resin, etc.), and those that are mixed with monoolefin polymer. These include mixtures of ethylene glycol and compositions mainly composed of sublimable substances such as naphthalene.

現状の射出成形法における最大の問題点は、脱添加荊(
樹脂)工程においてセラミックス中に気孔を生ずる等の
ため、成形品の強度に限界があることである。
The biggest problem with the current injection molding method is the removal of additives (
There is a limit to the strength of the molded product due to the formation of pores in the ceramic during the resin process.

本発明の目的は、成形品の強度の大きいセラミックス成
形体を製造する方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a ceramic molded article having high strength.

(問題点を解決するための手段および作用)本発明者ら
は、かかるセラミックスの成形方法の改良、特に射出成
形法における添加剤の開発に鋭意努力し、特定の有機ケ
イ素化合物を添加剤として用いることにより本発明の目
的を達成できることを見出し本発明を完成させるに至っ
た。
(Means and effects for solving the problem) The present inventors have made earnest efforts to improve the method of molding such ceramics, particularly to develop additives for injection molding methods, and have used specific organosilicon compounds as additives. The present inventors have discovered that the object of the present invention can be achieved by doing so, and have completed the present invention.

すなわち本発明は、 一般式(1) %式% (但し、mはOまたは1乃至10の正の整数、nは1.
2または3、R9は水素、アルキル基またはアリール基
、R2はアルキレン基またはフェニレン基を示す) で表される繰り返し構造単位を含有する含ケイ素高分子
化合物と、SiC粉末あるいは5rsNa粉末とを混和
し、その混合物を成形し、しかる後に500乃至250
0°Cの温度範囲で焼成することを特徴とする炭素化合
物焼結成形体の製造方法である。
That is, the present invention has the following formula: General formula (1) % formula % (However, m is O or a positive integer from 1 to 10, and n is 1.
2 or 3, R9 represents hydrogen, an alkyl group or an aryl group, R2 represents an alkylene group or a phenylene group) and SiC powder or 5rsNa powder are mixed. , the mixture is molded, and then 500 to 250
This is a method for producing a sintered carbon compound body, which is characterized by firing at a temperature range of 0°C.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において添加剤として使用する含ケイ素高分子化
合物とは、側鎖にシリル基類(SiHs、5ixHs 
5SiJy基)を含む炭素系ポリマーであって、一般式
(1) %式% で表される繰り返し構造単位を含有する含ケイ素高分子
化合物である。
The silicon-containing polymer compound used as an additive in the present invention includes silyl groups (SiHs, 5ixHs,
5SiJy group), and is a silicon-containing polymer compound containing a repeating structural unit represented by the general formula (1).

式(1)よりなる高分子化合物の重合度は3以上で、好
ましくは10以上、更に好ましくは50以上である。ま
た、nはOまたは1乃至10の正の整数であり、セラミ
ックス収率(焼成体中のSt重量/含ケイ素高分子化合
物中のSt型重量χ))の点からは小さい程好ましく、
最も好ましくはOである。
The degree of polymerization of the polymer compound represented by formula (1) is 3 or more, preferably 10 or more, and more preferably 50 or more. Further, n is O or a positive integer from 1 to 10, and from the viewpoint of ceramic yield (St weight in the fired body/St type weight in the silicon-containing polymer compound χ)), the smaller the better,
Most preferred is O.

R1は水素、アルキル基またはアリール基であって、例
えば−■、−CHff、−CJs 、1−CJ71.Φ
(−Φはすでに述べた如くフェニル基を示す、以下同じ
、)、−Φ−CHff、−C8!−Φなどがあげられ、
炭素数の少ないもの程好ましく、水素が最も好ましい、
R2はアルキレン基またはフェニレン基であって、例え
ば、−CHl−、イCHzh 、 +CHt+a、−Φ
−1−CH!−Φ−などであるが、R1と同様炭素数が
小さい程好ましい、なお、上記R1、R,は−COOH
、−NH*。
R1 is hydrogen, an alkyl group, or an aryl group, such as -■, -CHff, -CJs, 1-CJ71. Φ
(-Φ represents a phenyl group as mentioned above, the same applies hereinafter), -Φ-CHff, -C8! −Φ etc. are mentioned,
The smaller the number of carbon atoms, the more preferable it is, and hydrogen is the most preferable.
R2 is an alkylene group or a phenylene group, such as -CHl-, iCHzh, +CHt+a, -Φ
-1-CH! -Φ- etc., but as with R1, the smaller the number of carbon atoms, the more preferable.The above R1, R, is -COOH
, -NH*.

