JPH01294373A - Nonaqueous electrolyte-secondary battery - Google Patents

Nonaqueous electrolyte-secondary battery

Info

Publication number
JPH01294373A
JPH01294373A JP63125188A JP12518888A JPH01294373A JP H01294373 A JPH01294373 A JP H01294373A JP 63125188 A JP63125188 A JP 63125188A JP 12518888 A JP12518888 A JP 12518888A JP H01294373 A JPH01294373 A JP H01294373A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
aqueous electrolyte
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63125188A
Other languages
Japanese (ja)
Other versions
JP2646657B2 (en
Inventor
Takayuki Yamahira
隆幸 山平
Masanori Anzai
安斉 政則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14904090&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01294373(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63125188A priority Critical patent/JP2646657B2/en
Publication of JPH01294373A publication Critical patent/JPH01294373A/en
Application granted granted Critical
Publication of JP2646657B2 publication Critical patent/JP2646657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary battery of high reliability which can be repeatedly charged/discharged for a long term by installing negative electrodes composed of organic fired body, positive electrodes including specified lithium compound and electrolyte into a battery-can and providing a specified gap in the can. CONSTITUTION:Installed into a battery-can 1 are negative electrodes 5 composed of organic fired body, positive electrodes 6 including LixMO2 (M being Co or Ni, 0.05<=x<=1.10) and provided in the can is a gap 13 of 0.3cc per capacity 1AH. Thus, even if gas is generated by repeating charging/discharging, the gas is put into the gap, so that the air-pressure in the battery is not so increased that the electrolyte charged in the battery is leaked out or the can 1 is deformed. Accordingly, a nonaqueous electrolyte-secondary battery of high reliability which can be repeatedly charged/discharged for a long term can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、各種電子機器の電源として利用される充放電
可能な非水電解液二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a chargeable/dischargeable non-aqueous electrolyte secondary battery used as a power source for various electronic devices.

〈発明の概要〉 本発明は、有機物焼成体よりなる負極と、Li箕MO2
(MはCO又はNiの少なくとも1種を表し、0.05
≦λ≦1.10である。)を含んだ正極と、電解液とが
容器内に収納されてなる非水電解液二次電池内に、容量
1AH当たりQ、 3 cc以上の空隙を設けることに
より、充蔽電時に発生するガスによって電池の変形又は
電解液の漏出を防止し信頼性の高い非水電解液二次電池
を提供しようとするものである。
<Summary of the Invention> The present invention provides a negative electrode made of a fired organic material, and a Li
(M represents at least one kind of CO or Ni, 0.05
≦λ≦1.10. ) and an electrolyte are housed in a container. By providing a gap of 3 cc or more per 1 AH of capacity in a non-aqueous electrolyte secondary battery, the gas generated during charging can be This aims to provide a highly reliable non-aqueous electrolyte secondary battery by preventing deformation of the battery or leakage of the electrolyte.

〈従来の技術〉 従来、負極材としてリチウムやリチウム合金の軽金属を
使用し、電解液に有機電解液を使用した所謂非水電解液
電池は、使用電圧が高く保存性が極めて優れていること
から、長期信頼性を有した電池として電子時計や種々の
メモリーバンクアップ用電源として広く使用されている
<Conventional technology> Conventionally, so-called non-aqueous electrolyte batteries that use light metals such as lithium or lithium alloys as negative electrode materials and organic electrolytes as electrolytes have been used because of their high operating voltage and extremely excellent storage stability. As a battery with long-term reliability, it is widely used as a power source for electronic watches and various memory bank ups.

ところが、これら現在使用されている非水電解液電池は
一次電池としての用途しかなく、−回の使用でその寿命
が終わってしまうので経済性のの観点から改善すべき点
を有している。
However, these currently used non-aqueous electrolyte batteries are used only as primary batteries, and their lifespan ends after one use, so there are points that need to be improved from an economic standpoint.

そこで、近年種々の電子機器の飛躍的進歩とともに、長
時間便利に且つ経済的に使用することができる電源とし
て再充電可能な非水電解液二次電池の出現が待たれてお
り、多くの研究が進められている。
Therefore, along with the rapid progress of various electronic devices in recent years, the emergence of rechargeable non-aqueous electrolyte secondary batteries as a power source that can be used conveniently and economically for long periods of time has been awaited, and much research has been carried out. is in progress.

一般に、非水電解液二次電池の負極活物質としては、金
属リチウム、リチウム合金(例えばLi−Al合金)、
リチウムイオンをドーピングした導電性高分子(例えば
ポリアセチレンやポリピロール等)、さらにはリチウム
イオンを結晶中に混合した眉間化合物等が用いられてお
り、電解液としては、有機溶媒に電解質を溶解した非水
電解液が用いられている。
In general, negative electrode active materials for nonaqueous electrolyte secondary batteries include metallic lithium, lithium alloys (e.g., Li-Al alloys),
Conductive polymers doped with lithium ions (e.g. polyacetylene, polypyrrole, etc.), and even compounds with lithium ions mixed into their crystals are used, and the electrolyte is a nonaqueous solution in which the electrolyte is dissolved in an organic solvent An electrolyte is used.

一方、正極活物質としては研究の結果各種の材料が提案
されており、代表的なものとしては、例えば特開昭50
−54836号公報に記載されるように、TiS2、M
oS2 、NbSe2 、V205等が挙げられる。
On the other hand, various materials have been proposed as positive electrode active materials as a result of research, and representative ones include, for example,
As described in Publication No.-54836, TiS2, M
Examples include oS2, NbSe2, and V205.

これらの材料を用いた電池の放電反応は、負極のリチウ
ムイオンが正極活物質の眉間にインターカーレションす
ることによって進行し、逆に充電する場合には上記材料
の眉間からリチウムイオンが負極へデインターカーレー
ションする。すなわち、負極のリチウムイオンが正極活
物質の層間に出入りする反応を繰り返すことによって、
放充電を繰り返すことができる°。
The discharge reaction of batteries using these materials proceeds as lithium ions in the negative electrode intercalate between the eyebrows of the positive electrode active material, and conversely, when charging, lithium ions deplete from the eyebrows of the materials to the negative electrode. Intercalate. In other words, by repeating the reaction in which lithium ions in the negative electrode move in and out between the layers of the positive electrode active material,
Can be repeatedly discharged and charged.

