JPH01294171A - Winding shaft rotation of glass fiber winder and traverse section driving speed control device - Google Patents

Winding shaft rotation of glass fiber winder and traverse section driving speed control device

Info

Publication number
JPH01294171A
JPH01294171A JP12671988A JP12671988A JPH01294171A JP H01294171 A JPH01294171 A JP H01294171A JP 12671988 A JP12671988 A JP 12671988A JP 12671988 A JP12671988 A JP 12671988A JP H01294171 A JPH01294171 A JP H01294171A
Authority
JP
Japan
Prior art keywords
winding
speed
traverse
constant
winding shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12671988A
Other languages
Japanese (ja)
Other versions
JPH0635302B2 (en
Inventor
Hiroshi Watanabe
宏 渡辺
Eizo Ideno
出野 栄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP12671988A priority Critical patent/JPH0635302B2/en
Publication of JPH01294171A publication Critical patent/JPH01294171A/en
Publication of JPH0635302B2 publication Critical patent/JPH0635302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Winding Filamentary Materials (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)

Abstract

PURPOSE:To simply perform feedback control by inputting two inputs: the rotating speed at the time of winding start and the winding time until the winding completion, to a rotation setter when winding a thread at a fixed speed in a glass fiber winder. CONSTITUTION:The relationship between the rotating speed N and the winding time T of a winding shaft to make the winding speed of a thread constant is expressed as the function N=B/(T<1/2>) and stored and calculated in a winding shaft rotating speed setter 1. A means to set two inputs: the rotating speed at the time of winding start and the elapsed time until the expected diameter near the maximum winding diameter is attained, to the setter 1 is contained in the setter 1. A winding ratio calculator 6 receives the signal from the setter 1 and calculates according to the equation Nt=eN ((e) is a constant) and outputs the result. A fixed ratio is kept between the traverse cam rotating speed Nt and the winding drum rotating speed N. A traverse separation speed calculator 8 calculates the pulse number P according to the equation P=h/(N<1/2>)...((h) is a constant) and outputs it.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明はガラス繊維巻取機の巻取軸回転およびトラバー
ス部駆動速度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a winding shaft rotation and traverse section drive speed control device of a glass fiber winding machine.

B、従来技術 従来のガラス繊維巻取機において、巻取ドラムに一定速
度で糸条を巻取るように制御する場合(主にスクエアエ
ンドチーズに一定速度で糸条を巻取る場合)、回転する
板カムの回転中心から回転半径方向外周面までの距離を
回転角度に応じて直線的に変化させてカムリフトを形成
し、このカムリフト面に接触回転するカムローラのカム
半径方向への変位より電気信号を発生させ、これによっ
て、時間に対する巻取ドラム回転速度の関係を表わす信
号を得ていた。
B. Prior Art In a conventional glass fiber winding machine, when controlling the winding drum to wind the yarn at a constant speed (mainly when winding the yarn around a square end cheese at a constant speed), the rotating A cam lift is formed by linearly changing the distance from the center of rotation of the plate cam to the outer peripheral surface in the radial direction of rotation according to the rotation angle, and an electric signal is generated from the displacement of the cam roller that rotates in contact with this cam lift surface in the radial direction of the cam. This produced a signal representing the relationship of the winding drum rotational speed to time.

また、巻取直径の増大に対応してトラバース部をボビン
から離行させるため、本出願人が開発したものは次のよ
うなものであった(特公昭53−1854号公報)、即
ち、スピンドルの回転駆動を行う可変速度モータの速度
制御を行うシンクロに於ける電圧変位を、同軸上のシン
クロホイル、キャリア、同軸上の小歯車、ラック軸等か
ら成る伝動機構を介し回転カムに連繋すると共に、スピ
ンドルと平行して往復運動する糸導糸を備えたトラバー
ス装置を、軸受にて回動する如く支持されたアームと円
弧状歯車、ラック軸を介し回転カムに連繋し、且つ上記
2つの回転カムを原動軸に連繋するカム軸に固着し、ト
ラバース装置の離隔動作と角変位としてシンクロに伝え
電気的信号に変換して行う速度制御動作とを相関連して
行うものである。
In addition, in order to move the traverse part away from the bobbin in response to an increase in the winding diameter, the applicant has developed the following (Japanese Patent Publication No. 1854/1983): The voltage displacement in the synchronizer that controls the speed of the variable speed motor that drives the rotation of the motor is linked to the rotating cam via a transmission mechanism consisting of a synchro wheel on the same axis, a carrier, a small gear on the same axis, a rack shaft, etc. A traverse device equipped with a yarn guide that reciprocates in parallel with a spindle is connected to a rotating cam via an arm rotatably supported by a bearing, an arcuate gear, and a rack shaft, and the two rotations described above are A cam is fixed to a cam shaft connected to a driving shaft, and the separation operation of the traverse device and the speed control operation performed by transmitting angular displacement to a synchronizer and converting it into an electric signal are performed in a related manner.