−OH、ハロゲンなどの官能基を含んでいてもよい。It may contain functional groups such as -OH and halogen.

また、本発明における含ケイ素高分子化合物は、−i式
(1)で表される同種類の繰り返し構造単位のみからな
る重合物であってもよいし、同じく−M式(1)で表さ
れる互いに異なる種類の繰り返し構造からなる重合物で
あってもよい、勿論、これらのポリマーの立体規則性に
制限はなく、例えばアイソタクチック、シンジオタクチ
ック、アククチツク等のいかなる立体構造のものでも良
い。
Further, the silicon-containing polymer compound in the present invention may be a polymer consisting only of the same type of repeating structural units represented by the -i formula (1), or may be a polymer consisting only of the same type of repeating structural units represented by the -M formula (1). Of course, there are no restrictions on the stereoregularity of these polymers, and they may have any stereostructure, such as isotactic, syndiotactic, actic, etc. .

この分子量は特に制限はないが、通常100乃至10.
000,000、好ましくは200乃至1,000,0
00程度のものが成形性および溶剤への溶解度等の点で
望ましい。
This molecular weight is not particularly limited, but is usually 100 to 10.
000,000, preferably 200 to 1,000,0
00 is desirable in terms of moldability, solubility in solvents, etc.

また、該繰り返し構造単位とケイ素を含まないその他の
ビニル系ポリマー構造、例えば、エチレン、プロピレン
、スチレン、塩化ビニル、ブテン、イソブチン、HMA
等のビニル系由来の繰り返し構造単位とからなる共重合
物であっても良い、かかる共重合はランダム、交互、ブ
ロック若しくはグラフト等の何れであっても構わない、
この場合、本発明の構造単位の部分は少なくとも0.1
重量%以上であることが望ましい、これらの共重合物の
分子量は特に制限はないが、通常、100乃至10.0
00,000、好ましくは200乃至1,000,00
0程度のものが成形性および溶剤への溶解度等の点で望
ましい。
In addition, the repeating structural unit and other vinyl polymer structures that do not contain silicon, such as ethylene, propylene, styrene, vinyl chloride, butene, isobutyne, HMA
It may be a copolymer consisting of vinyl-derived repeating structural units such as, etc., and such copolymerization may be random, alternating, block, or graft, etc.
In this case, the portion of the structural unit of the invention is at least 0.1
The molecular weight of these copolymers, which is preferably at least % by weight, is not particularly limited, but is usually 100 to 10.0.
00,000, preferably 200 to 1,000,00
A value of about 0 is desirable in terms of moldability and solubility in solvents.

本発明で使用する上記含ケイ素高分子化合物は、本発明
の目的から易加工性であること、およびセラミックス収
率が高いことが特に望ましいのは言うまでもないが、こ
れらセラミックス収率、モノマーの得られ易さ、および
ポリマーの製造し易さ、溶融性、溶媒溶解性(加工性)
から、特に好ましい具体例としては、繰り返し構造単位
として5IHs          5iJsC1,C
HtCHzSiH3 iHi の一種類または二種類以上を含む含ケイ素高分子化合物
およびこれらの共重合物があげられる。
Needless to say, it is particularly desirable for the silicon-containing polymer compound used in the present invention to be easily processable and to have a high ceramic yield for the purpose of the present invention. Ease of manufacturing, meltability, and solvent solubility (processability) of the polymer
As a particularly preferable specific example, 5IHs 5iJsC1,C as a repeating structural unit
Examples include silicon-containing polymer compounds containing one or more types of HtCHzSiH3 iHi and copolymers thereof.