〈発明が解決しようとする問題点〉 しかしながら、上述のように、例えば負極活物質として
金属リチウム、正極活物質としてMoS2を用いたり又
負極活物質としてLi−A6合金。
<Problems to be Solved by the Invention> However, as described above, for example, metallic lithium is used as the negative electrode active material, MoS2 is used as the positive electrode active material, or Li-A6 alloy is used as the negative electrode active material.

正極活物質としてTiS2等を用いてリチウム電池を作
成すると、これらは放充電の進行とともにLiやL 1
−Aj!合金等が劣化し、所謂パウダー状になって長期
間に亘って使用することができない課題を有している。
When a lithium battery is made using TiS2 etc. as a positive electrode active material, as the discharge and charging proceed, Li and L1
-Aj! The problem is that the alloy deteriorates and becomes powdery, making it impossible to use it for a long period of time.

そこで、このような課題を解決するために有機物焼成体
を、電極の電極材料を用いることが提案され、また正極
活物質としては、高い放電電位を有するLAを含む化合
物であるL1χCo02(χ=0.05〜1.10)を
用いることが提案されている。
Therefore, in order to solve these problems, it has been proposed to use an organic fired body as an electrode material, and as a positive electrode active material, L1χCo02 (χ=0 .05 to 1.10).

しかしながら、このような有機物焼成体を負極の電極材
料に用い、L ix COO2(X=0.05〜1.1
0)を用いると、充充電中にガスが発生し、このガスの
発生による内圧の上昇によって電解液の漏出や電池の破
損の原因となり、実用上不都合を生じている。
However, when such a fired organic material is used as a negative electrode material, Li x COO2 (X = 0.05 to 1.1
If 0) is used, gas is generated during charging, and the increase in internal pressure caused by the gas generation causes leakage of the electrolyte and damage to the battery, resulting in practical inconveniences.

そこで、本発明は上述のような非水電解液二次電池の充
放電の繰り返しにより発生するガスを原因とした電解液
の漏出及び電池の破損等を防止し、長期間充放電を繰り
返すことができる信頼性の高い非水電解液二次電池を提
供することを目的として提案されたものである。
Therefore, the present invention prevents electrolyte leakage and battery damage caused by gas generated by repeated charging and discharging of a non-aqueous electrolyte secondary battery as described above, and makes it possible to repeat charging and discharging for a long period of time. This was proposed with the aim of providing a highly reliable non-aqueous electrolyte secondary battery.

〈問題点を解決するための手段〉 本発明は、上記目的を達成するために、有機物焼成体よ
りなる負極と、L i we MO2(MはC。
<Means for Solving the Problems> In order to achieve the above object, the present invention uses a negative electrode made of a fired organic material, and Li we MO2 (M is C).

又はNiの少なくとも1種を表し、0.05≦叉≦1.
10である。)を含んだ正極と、電解液とが容器内に収
納されてなり、上記容器内に容量1AH当たり0.3 
cc以上の空隙が設けられてなることを特徴とするもの
である。
or represents at least one type of Ni, and 0.05≦≦1.
It is 10. ) and an electrolytic solution are housed in a container.
It is characterized by having a gap of cc or more.

本発明に係る非水電解液二次電池の負極には、電極活物
質である有機物焼成体が使用され、本発明の条件を満た
す有機物焼成体の材料としては、例えば種々の有機化合
物の熱分解、又は焼成炭化により得ることができる0本
発明の上記有機物焼成体材料の一例を示せば、気相成長
法炭素繊維を挙げることができる。この気相成長法炭素
繊維は、例えば、ベンゼン、メタン、−酸化炭素等の炭
素化合物を遷移金属触媒等の存在下、気相熱分解せしめ
て得られる炭素材料であり、公知のこれに類する方法に
よって得られる全てのものを言う。通常かかる方法によ
り繊維状、即ち炭素繊維として得られるが繊維状として
そのまま用いても良いが、粉砕された粉粒状としても用
いても良い。他の例を示せばピッチ系炭素質材料が挙げ
られる。−例を示せば、石油ピッチ、アスファルトピッ
チ、コールタールピッチ、原油分解ピッチ、石油スラソ
ジピソチ等の石油、炭素の熱分解により得られるピンチ
、高分子重合体の熱分解により得られるヒツチ、テトラ
ベンゾフェナジン等の有機低分子化合物の熱分解により
得られるピッチ等が挙げられる。さらにはニードルコー
クス等のピッチ系焼成炭化物やアクリルニトリルを主成
分とする重合体の焼成炭化物等も白可能である。
The negative electrode of the nonaqueous electrolyte secondary battery according to the present invention uses a fired organic material as an electrode active material. Examples of materials for the fired organic material that satisfy the conditions of the present invention include thermal decomposition of various organic compounds. An example of the above-mentioned organic material fired material of the present invention that can be obtained by firing or carbonization is vapor-grown carbon fiber. This vapor-grown carbon fiber is a carbon material obtained by subjecting carbon compounds such as benzene, methane, and carbon oxide to vapor-phase thermal decomposition in the presence of a transition metal catalyst, etc., using a known method similar to this. It refers to everything that can be obtained by. It is usually obtained in the form of fibers, that is, carbon fibers, by such a method, and it may be used as it is, or it may be used in the form of pulverized powder. Other examples include pitch-based carbonaceous materials. - Examples include petroleum pitch, asphalt pitch, coal tar pitch, crude oil cracked pitch, petroleum sulfate such as petroleum pitch, pinch obtained by thermal decomposition of carbon, hydrochloride obtained by thermal decomposition of high molecular weight polymers, and tetrabenzophenazine. Examples include pitch obtained by thermal decomposition of organic low-molecular compounds such as. Furthermore, pitch-based calcined carbides such as needle coke and calcined carbides of polymers containing acrylonitrile as a main component can also be used.