本発明で使用する含ケイ素高分子化合物としては、上記
したものが使用されるが、特にその製造方法もしくは重
合方法が規定されるものではなく、種々の方法により製
造したものを好適に用い得る。
As the silicon-containing polymer compound used in the present invention, those mentioned above are used, but the manufacturing method or polymerization method thereof is not particularly defined, and those manufactured by various methods can be suitably used.

例えば、シリル基を有するα−オレフィンを、チーグラ
ー・ナツタ(Ziegler−Natta )型触媒(
ハロゲン化チタン、ハロゲン化バナジウム、ハロゲン化
ジルコニウム等の遷移金属塩とアルキルアルミニウム)
により配位アニオン重合させる方法、金属酸化物(Cr
y、、SfO,、AI!(h等)、水素酸(HgSO4
、HsPOa 、HCl0a 、IC1等)、ルイス酸
(BFz 、AlCl5 、FeC15,5nCI<等
)触媒によりカチオン重合させる方法、アルカリ金属(
Li。
For example, an α-olefin having a silyl group is treated with a Ziegler-Natta type catalyst (
Transition metal salts such as titanium halides, vanadium halides, zirconium halides, and alkyl aluminum)
Coordination anion polymerization method, metal oxide (Cr
y,,SfO,,AI! (h etc.), hydrogen acid (HgSO4
, HsPOa, HCl0a, IC1, etc.), cationic polymerization using a Lewis acid (BFz, AlCl5, FeC15,5nCI, etc.) catalyst, alkali metal (
Li.

Na、 K等)、アルキルアルカリ(CJJa。Na, K, etc.), alkyl alkali (CJJa.

(CJs)sAl 、 CJ5Li等)、水酸化物(N
aOH,にOH等)触媒によりアニオン重合させる方法
、過酸化物を開始剤に用いてラジカル重合させる方法、
などの種々の方法を採用し得る。当然のことながら、重
合は気相、液相のいずれでも、また溶媒、無溶媒(塊状
重合)のいずれにおいても実施し得る。
(CJs)sAl, CJ5Li, etc.), hydroxides (N
aOH, OH, etc.) method of anionic polymerization using a catalyst, method of radical polymerization using a peroxide as an initiator,
Various methods such as Naturally, the polymerization can be carried out in either the gas phase or the liquid phase, and either in a solvent or without a solvent (bulk polymerization).

またこれらの重合においては共存させる水素等によりポ
リマーの分子量調節を容易に行い得る。
Furthermore, in these polymerizations, the molecular weight of the polymer can be easily adjusted by coexisting hydrogen or the like.

重合用モノマーとなるシリル基を含有するα−オレフィ
ンは、種々の方法で製造することができ、本発明におい
て特に制限するものではないが、例えば下式に示すよう
な方法を採用できる。
The α-olefin containing a silyl group, which is a monomer for polymerization, can be produced by various methods, and the present invention is not particularly limited thereto, but for example, a method as shown in the following formula can be adopted.

−)IcI HSiCIs + CIHzG−(CHz)  −−C
H−CHt  −一→600 °C −I+2 SiH4+CI=CII         HtStC
H−C)lx    ■H2S1CCHz)  、19
+cTocL   ■これらのうち■、■、■、■はS
iH4を原料に用いており、特に■、■は■族金属を触
媒に用いるヒドロシリル化反応であり、容易に目的とす
るα−オレフィンを得ることができる。 5ilH6,
5izHt ノ場合も同様である。蓋し、5i)I4.
5iJa、5iJsは近年、ポリシリコンやアモルファ
スシリコン用としての需要が拡大し、安価にかつ大量に
製造されるようになったもので、今後いっそうこの傾向
が進むと予想される新しいケイ素原料である。従って本
発明におけるシリル基類を含有する含ケイ素高分子化合
物は、水素化ケイ素化合物とオレフィンから得られるモ
ノマーを重合させることにより安易に、かつ安価に製造
することが可能である点に大きな意義があるといえる。
-) IcI HSiCIs + CIHzG-(CHz) --C
H-CHt -1→600 °C -I+2 SiH4+CI=CII HtStC
H-C)lx ■H2S1CCHz), 19
+cTocL ■ Of these, ■, ■, ■, ■ are S
iH4 is used as a raw material, and in particular, (1) and (2) are hydrosilylation reactions using group (2) metals as catalysts, and the desired α-olefin can be easily obtained. 5ilH6,
The same applies to the case of 5izHt. Cover, 5i) I4.
In recent years, demand for 5iJa and 5iJs for use in polysilicon and amorphous silicon has expanded, and they have become manufactured cheaply and in large quantities, and are new silicon raw materials that are expected to continue to grow in this trend. Therefore, the silicon-containing polymer compound containing silyl groups in the present invention has great significance in that it can be easily and inexpensively produced by polymerizing a silicon hydride compound and a monomer obtained from an olefin. It can be said that there is.