一方、正極には、LixMO2(Mは遷移金属、好まし
くはCO又はNiの少なくとも1種を表し、0.05≦
ズ≦1.10>を含んだ正極活物質、例えばLixCo
02或いは、 L ix N +2 G 0(1−s)02(但し、O
:5)<1)で表される複合酸化物が使用される。
On the other hand, in the positive electrode, LixMO2 (M represents at least one transition metal, preferably CO or Ni, 0.05≦
A positive electrode active material containing Z≦1.10>, such as LixCo
02 or L ix N +2 G 0 (1-s) 02 (however, O
:5)<1) A complex oxide is used.

上記複合酸化物は、例えばリチウム、コバルト及びニッ
ケルの炭酸塩を出発原料とし、これらを組成に応じて混
合し焼成することによって得られる。勿論、出発原料は
これらに限定されず、これら金属の水酸化物や酸化物を
用いた場合にも同様に合成することができる。また、焼
成温度は出発原料に応じて適宜設定すれば良いが、通常
は600℃〜1100℃の温度範囲とされる。
The above-mentioned composite oxide can be obtained by using carbonates of lithium, cobalt, and nickel as starting materials, mixing them according to the composition, and firing the mixture. Of course, the starting materials are not limited to these, and the synthesis can be similarly performed using hydroxides and oxides of these metals. Further, the firing temperature may be appropriately set depending on the starting materials, but is usually in the temperature range of 600°C to 1100°C.

得られる複合酸化物において、コバルトとニッケルは原
料組成に応じて自由に置き変わるが、先の一般式中の)
の値が0≦)く1の範囲であれば特に限定されるもので
はない。
In the resulting composite oxide, cobalt and nickel can be freely replaced depending on the composition of the raw materials, but (in the general formula above)
There is no particular limitation as long as the value of is in the range of 0≦1.

電解液としては、特に限定されるものではないが、例え
ば、プロピレンカーボネート、エチレンカーボネート、
1・2−ジメトキシエタン、1・2−ジェトキシエタン
、T−ブチロラクトン、テトラヒドロフラン、2−メチ
ルテトラヒドロフラン、1・3ジオキソラン、4−メチ
ル−1・3−ジオキソラン、ジエチルエーテル、スルホ
ラン、メチルスルホラン、アセトニトリル、プロピオニ
トリル等の単独若しくは2種類以上の混合溶剤が使用で
きる。
The electrolyte is not particularly limited, but includes, for example, propylene carbonate, ethylene carbonate,
1,2-dimethoxyethane, 1,2-jethoxyethane, T-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3 dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, pro- A single solvent such as pionitrile or a mixture of two or more types can be used.

電解質も従来より公知のものが何れも使用でき、LiC
j!04.LiAsF6.LiPFe。
Any conventionally known electrolytes can be used, including LiC
j! 04. LiAsF6. LiPFe.

LiBF4、LiB (Co Hs)4、LiCj!。LiBF4, LiB (CoHs)4, LiCj! .

L ib r SCH3,!S O3L r、CFs 
SOa L i等の1種又は2種以上を混合したもの等
が使用可能である。
L ibr SCH3,! S O3L r, CFs
It is possible to use one kind or a mixture of two or more kinds such as SOa Li.

また、上記セパレータは、従来より公知の絶縁物質であ
ればよく、例えば、ポリプロピレン、ポリテトラフルオ
ロエチレン、ポリエチレン、ポリアセタール等が使用可
能である。
Further, the separator may be made of any conventionally known insulating material, such as polypropylene, polytetrafluoroethylene, polyethylene, polyacetal, etc.

また、本発明に係る空隙は、少なくとも容量IA H当
たり0.3 cc以上設けられていることが必要であり
、該空隙の位置は限定されるものではない。
Further, the gap according to the present invention needs to be provided at least 0.3 cc or more per capacity IAH, and the position of the gap is not limited.

上記空隙は、充放電により発生するガスの量により決定
されることから、少な(とも該ガスの量と同量のガスを
収容し得る広さの空隙であることが必要であるが、逆に
この空隙を余り広く設けると該電池の容量が低下するこ
とから、上限は該電池に必要な容量となるように適宜設
定すれば良い。
Since the above-mentioned void is determined by the amount of gas generated by charging and discharging, it is necessary that the void be large enough to accommodate a small amount of gas (at least the same amount of gas as the amount of gas), but conversely, If the gap is too wide, the capacity of the battery will decrease, so the upper limit may be appropriately set so as to provide the required capacity of the battery.

この空隙は、例えばシート状の負極と正極とをセパレー
タを介して積層し渦巻き状に巻回して外装缶内に収納し
た所謂ジェリーロールタイプの非水電解液二次電池では
、該電池内部の中心に形成される円筒状の空隙により確
保することがき、その広さは電池内部に充填する電解液
の量を加減することにより調節することが可能である。
For example, in a so-called jelly-roll type non-aqueous electrolyte secondary battery in which a sheet-shaped negative electrode and a positive electrode are laminated with a separator in between, wound spirally, and housed in an outer can, this gap is located at the center of the inside of the battery. The space can be secured by a cylindrical space formed in the cell, and the size of the space can be adjusted by controlling the amount of electrolyte filled inside the battery.

また、上記ジェリーロールタイプの非水電解液二次電池
ではなく、外観が直方体状となされ、内部に負極及び正
極がセパレータを介して複数枚積層されてなるものにあ
っては、上記空隙は該電池内部の例えば上端側に設ける
ことができ、その広さは収納する上記各電極、電解液等
の体積等により調整すれば良い、さらに、それ以外の条
件、例えばガスケットの大きさ等によって調整しても良
いことは言うまでもない。
In addition, in the case of a non-aqueous electrolyte secondary battery of the jelly roll type described above, which has a rectangular parallelepiped appearance and has a plurality of negative electrodes and positive electrodes stacked inside with a separator interposed therebetween, the above-mentioned voids are It can be provided inside the battery, for example, on the upper end side, and its width can be adjusted depending on the volume of the above-mentioned electrodes, electrolyte, etc. to be accommodated.Furthermore, it can be adjusted according to other conditions, such as the size of the gasket. Needless to say, it's a good thing.

く作用〉 本発明に係る非水電解液二次電池によれば、充放電の繰
り返しによりガスが発生した場合でも、当該ガスは容器
内に設けられた空隙に収容され、電池内部の気圧が当該
電池内に収納された電解液が外部に漏出たり変形したり
する程上昇することがない。
Effect> According to the non-aqueous electrolyte secondary battery according to the present invention, even if gas is generated due to repeated charging and discharging, the gas is contained in the gap provided in the container, and the atmospheric pressure inside the battery is The electrolyte stored in the battery does not rise to the extent that it leaks out or becomes deformed.

〈実施例〉 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

なお、本実施例は、所謂防爆機構が設けられた非水電解
液二次電池に本発明を通用したものである。
In this example, the present invention is applied to a non-aqueous electrolyte secondary battery provided with a so-called explosion-proof mechanism.

本実施例に係る非水電解液二次電池は、第1図に示すよ
うに、発電要素が収納される円筒状の外装缶(1)と、
この外装缶(1)の上端側内周面に設けられたガスケン
ト(2)と、このガスケット(2)に嵌入支持された安
全弁(3)と、上記外装缶(1)を閉塞するとともに正
極端子となる蓋体(4)とから概略構成されており、上
記ガスケラ)(2)、安全弁(3)及び蓋体(4)は上
記外装缶(1)にかしめられて取付けられている。
As shown in FIG. 1, the non-aqueous electrolyte secondary battery according to this example includes a cylindrical outer can (1) in which a power generation element is housed;
A gasket (2) provided on the inner peripheral surface of the upper end of this outer can (1), a safety valve (3) fitted and supported by this gasket (2), and a positive terminal that closes the outer can (1) and The gas kerater (2), the safety valve (3), and the lid (4) are attached to the exterior can (1) by caulking.

上記外装缶(1)内には、発電体として負極材(5)と
正極材(6)とが図示しない電解液を染み込ませたセパ
レータ(7)を挟んで複数回巻回されて収納されるとと
もに、この発電体の上側には絶縁シート(8)が載置さ
れている。上記絶縁シート(8)の中央部にはリード端
子(9)を挿通するための挿通孔(10)が穿設されて
いる。上記リード端子(9)は、一端が前記正極材(6
)と接続されているとともに、他端は上記絶縁シート(
8)の下面から上記挿通孔(10)を通って後述する安
全弁(3)の下面側に例えばスポット溶着等の手法によ
り取付↓すられている。
Inside the exterior can (1), a negative electrode material (5) and a positive electrode material (6) as a power generating body are housed in a plurality of windings with a separator (7) impregnated with an electrolytic solution (not shown) in between. At the same time, an insulating sheet (8) is placed on the upper side of this power generating body. An insertion hole (10) for inserting a lead terminal (9) is formed in the center of the insulating sheet (8). The lead terminal (9) has one end connected to the positive electrode material (6).
), and the other end is connected to the above insulating sheet (
8) It is attached from the lower surface of the safety valve (3) through the insertion hole (10) to the lower surface of the safety valve (3), which will be described later, by a method such as spot welding.

そして、上記負極材(5)及び正極材(6)がセパレー
タ(7)を介して複数回巻回された中心部は、空隙部(
13)となされている。この空隙部(13)の広さは、
上記セパレータ(7)に染み込ませる電解液の量によっ
て調節されるものである。
The center portion where the negative electrode material (5) and the positive electrode material (6) are wound a plurality of times with the separator (7) interposed therebetween is a gap portion (
13). The width of this gap (13) is
It is adjusted by the amount of electrolytic solution impregnated into the separator (7).

一方、上記外装缶(1)の上端部側には大径部(12)
が設けられ、この大径部(12)に上記ガスケット(2
)が嵌挿されている。そして、上記ガスケット(2)の
上面には安全弁(3)が設けられている。この安全弁(
3)は、上記ガスケット(2)の径よりもやや短径の円
盤状をなすとともに、上記ガスケット(2)に形成され
た円環状立上がり部(2a)の内周側に嵌入されている
。なお、この安全弁(3)の厚みは、前記外装缶(1)
内に収納されている発電体の放電により発生したガスが
、前記空隙部(13)を以ってしてもなお、電池内部の
気圧が上昇した場合に破裂し得る厚さの溝部(3a)が
設けられている。すなわち、電池内空気圧が所定以上に
なった場合、上記安全弁(3)が作動、破裂するように
なされている。なお、前記正極(6)と接続されたリー
ド端子(9)は、この安全弁(3)の下面と接続されて
いる。
On the other hand, there is a large diameter portion (12) on the upper end side of the outer can (1).
is provided, and the gasket (2) is attached to this large diameter portion (12).
) is inserted. A safety valve (3) is provided on the upper surface of the gasket (2). This safety valve (
3) is in the shape of a disc with a diameter slightly shorter than the diameter of the gasket (2), and is fitted into the inner peripheral side of the annular rising portion (2a) formed on the gasket (2). The thickness of this safety valve (3) is the same as that of the outer can (1).
A groove portion (3a) having a thickness that allows gas generated by discharge of the power generator housed therein to rupture if the air pressure inside the battery rises even if the gas is passed through the gap portion (13). is provided. That is, when the air pressure inside the battery exceeds a predetermined value, the safety valve (3) is activated and ruptured. Note that the lead terminal (9) connected to the positive electrode (6) is connected to the lower surface of the safety valve (3).