含ケイ素ポリマーを本発明のことくセラミックスの射出
成形用の添加剤に用いることは特開昭52−40509
、ジャーナル・オブ・オルガノメタリック・ケミストリ
ー(Journal of Organo*etall
icChemistry ) 300(1986)32
7−346、においても提案されているが、該報告によ
るポリマーはアルキルクロロシランを原料とし、金属ナ
トリウムとの反応を含む複雑な工程を経て得られ1、例
えば下記の繰り返し構造単位を有するポリマー である6本発明にかかわるポリマーはこれに比較し、そ
の製造は非クロル系で実施することができ、腐食の心配
もなくプロセスも極めて簡単なものとなる0以上のこと
から本発明にかかわるポリマーは、将来更に安価に製造
することが可能になるものと思われる。
The use of a silicon-containing polymer as an additive for injection molding of ceramics according to the present invention is disclosed in Japanese Patent Application Laid-Open No. 52-40509.
, Journal of Organometallic Chemistry
icChemistry) 300 (1986) 32
7-346, the polymer according to that report is obtained by using alkylchlorosilane as a raw material through a complicated process including reaction with sodium metal1, for example, it is a polymer having the following repeating structural units. 6 Compared to this, the polymers of the present invention can be manufactured using a non-chlorine system, and there is no fear of corrosion, and the process is extremely simple. It is thought that it will be possible to manufacture it even more cheaply in the future.

更に本発明に用いる含ケイ素高分子化合物は、重合が容
易であるばかりでなく、その加工性(溶融液の流れ性、
溶媒溶解性)もその分子量、立体規則性をコントロール
することにより容易に変化させることができる。さらに
また本発明に用いる含ケイ素高分子化合物中に存在する
シリル基類は極めて安定で、空気中においても室温では
酸化されることなく、150°C近辺の高温でようやく
酸化されるにすぎない。
Furthermore, the silicon-containing polymer compound used in the present invention is not only easy to polymerize, but also has good processability (melt flowability,
Solvent solubility) can also be easily changed by controlling its molecular weight and stereoregularity. Furthermore, the silyl groups present in the silicon-containing polymer compound used in the present invention are extremely stable, and are not oxidized even in air at room temperature, but are only oxidized at a high temperature of around 150°C.

次に本発明におけるセラミックス成形体の製造方法につ
いて述べる。
Next, a method for manufacturing a ceramic molded body according to the present invention will be described.

製造工程は、本質的にはSiCあるいはSiJ、粉末と
添加剤である含ケイ素高分子化合物(1)とを混合、混
練する第1工程、混合物を成形する第2工程、成形体を
焼結(脱添加剤もしくは予備焼結を含む)する第3工程
からなる。
The manufacturing process essentially consists of the first step of mixing and kneading SiC or SiJ powder and the silicon-containing polymer compound (1) as an additive, the second step of molding the mixture, and the sintering of the molded body ( The third step includes removing additives or pre-sintering.