そして、上記安全弁(3)の上部には、この安全弁(3
)と対向して円盤状の蓋体(4)が設けられている。こ
の蓋体(4)は、本電池の正極端子として機能するもの
であり、中心部には第1図中上方に膨出した膨出部(4
a)が形成されるとともに、周部において上記安全弁(
3)と接触している。また、この蓋体(4)の上記膨出
部(4a)には、二つの小孔(4b) 、 (4b)が
穿設され、第2図に示すように安全弁(3)が破裂した
場合に電池内部のガスが外部(第2図中、矢印X方向)
に放出し得るようになされている。
The safety valve (3) is placed on the top of the safety valve (3).
) A disc-shaped lid body (4) is provided opposite to the lid body (4). This lid (4) functions as the positive terminal of the battery, and has a bulge (4) in the center that bulges upward in Figure 1.
a) is formed, and the safety valve (
3) is in contact with. In addition, two small holes (4b), (4b) are bored in the bulging part (4a) of this lid body (4), so that if the safety valve (3) ruptures as shown in Figure 2, When the gas inside the battery is released to the outside (in the direction of arrow X in Figure 2)
It is designed so that it can be released to

なお、上記実施例に係る非水電解液二次電池は、防爆機
構が設けられ、且つ負極材(5)と正極材(6)とがセ
パレータ(7)を挟んで渦巻き状に積層巻回された所謂
ジェリーロールタイプの電池に本発明を通用したもので
あるが、本発明は上記タイプのもの以外に、例えば、第
3図及び第4図に示す角型のタイプの電池に対しても適
用することができる。
Note that the non-aqueous electrolyte secondary battery according to the above embodiment is provided with an explosion-proof mechanism, and the negative electrode material (5) and the positive electrode material (6) are spirally laminated and wound with a separator (7) in between. Although the present invention is applicable to so-called jelly roll type batteries, the present invention is also applicable to, for example, rectangular type batteries shown in Figs. 3 and 4 in addition to the above-mentioned types. can do.

この非水電解液二次電池は、全体形状が略立法体状とな
されており、外装缶(20)内に図示しない電解液が染
み込まされたセパレータ(21)を介して発電体である
複数枚の負極材(22)及び複数枚の正極材(23)が
収納されている。上記負極材(22)と正極材(23)
とは、それぞれこの電池の側面形状と同じ長方形状とな
されており、第4図に示す左右両側は負極材(22)が
位置し、上記外装缶(20)と電気的に接触するように
なされている。なお、第3図に示すように、この外装缶
(20)の内周面は口字状の絶縁板(24)が形成され
ており、上記負極材(22)と正極(23)とが外装缶
(20)内において短絡しなようになされている。
This non-aqueous electrolyte secondary battery has a generally cubic shape, and a plurality of panels, which are power generators, are inserted into an exterior can (20) through a separator (21) impregnated with an electrolyte (not shown). A negative electrode material (22) and a plurality of positive electrode materials (23) are stored. The above negative electrode material (22) and positive electrode material (23)
The negative electrode material (22) is located on both the left and right sides as shown in FIG. 4, and is in electrical contact with the outer can (20). ing. As shown in FIG. 3, a mouth-shaped insulating plate (24) is formed on the inner peripheral surface of the outer can (20), and the negative electrode material (22) and the positive electrode (23) are connected to the outer can. It is designed to prevent short circuits within the can (20).

また、上記外装缶(20)内の上方は、空隙部(25)
が設けられている。なお、この空隙部(25)の広さは
、少なくとも本非水電解液二次電池の容量IAH当たり
Q、 3 cc以上に設定されている。
Moreover, the upper part of the exterior can (20) is a cavity (25).
is provided. The width of this void (25) is set to at least Q, 3 cc or more per capacity IAH of the non-aqueous electrolyte secondary battery.

そして、上記空隙部(25)内には、上記複数枚の負極
材(22)をそれぞれ電気的に接続するための負極リー
ド(26)が配設されている。同様に、上記複数枚の正
極材(23)も上記空隙部(25)内において正極リー
ド(27)により電気的に接続され、上記外装缶(20
)の上端面(20a)に設けられた正極端子(28)と
接続されている。なお、上記負極材(22)及び正極材
(23)等からなる発電体の上端部には絶縁板(29)
が配設され、上記負極リード(26)及び正極リード(
27)は、この絶縁板(29)に設けられた複数の小孔
(29a)に挿通されている。
A negative electrode lead (26) for electrically connecting each of the plurality of negative electrode materials (22) is disposed within the gap (25). Similarly, the plurality of positive electrode materials (23) are also electrically connected within the cavity (25) by the positive electrode lead (27), and the outer can (20)
) is connected to a positive terminal (28) provided on the upper end surface (20a) of the terminal. In addition, an insulating plate (29) is provided at the upper end of the power generator made of the negative electrode material (22), positive electrode material (23), etc.
is arranged, and the negative electrode lead (26) and the positive electrode lead (
27) are inserted through a plurality of small holes (29a) provided in this insulating plate (29).

また、上記正極端子(28)が設けられている外装缶(
20)の上端面(20a)には、この端子(28)を囲
むように円環状の絶縁部材(30)が配設され、上記負
極端子となされる外装缶(20)と上記正極端子(28
)とが短絡しないようになされている。
In addition, the outer can (
An annular insulating member (30) is disposed on the upper end surface (20a) of the terminal (28) to surround the terminal (28), and connects the outer can (20) serving as the negative terminal and the positive terminal (28).
) to prevent short circuits.

そして、本発明者等は、先に説明した防爆機構を備えた
ジェリーロールタイプの非水電解液二次電池を、以下に
説明する種々の条件で作成するとともに、それらの電池
を後述する一定の条件で充放電を繰り返す等してその結
果安全弁がどのような状態となったかをそれぞれ観察し
た。
The present inventors created jelly roll type non-aqueous electrolyte secondary batteries equipped with the above-described explosion-proof mechanism under various conditions described below, and also manufactured these batteries under certain conditions described below. The safety valves were repeatedly charged and discharged under various conditions, and the resulting state of the safety valve was observed.

1隻週上 先ず、負極材(1)として、ピッチコークスを粉砕した
ちの90重量部にポリフッカビニリデン10重量部を混
合し、N−メチルピロリドンに溶かしスラリー状にした
。このスラリーを厚さo、otNの銅箔上に両面塗布し
、嵌挿後プレスし厚さQJmm。
First, as a negative electrode material (1), 90 parts by weight of pulverized pitch coke was mixed with 10 parts by weight of polyfluorocinylidene, and the mixture was dissolved in N-methylpyrrolidone to form a slurry. This slurry was coated on both sides of a copper foil with a thickness of o and otN, and after insertion, it was pressed to a thickness of QJmm.