第1工程は、セラミックス粉末と含ケイ素高分子化合物
(1)との混合であり、この場合、含ケイ素高分子化合
物(1)は2種類以上用いること、また前述のごとくケ
イ素を含まない他の添加剤(熱可塑性樹脂、可塑剤、滑
剤、助剤など)を同時に用いることも可能である。含ケ
イ素高分子化合物(1)の添加量は、その種類、同時に
用いる他の添加剤および後の成形方法によって異なるが
、好ましくは0.01wt%乃至200w t%、更に
好ましくは0.1wt%乃至50wt%である。添加量
が少なすぎるとSiC焼結成形体を得ることが難しく、
一方添加量が多すぎるとかさ比重が少なくなり、強度が
低下し、高温での耐酸化性が低下する。
The first step is to mix the ceramic powder and the silicon-containing polymer compound (1). It is also possible to use additives (thermoplastic resin, plasticizer, lubricant, auxiliary agent, etc.) at the same time. The amount of the silicon-containing polymer compound (1) to be added varies depending on its type, other additives used simultaneously, and the subsequent molding method, but is preferably 0.01 wt% to 200 wt%, more preferably 0.1 wt% to 200 wt%. It is 50wt%. If the amount added is too small, it will be difficult to obtain a SiC sintered body,
On the other hand, if the amount added is too large, the bulk specific gravity decreases, the strength decreases, and the oxidation resistance at high temperatures decreases.

第2工程は、混合物の成形であり、それには種々の方法
がある0例えば、機械プレス法、静水圧プレス法、泥漿
鋳込み法、ドクターブレード法、押出し法、射出成形法
、ホットプレス法などで、いずれの方法も採用できる。
The second step is to mold the mixture, which can be done by various methods such as mechanical pressing, isostatic pressing, slurry casting, doctor blading, extrusion, injection molding, and hot pressing. , either method can be adopted.

これらの中では射出成形法が最も本発明の効果を活かす
ものである。
Among these, the injection molding method makes the most of the effects of the present invention.

またホットプレス法や静水圧プレス法は後述の焼結とを
同時に実施するものである。
Further, in the hot press method and the isostatic press method, sintering, which will be described later, is performed simultaneously.

第3工程は、成形体の焼結工程であり、必要に応じ前段
階として脱添加剤(脱脂、脱バインダ、デワックシング
)や予備焼結を行う必要がある。
The third step is a step of sintering the compact, and if necessary, it is necessary to perform additive removal (degreasing, binder removal, dewaxing) and preliminary sintering as a preliminary step.

この場合の温度は通常室温乃至500°Cの範囲である
。最終の焼結は、500乃至2500°Cの温度範囲で
実施される。
The temperature in this case is usually in the range of room temperature to 500°C. Final sintering is carried out at a temperature range of 500 to 2500°C.

本発明による焼結体は、前述のごとくケイ素を含まない
添加剤を用いた場合に比較すると、同じ添加量でかさ比
重が太き(、また強度が大きく、高温での耐酸化性にも
すぐれている。これは本発明において用いる含ケイ素ポ
リマーは、我々が特願昭62−15929 、特願昭6
2−31514で開示したごとくセラミックス収率が高
い、これは焼成、焼結の段階でSiCとして残存し、こ
の残存するSiCがさらにSiC粉末と結合を作るため
と思われる。
As mentioned above, the sintered body of the present invention has a higher bulk specific gravity (and higher strength and excellent oxidation resistance at high temperatures) at the same additive amount than when using an additive that does not contain silicon. The silicon-containing polymer used in the present invention has been disclosed in Japanese Patent Application No. 62-15929 and Japanese Patent Application No. 62-159.
As disclosed in No. 2-31514, the ceramic yield is high. This is thought to be because SiC remains as SiC during the firing and sintering stages, and this remaining SiC further forms bonds with SiC powder.

本発明によれば、従来法によって得られたセラミックス
成形体に含まれた不純物(アルミナ、シリカ、ホウ素、
ケイ素、鉄、遊離炭素、Si3Nm等)が殆ど残存せず
、高純度のSiC自己焼結体が得られる。
According to the present invention, impurities (alumina, silica, boron,
A high-purity SiC self-sintered body can be obtained with almost no remaining silicon, iron, free carbon, Si3Nm, etc.

(実施例) 以下、本発明を実施例によって説明する。(Example) Hereinafter, the present invention will be explained by examples.

実施例1 ビニルシラン100g、 AIBN (アゾビスイソブ
チロニトリル)1gをオートクレーブに入れ、70°C
にて8時間重合させ、オイル状の平均分子量的2000
の含ケイ素ポリマー(1)を約90g得た。
Example 1 100 g of vinylsilane and 1 g of AIBN (azobisisobutyronitrile) were placed in an autoclave and heated to 70°C.
Polymerized for 8 hours to form an oil with an average molecular weight of 2000.
About 90 g of silicon-containing polymer (1) was obtained.

市販の平均約300メツシユのSiC粉末40gと、上
記ポリマー(1)5gとを混程後、ルツボ状に加圧成形
した0次に加圧成形物を真空中にて室温から1500°
Cまで徐々に昇温させながら加熱し、更に1800℃で
4時間焼成した。
After mixing 40 g of commercially available SiC powder with an average size of about 300 meshes and 5 g of the above polymer (1), the zero-order press-formed product was pressure-molded into a crucible shape and heated at 1500° from room temperature in a vacuum.
The mixture was heated while gradually increasing the temperature to C, and further baked at 1800 C for 4 hours.

得られたルツボのかさ比重は3.12であった。このル
ツボを多結晶シリコンの溶融に用いたところ、従来のS
ICのルツボに比較し、寿命が大巾に向上し、かつ引き
上げによって得られた単結晶中の不純物置は極めて少な
かった。
The bulk specific gravity of the obtained crucible was 3.12. When this crucible was used to melt polycrystalline silicon, it was found that
Compared to an IC crucible, the life span was greatly improved, and the amount of impurities in the single crystal obtained by pulling was extremely small.

実施例2 実施例1で用いたと同じSiC粉末40gに、含ケイ素
ポリマー(1)を6g、ポリスチレン25gを混合した
後、窒素中150°Cにて棒状に加熱成形した。減圧下
にて室温から600”Cまで徐々に昇温させ、しかる後
にアルゴン雰囲気中5時間、1700°Cにて焼成した
Example 2 40 g of the same SiC powder used in Example 1 was mixed with 6 g of silicon-containing polymer (1) and 25 g of polystyrene, and then heated and molded into a rod shape at 150° C. in nitrogen. The temperature was gradually raised from room temperature to 600''C under reduced pressure, and then fired at 1700°C for 5 hours in an argon atmosphere.

得られた焼結体のかさ比重は3.04であった。この棒
状焼結成形体を発熱体に用いたところ、充分に実用に耐
え、従来のSiC発熱体に比較し長寿命であった。
The bulk specific gravity of the obtained sintered body was 3.04. When this rod-shaped sintered compact was used as a heating element, it was sufficiently durable for practical use and had a longer life than a conventional SiC heating element.

実施例3 ビニルシラン200gを、70°Cにて3時間、オレフ
ィン重合用三塩化チタン型触媒を用いて重合し、粉末状
のポリビニルシラン(II)  110gを得た。
Example 3 200 g of vinylsilane was polymerized at 70° C. for 3 hours using a titanium trichloride type catalyst for olefin polymerization to obtain 110 g of powdered polyvinylsilane (II).

実施例1に用いたと同じSiC粉末40gに、ポリビニ
ルシラン([)を10g混合した後、200Xg/cd
の加圧下、棒状に成形した。減圧下にて室温から170
0″Cまで徐々に昇温させ、しかる後にアルゴン雰囲気
中・5時間01700°Cにて焼成した。
After mixing 10 g of polyvinylsilane ([) with 40 g of the same SiC powder used in Example 1, 200Xg/cd
It was molded into a rod shape under pressure. 170 from room temperature under reduced pressure
The temperature was gradually raised to 0''C, and then fired at 01700C for 5 hours in an argon atmosphere.

得られた焼結体のかさ比重は3.04であった。この棒
状焼結成形体を発熱体に用いたところ、充分に実用に耐
え、従来のStC発熱体に比較し長寿命であった。
The bulk specific gravity of the obtained sintered body was 3.04. When this rod-shaped sintered body was used as a heating element, it was sufficiently durable for practical use and had a longer lifespan than a conventional StC heating element.

実施例4 アリルシラン200gを、70’Cにて3時間、オレフ
ィン重合用三塩化チタン型触媒を用いて重合し、粉末状
のポリアリルシラン150gを得た。
Example 4 200 g of allylsilane was polymerized at 70'C for 3 hours using a titanium trichloride type catalyst for olefin polymerization to obtain 150 g of powdered polyallylsilane.