巾430.長さ290鶴の電極とし、負極合剤の重量が
2.6gの電極を作′成した。
Width 430. An electrode with a length of 290 mm and a negative electrode mixture weight of 2.6 g was prepared.

次に、正極材(6)としてLiCo3とC0CO3を混
合し900℃にて空気中で焼成したLiCo02を粉砕
したものを91重量部にグラファイト6重量部、ポリフ
ッカビニリデン3重量部を混合しN−メチルピロリドン
を溶かし、−スラリー状にしたものを、厚さ0.02鶴
のアルミ箔の両面に塗布し、嵌挿後プレスして厚さ0.
2m、中43鶴、長さ290uの電極とし、正極合剤の
流量が6.0gの電極を作成した。
Next, as a positive electrode material (6), 91 parts by weight of LiCo02, which was obtained by mixing LiCo3 and COCO3 and calcining it in air at 900°C, were mixed with 6 parts by weight of graphite and 3 parts by weight of polyfluorovinylidene. Melt methylpyrrolidone and make a slurry, apply it to both sides of aluminum foil with a thickness of 0.02mm, insert it and press it to make it 0.0mm thick.
An electrode with a length of 2 m, a diameter of 43 mm, and a length of 290 u was prepared, and the flow rate of the positive electrode mixture was 6.0 g.

そして、正極及び負極のそれぞれに集電用リードを取付
け、中45mm、厚み0.025 mmのマイクロポー
ラスフィルムをセパレータとしてW−B 13 、3 
tmに巻上げ外径13.81mの外装缶(1)に組み込
み、さらにガスケット(2)を挿入した。その後炭化プ
ロピレンとジメトキシエタンを同体積混合し1molの
LiPFを溶かして作成した電解液を2.6ml注入し
、アルミニウム製の安全弁(3)及び蓋体(4)を取付
け、上記発電体、安全弁(3)及び蓋体(4)が密閉さ
れるようにかしめて非水電解液二次電池を作成した。
Then, a current collecting lead was attached to each of the positive and negative electrodes, and a microporous film with a diameter of 45 mm and a thickness of 0.025 mm was used as a separator.
It was rolled up and assembled into an outer can (1) with an outer diameter of 13.81 m, and a gasket (2) was further inserted. After that, 2.6 ml of an electrolyte prepared by mixing equal volumes of propylene carbide and dimethoxyethane and dissolving 1 mol of LiPF was injected, and the aluminum safety valve (3) and lid body (4) were attached. 3) and the lid (4) were caulked to be tightly sealed to create a non-aqueous electrolyte secondary battery.

なお、本実施例1で使用した上記安全弁(3)は約15
気圧で作動するものを使用した。
The safety valve (3) used in Example 1 has a diameter of about 15
I used one that operates using air pressure.

尖應皿l 上記実施例1で作成した非水電解液二次電池の条件にお
いて、注入する電解液を2.5蒙l として非水電解液
二次電池を作成した。
A non-aqueous electrolyte secondary battery was created under the conditions of the non-aqueous electrolyte secondary battery created in Example 1 above, with the amount of electrolyte injected being 2.5 mol.

実111よ 前記実施例1で作成した非水電解液二次電池の条件にお
いて、注入する電解液を2.3++1として非水電解液
二次電池を作成した。
Example 111 A non-aqueous electrolyte secondary battery was created under the conditions of the non-aqueous electrolyte secondary battery created in Example 1, with the electrolyte to be injected being 2.3++1.

実施±1 前記実施例1で作成した非水電解液二次電池の条件にお
いて、前記負極(5)及び正極(6)の各電極中を43
mから35.5gmへ減少させ、またセパレータ(7)
の巾を37fiとして上記負極(5)、正極(6)及び
セパレータ(7)を上記非水電解液の場合と同様に外装
缶(1)内に収納して非水電解液二次電池を作成した。
Implementation ±1 Under the conditions of the non-aqueous electrolyte secondary battery prepared in Example 1, each electrode of the negative electrode (5) and positive electrode (6) was
m to 35.5 gm, and separator (7)
The width of the negative electrode (5), positive electrode (6), and separator (7) are stored in the outer can (1) as in the case of the non-aqueous electrolyte to create a non-aqueous electrolyte secondary battery. did.

なお、この外装缶(1)内に注入した電解液は2.8a
+1 とし、さらに、この時の空隙は1蒙lとした。
In addition, the electrolyte injected into this outer can (1) is 2.8a
+1, and the air gap at this time was set to 1 mol.

ル較尉上 前記実施例1で作成した非水電解液二次電池の条件中、
該電池内の空隙を全く設けない非水電解液二次電池を作
成した。
Among the conditions of the non-aqueous electrolyte secondary battery prepared in Example 1 above,
A non-aqueous electrolyte secondary battery was created in which no voids were provided within the battery.

、比較1日。, comparison 1 day.

前記実施例1で作成した非水電解液二次電池の条件にお
いて、注入する電解液を2.7+*l として非水電解
液二次電池を作成した。
A non-aqueous electrolyte secondary battery was created under the conditions of the non-aqueous electrolyte secondary battery created in Example 1, with the electrolyte to be injected being 2.7+*l.

上述した条件で作成した各々の非水電解液二次電池を実
施例1〜4及び比較例1及び2を、放電 220mA 
x 3H時間 (最大電圧4.OV)充電 14.0Ω
     (終始電圧1.9V)の条件で10サイクル
の放充電を繰り返した。そして、この放充電後における
各電池の状態を観察するとともに、さらに、上記放充電
の後、各電池を60℃に一日保存した後の各電池の状態
を観察した。
Examples 1 to 4 and Comparative Examples 1 and 2 of each of the non-aqueous electrolyte secondary batteries created under the conditions described above were discharged at 220 mA.
x 3H hours (maximum voltage 4.OV) charging 14.0Ω
Ten cycles of discharging and charging were repeated under the condition (starting and ending voltage of 1.9 V). Then, the state of each battery after this discharging and charging was observed, and the state of each battery was also observed after each battery was stored at 60° C. for one day after the above-mentioned discharging and charging.

これらの結果を以下の表1に記載する。These results are listed in Table 1 below.

(以下、余白) 上記表1から明らかなように、実施例1に係る二次電池
では、10サイクル後の安全弁(3)に変化は見られな
かった。但し、この10サイクル後60℃で一日保存後
の上記安全弁(3)の状態を見ると多少凸状に変形して
いた。しかし、安全弁(3)が内部の空圧により作動し
ておらず、電解液の漏れもなかったので実用上特別の問
題はない。なぜならば、60℃という温度は実用上最高
の温度に近いからである。
(Hereafter, blank space) As is clear from Table 1 above, in the secondary battery according to Example 1, no change was observed in the safety valve (3) after 10 cycles. However, after 10 cycles and storage at 60° C. for one day, the safety valve (3) was deformed into a somewhat convex shape. However, since the safety valve (3) was not operated by internal air pressure and there was no electrolyte leakage, there was no particular problem in practical terms. This is because the temperature of 60°C is close to the highest temperature in practice.

また、実施例2から実施例4に係る二次電池については
10サイクル後における安全弁(3)の変化もその後の
60日保存後の安全弁(3)の変化もなく良好であった
。但し、上記実施例4の二次電池は、容量が30OAH
に低下していた。
Moreover, the secondary batteries according to Examples 2 to 4 were good, with no change in the safety valve (3) after 10 cycles and no change in the safety valve (3) after 60 days of storage. However, the secondary battery of Example 4 has a capacity of 30OAH.
It had declined to .

一方、比較例1に係る二次電池は、電池内に全(空隙を
設けていないので上記10サイクルの充放電の繰り返し
により安全弁(3)は変形し、さらにその後の60℃の
保存後には弁が作動していた。なお、この比較例1にお
ける充放電の繰り返しによって得られた容量は500n
AIであった。
On the other hand, in the secondary battery according to Comparative Example 1, the safety valve (3) was deformed by repeating the above 10 cycles of charging and discharging, and furthermore, the safety valve (3) was deformed after being stored at 60°C since no void was provided inside the battery. The capacity obtained by repeated charging and discharging in Comparative Example 1 was 500n.
It was AI.

また、0.1a+1の空隙を設けた比較例2の二次電池
も、上記比較例1の二次電池と同様安全弁(3)の変形
及び作動が発見された。
Furthermore, in the secondary battery of Comparative Example 2 in which a gap of 0.1a+1 was provided, deformation and operation of the safety valve (3) were found as in the secondary battery of Comparative Example 1 described above.

このように、充放電の繰り返しによって非水電解液二次
電池l内の圧力が高くなっても、該電池lの内部に空隙
を設けることによって、該電池lが変形したり、或いは
該電池lの内部に充填された電解液が外部に漏れ出るこ
とを防止することができる。特に、上記空隙を電池体積
に対し2χ〜10χ、電池内有効体積に対しては3χ〜
152程度、又は通用する非水電解液二次電池の容量1
AH当たり0.3ccから少な(とも2.0ccとする
ことによって容量的にも優れている非水電解液二次電池
を提供することができる。
In this way, even if the pressure inside the non-aqueous electrolyte secondary battery 1 increases due to repeated charging and discharging, providing a void inside the battery 1 will prevent the battery 1 from being deformed or The electrolyte filled inside can be prevented from leaking to the outside. In particular, the above air gap is 2χ~10χ with respect to the battery volume, and 3χ~ with respect to the effective volume within the battery.
Approximately 152, or the capacity of a common non-aqueous electrolyte secondary battery 1
By setting the amount per AH to 0.3 cc to 2.0 cc, it is possible to provide a non-aqueous electrolyte secondary battery with excellent capacity.

なお、本発明は電池内部に設ける空隙を電解液の量で調
整した実施例を比較例とともに説明したが、本発明は上
記実施例に限定されることなく、例えば電極の巾又はセ
パレータの巾等により調整することも可能である。
In addition, although the present invention has been described with reference to examples in which the voids provided inside the battery are adjusted by the amount of electrolyte, the present invention is not limited to the above-mentioned examples, and the present invention is not limited to the above-mentioned examples. It is also possible to adjust by

また、上記各実施例の説明では、本発明を外観形状が円
筒形をなし且つ内部に正極及び負極をセパレータを介し
て積N巻回して形成した発電体を該電池の内部に収納し
た所謂ジェリーロールタイプの非水電解液二次電池に通
用したものを用いたが、本発明は、このようなタイプの
非水電解液二次電池のみに限定されることなく、例えば
先の実施例において説明した直方体状の非水電解液二次
電池に通用することができることは言うまでもない。
In addition, in the description of each of the above embodiments, the present invention has been described as a so-called jelly battery, which has a cylindrical external shape and has a power generating body formed by winding a positive electrode and a negative electrode in a product N-wound with a separator interposed inside the battery. Although a roll-type non-aqueous electrolyte secondary battery was used, the present invention is not limited to this type of non-aqueous electrolyte secondary battery; Needless to say, the present invention can be applied to rectangular parallelepiped non-aqueous electrolyte secondary batteries.

〈発明の効果〉 本発明に係る非水電解液二次電池によれば、充放電の繰
り返しによってガスが発生した場合であっても該電池が
変形したり、また該電池内部に充填した電解液が外部に
漏れ出ることを防止することができるので、長時間充放
電を繰り返し使用することができる信頼性の高い非水電
解液二次電池を提供することがきる。
<Effects of the Invention> According to the non-aqueous electrolyte secondary battery according to the present invention, even if gas is generated due to repeated charging and discharging, the battery will not deform or the electrolyte filled inside the battery will not deform. Since leakage of the non-aqueous electrolyte to the outside can be prevented, a highly reliable non-aqueous electrolyte secondary battery that can be repeatedly used for charging and discharging for a long period of time can be provided.

第1図は本発明の一実施例を示す断面図、第2図は安全
弁が破裂した状態を示す断面図、第3図及び第4図は他
の実施例を示す断面図である。
FIG. 1 is a sectional view showing one embodiment of the present invention, FIG. 2 is a sectional view showing a state where the safety valve is ruptured, and FIGS. 3 and 4 are sectional views showing other embodiments.