実施例1に用いたと同じSiC粉末40gと、上記ポリ
マー6gとを混合後、窒素中ルツボ状に加熱成形した0
次に成形物を真空中にて室温から1500℃まで徐々に
昇温させながら加熱し、更に1800’Cで4時間焼成
した。
After mixing 40 g of the same SiC powder used in Example 1 and 6 g of the above polymer, the mixture was heated and molded into a crucible shape in nitrogen.
Next, the molded product was heated in a vacuum while gradually increasing the temperature from room temperature to 1500°C, and further baked at 1800'C for 4 hours.

得られたルツボのかさ比重は3.09であった。このル
ツボを多結晶シリコンの溶融に用いたところ、従来のS
iCのルツボに比較し、寿命が大巾に向上し、かつ引き
上げによって得られた単結晶中の不純物量は極めて少な
かった。
The bulk specific gravity of the obtained crucible was 3.09. When this crucible was used to melt polycrystalline silicon, it was found that
Compared to the iC crucible, the life span was greatly improved, and the amount of impurities in the single crystal obtained by pulling was extremely small.

実施例5 実施例1で用いた含ケイ素ポリマー(1)Logと、市
販の平均400メツシユの5isL粉末40gとを混合
後、窒素中150℃にて板状に加熱成形した。
Example 5 The silicon-containing polymer (1) Log used in Example 1 and 40 g of commercially available 5isL powder having an average of 400 meshes were mixed and then heated and molded into a plate at 150° C. in nitrogen.

成形物を真空中にて室温から1500°Cまで徐々に加
熱し、更に1800°Cで4時間焼成した。
The molded product was gradually heated in vacuum from room temperature to 1500°C, and further baked at 1800°C for 4 hours.

得られた焼結体のかさ比重は3.02であった。この焼
結体の衝撃破壊強度は、含ケイ素ポリマー(1)のかわ
りにポリスチレンを用いた場合(かさ比重2.94)に
比較し、約3倍であった。
The bulk specific gravity of the obtained sintered body was 3.02. The impact fracture strength of this sintered body was about three times that of the case where polystyrene was used instead of the silicon-containing polymer (1) (bulk specific gravity: 2.94).

(発明の効果) 本発明は、セラミックス成形体の製造方法を提供するも
ので、添加剤として用いる有機ケイ素化合物に特徴を存
する0本発明によれば容易に成形加工が可能で、任意の
形状の焼結されたセラミックス成形体を得ることができ
る。これは、従来のケイ素を含まない有機系添加剤を用
いた場合に比べて、かさ密度が大きく、また強度が大き
く、特に高温での耐酸化性、強度にすぐれている。
(Effects of the Invention) The present invention provides a method for manufacturing a ceramic molded body, and the present invention is characterized by the organosilicon compound used as an additive. A sintered ceramic molded body can be obtained. This has a higher bulk density and greater strength than conventional silicon-free organic additives, and is particularly excellent in oxidation resistance and strength at high temperatures.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式(1) ▲数式、化学式、表等があります▼ (但し、mは0または1乃至10の正の整数、nは1、
2または3、R_1は水素、アルキル基またはアリール
基、R_2はアルキレン基またはフェニレン基を示す) で表される繰り返し構造単位を含有する含ケイ素高分子
化合物と、SiC粉末あるいはSi_3N_4粉末とを
混合し、その混合物を成形し、しかる後に500乃至2
500℃の温度範囲で焼成することを特徴とするセラミ
ックス成形体の製造方法。
(1) General formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, m is 0 or a positive integer from 1 to 10, n is 1,
2 or 3, R_1 represents hydrogen, an alkyl group or an aryl group, R_2 represents an alkylene group or a phenylene group) and SiC powder or Si_3N_4 powder are mixed. , the mixture is molded and then 500 to 2
A method for producing a ceramic molded body, characterized by firing in a temperature range of 500°C.
(2)含ケイ素高分子化合物がビニルシランあるいはア
リルシランの重合体である特許請求の範囲第1項記載の
方法。
(2) The method according to claim 1, wherein the silicon-containing polymer compound is a polymer of vinylsilane or allylsilane.
JP62307493A 1987-01-28 1987-12-07 Production of ceramic molded article Pending JPH01294575A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP62307493A JPH01294575A (en) 1987-12-07 1987-12-07 Production of ceramic molded article
KR1019900702572A KR920001354B1 (en) 1987-01-28 1988-01-28 Process for preparing organosilicon compounds and silicon carbide
PCT/JP1988/000065 WO1988005779A1 (en) 1987-01-28 1988-01-28 Processes for preparing organosilicon compounds and silicon carbide
EP88901299A EP0301099B1 (en) 1987-01-28 1988-01-28 Processes for preparing organosilicon compounds and silicon carbide
DE3855646T DE3855646T2 (en) 1987-01-28 1988-01-28 METHOD FOR PRODUCING ORGANIC SILICON COMPOUNDS AND SILICON CARBIDE
KR1019880701187A KR910001078B1 (en) 1987-01-28 1988-01-28 Process for preparing organosilicon compounds and silicon carbide
KR1019900702573A KR910008295B1 (en) 1987-01-28 1988-01-28 Production of silicon carbide
CA000559220A CA1340699C (en) 1987-02-20 1988-02-18 Preparation process of organosilicon compounds and production process of silicon carbide
US08/383,712 US5596117A (en) 1987-01-28 1995-02-03 Preparation process of organo silicon compounds and production process of silicon
US08/413,169 US5620934A (en) 1987-01-28 1995-03-29 Production process of silicon carbide from organosilicon compounds
US08/413,115 US5508363A (en) 1987-01-28 1995-03-29 Preparation process of organosilicon compounds and production of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307493A JPH01294575A (en) 1987-12-07 1987-12-07 Production of ceramic molded article

Publications (1)

Publication Number Publication Date
JPH01294575A true JPH01294575A (en) 1989-11-28

Family

ID=17969752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307493A Pending JPH01294575A (en) 1987-01-28 1987-12-07 Production of ceramic molded article

Country Status (1)

Country Link
JP (1) JPH01294575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157813A (en) * 1992-11-27 1994-06-07 Daisee Kogyo Kk Resin composition excellent in sliding property and wear resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157813A (en) * 1992-11-27 1994-06-07 Daisee Kogyo Kk Resin composition excellent in sliding property and wear resistance

Similar Documents

Publication Publication Date Title
KR101444074B1 (en) Method for producing ultra-high molecular weight polymers by means of special bridged metallocene catalysts
JP5966321B2 (en) Metallocene complex and olefin polymerization method
WO1995014024A1 (en) Transition metal compound, olefin polymerization catalyst, and process for producing olefin polymer by using said catalyst
US4987202A (en) Methods for the synthesis of polysilanes
JPS6131404A (en) Polymerization of ethylene or ethylene and other 1-olefin mixture
JP2008081644A (en) Propylene-based copolymer, production of the same and molded product
JP6176015B2 (en) Metallocene complex and olefin polymerization method
JP2003002939A (en) Method for producing propylene block copolymer
JP6264808B2 (en) Metallocene compound and method for producing olefin polymer using polymerization catalyst using the same
JP5412262B2 (en) Metallocene complex and olefin polymerization method
JPH01294575A (en) Production of ceramic molded article
JP6613987B2 (en) Metallocene complex, catalyst for olefin polymerization, and method for producing olefin polymer
JP5639813B2 (en) Metallocene complex and olefin polymerization method
JP5880000B2 (en) Metallocene complex and olefin polymerization method
KR910008295B1 (en) Production of silicon carbide
JPH01257177A (en) Production of ceramic molded body
US5508363A (en) Preparation process of organosilicon compounds and production of silicon carbide
EP0303616A4 (en) Methods for the synthesis of polysilanes.
JP5866788B2 (en) Novel half metallocene complex, olefin polymerization catalyst containing the same, and olefin or ethylene polymerization method using the same
US5620934A (en) Production process of silicon carbide from organosilicon compounds
JPH07121801B2 (en) Method for producing silicon carbide
JPS6221364B2 (en)
JPH01239011A (en) Production of silicon carbide
JPH0859364A (en) Production of ceramic porous body
JPH1095853A (en) Production of polysilane, and polysilane