(1)・・・外装缶 (5)・・・負極材 (6)・・・正極材 (13)・・・空隙部(1)...Outer can (5)...Negative electrode material (6)...Cathode material (13)...Void part

【図面の簡単な説明】[Brief explanation of the drawing]

第3図     第4図 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  有機物焼成体よりなる負極と、Li_xMO_2(M
はCo又はNiの少なくとも1種を表し、0.05≦x
≦1.10である。)を含んだ正極と、電解液とが容器
内に収納されてなり、上記容器内に容量1AH当たり0
.3cc以上の空隙が設けられてなることを特徴とする
非水電解液二次電池。
A negative electrode made of a fired organic material and Li_xMO_2(M
represents at least one type of Co or Ni, 0.05≦x
≦1.10. ) and an electrolytic solution are housed in a container.
.. A non-aqueous electrolyte secondary battery characterized by having a void of 3 cc or more.
JP63125188A 1988-05-23 1988-05-23 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2646657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63125188A JP2646657B2 (en) 1988-05-23 1988-05-23 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63125188A JP2646657B2 (en) 1988-05-23 1988-05-23 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH01294373A true JPH01294373A (en) 1989-11-28
JP2646657B2 JP2646657B2 (en) 1997-08-27

Family

ID=14904090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125188A Expired - Lifetime JP2646657B2 (en) 1988-05-23 1988-05-23 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2646657B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240861A (en) * 1988-06-09 1990-02-09 Saft (Soc Accumulateurs Fixes Traction) Sa Manufacture of cathode material of secondary cell having lithium anode and application of the material
WO1994007275A1 (en) * 1991-07-30 1994-03-31 Yuasa Corporation Lithium secondary cell
US5464705A (en) * 1993-04-08 1995-11-07 Moli Energy (1990) Limited Battery incorporating hydraulic activation of disconnect safety device on overcharge
JP2002203555A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery
JP2006210089A (en) * 2005-01-27 2006-08-10 Nissan Motor Co Ltd Electrode for intrinsic polymer battery
US7955731B2 (en) 2006-08-14 2011-06-07 Sony Corporation Nonaqueous electrolyte secondary cell
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
US11217846B2 (en) * 2017-03-16 2022-01-04 Eaglepicher Technologies, Llc Electrochemical cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235372A (en) * 1984-05-07 1985-11-22 Sanyo Chem Ind Ltd Secondary battery
JPS61135472U (en) * 1985-02-14 1986-08-23
JPS62122066A (en) * 1985-04-30 1987-06-03 Mitsubishi Petrochem Co Ltd Nonaqueous solvent battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235372A (en) * 1984-05-07 1985-11-22 Sanyo Chem Ind Ltd Secondary battery
JPS61135472U (en) * 1985-02-14 1986-08-23
JPS62122066A (en) * 1985-04-30 1987-06-03 Mitsubishi Petrochem Co Ltd Nonaqueous solvent battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240861A (en) * 1988-06-09 1990-02-09 Saft (Soc Accumulateurs Fixes Traction) Sa Manufacture of cathode material of secondary cell having lithium anode and application of the material
JP2673009B2 (en) * 1988-06-09 1997-11-05 サフト Method for producing cathode material of secondary battery having lithium anode and use of the material
WO1994007275A1 (en) * 1991-07-30 1994-03-31 Yuasa Corporation Lithium secondary cell
US5464705A (en) * 1993-04-08 1995-11-07 Moli Energy (1990) Limited Battery incorporating hydraulic activation of disconnect safety device on overcharge
JP2002203555A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery
JP4577024B2 (en) * 2005-01-27 2010-11-10 日産自動車株式会社 Intrinsic polymer electrode
JP2006210089A (en) * 2005-01-27 2006-08-10 Nissan Motor Co Ltd Electrode for intrinsic polymer battery
US7955731B2 (en) 2006-08-14 2011-06-07 Sony Corporation Nonaqueous electrolyte secondary cell
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
CN104904058A (en) * 2013-03-01 2015-09-09 松下知识产权经营株式会社 Lithium ion secondary battery
JPWO2014132660A1 (en) * 2013-03-01 2017-02-02 パナソニックIpマネジメント株式会社 Lithium ion secondary battery
US9666903B2 (en) 2013-03-01 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Lithium ion secondary battery
US11217846B2 (en) * 2017-03-16 2022-01-04 Eaglepicher Technologies, Llc Electrochemical cell

Also Published As

Publication number Publication date
JP2646657B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
KR0140531B1 (en) Battery with current blocking valve
EP1119060B1 (en) Nonaqueous electrolyte solution secondary battery
JP4986009B2 (en) Secondary battery
JP5262175B2 (en) Negative electrode and secondary battery
EP1102342B1 (en) Cylindrical lithium-ion battery
JP4876495B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR20150126820A (en) Lithium ion secondary battery
JP2001057179A (en) Secondary battery and case thereof
EP0918359B1 (en) Non-aqueous electrolyte secondary cell comprising safety valve
JPH10112318A (en) Nonaqueous electrolyte secondary battery
US20010016281A1 (en) Secondary battery
JPH01294373A (en) Nonaqueous electrolyte-secondary battery
JPH10208720A (en) Battery pack
JP3049727B2 (en) Non-aqueous electrolyte secondary battery
JP2001023685A (en) Electrolyte and secondary battery using it
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JP2002042865A (en) Thin-type nonaqueous electrolyte secondary battery
JPH01294372A (en) Nonaqueous electrolyte secondary battery
JP3469836B2 (en) Non-aqueous electrolyte secondary battery
JP2000357536A (en) Nonaqueous electrolyte battery
JPH10261391A (en) Non-aqueous electrolyte secondary battery
JP3713361B2 (en) Square non-aqueous electrolyte battery and method for manufacturing the same
JP2000348691A (en) Nonaqueous electrolyte secondary battery
JP2001229905A (en) Nonaqueous electrolytic secondary battery
JP2004220816A (en) Reed terminal for battery and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
RVTR Cancellation due to determination of trial for invalidation