C1発明が解決しようとする課題 しかしながら、前者の手段では、機械的変位を電気信号
に変換することによる損失が大きい、しかも直接対時間
的に電気信号を発生した際において、一定速度で巻取る
際の直径に対する回転速度変位は双曲線変位となり、こ
の入力設定に通常少なくとも3人力、即ち■初速設定、
■双曲線の勾配設定、■目的巻直径までの時間設定を必
要としていた。また、後者の手段では、41!構が複雑
となり、制御精度も悪かった。
C1 Problem to be Solved by the Invention However, with the former method, there is a large loss due to converting mechanical displacement into an electrical signal, and moreover, when the electrical signal is generated directly versus time, it is difficult to wind it at a constant speed. The rotational speed displacement with respect to the diameter of is a hyperbolic displacement, and this input setting usually requires at least three manual efforts, namely ■ initial speed setting,
■It was necessary to set the slope of the hyperbola and ■time to reach the target diameter. Also, with the latter method, 41! The structure was complicated and the control accuracy was poor.

本発明は上記問題点を解決し、糸条を一定速度で巻取る
場合において、時間に対する設定回転数の信号を2つの
入力によって決定できるような電気的制御装置と、これ
と連動するトラバースの電気的制御装置を提供すること
を目的とする。
The present invention solves the above-mentioned problems, and includes an electric control device that can determine a signal of a set rotational speed with respect to time by two inputs when winding a yarn at a constant speed, and a traverse electric control device that is interlocked with the electric control device. The purpose is to provide a control device for

08課題を解決するための手段 この目的を達成するため本発明の構成は次のごとくとす
る。即ち、巻取軸回転速度設定器には、糸条の巻取速度
を一定にするための巻取軸の回転速度Nと巻取時間Tと
の関係が N=Bi で表される関数が記憶され、そこで演算されるようにな
っている巻取軸回転速度設定器と、該設定器への巻始め
回転速度と巻取最大径に近い想定径になるまでの経過時
間の2つの入力を設定する手段と、 前記巻取軸回転速度設定器がらの信号を受けて、Nt=
eN (eは定数) の式に従って、トラバースカム回転速度Ntを演算出力
するワインド比演算器と、 前記設定器からのNの信号を受けて、 の式でパルスモータへのパルス数Pを演算出力するよう
にしたトラバース離行速度演算器とを含むことである。
08 Means for Solving the Problems In order to achieve this object, the structure of the present invention is as follows. That is, the take-up shaft rotation speed setting device stores a function that represents the relationship between the take-up shaft rotation speed N and the winding time T as N=Bi in order to keep the yarn winding speed constant. and the winding shaft rotation speed setting device, which is calculated there, and two inputs to the setting device: the rotation speed at the start of winding and the elapsed time until the expected diameter is close to the maximum winding diameter. and means for receiving a signal from the take-up shaft rotation speed setting device to determine that Nt=
A wind ratio calculator that calculates and outputs the traverse cam rotational speed Nt according to the formula eN (e is a constant), and receives the N signal from the setting device and calculates and outputs the number of pulses P to the pulse motor according to the formula and a traverse takeoff speed calculator configured to perform the following steps.

E1作用 巻取軸の回転速度検出器よりの信号と巻取軸回転速度設
定器からの信号をうけた比較増幅器は両信号の差が零と
なるような操作信号を出力する。
E1 action The comparator amplifier which receives the signal from the take-up shaft rotation speed detector and the signal from the take-up shaft rotation speed setter outputs an operation signal such that the difference between the two signals becomes zero.

この信号は巻取軸駆動モータに出力され、該モータの回
転速度はフィードバック制御される。ここで、前記設定
器に対し、巻始め回転速度と最大巻取想定径までの経過
時間の2つの入力を設定入力する。これによって、巻取
速度を一定とする制御出力が演算出力される。
This signal is output to the take-up shaft drive motor, and the rotational speed of the motor is feedback-controlled. Here, two inputs, the rotational speed at the start of winding and the elapsed time until the expected maximum winding diameter, are inputted into the setting device. As a result, a control output that keeps the winding speed constant is calculated and output.

F、実施例 以下、本発明の一実施例を図面にもとづき説明する。第
1図において、巻取軸回転速度設定器1と、巻取軸の回
転速度検出器たるパルス発信器2と、該検出器2よりの
信号と前記設定器1からの信号とを受けて両信号の差が
零となるような操作信号を出力するPID@御器3と、
該制御器3からの操作信号をうけて電圧の変化を周波数
の変化に変換して前記巻取軸駆動モータ5に出力するイ
ンバータ4とを有するフィードバック制譚回路が示され
ている。
F. Example Hereinafter, an example of the present invention will be described based on the drawings. In FIG. 1, a winding shaft rotational speed setting device 1, a pulse transmitter 2 which is a rotational speed detector of the winding shaft, and a pulse transmitter 2 which receives a signal from the detector 2 and a signal from the setting device 1, a PID@controller 3 that outputs an operation signal such that the signal difference is zero;
A feedback control circuit is shown which includes an inverter 4 which receives an operation signal from the controller 3, converts a change in voltage into a change in frequency, and outputs the same to the winding shaft drive motor 5.

さてここで、前記設定器1には、糸条の巻取速度を一定
にするための巻取軸の回転速度Nと巻取時間Tとの関係
が で表わされる関数が記憶され、そこで演算されるように
なっている。
Now, the setting device 1 stores a function representing the relationship between the rotational speed N of the winding shaft and the winding time T to keep the winding speed of the yarn constant, and is calculated using the function. It has become so.

即ち、第2図のごとくスクエアエンドパッケージの巻取
りに際しては、巻糸速度を一定とするため理論上第3図
のように、巻径に対し巻取ドラムの回転速度N(単位時
間当りの回転数)はとなり巻径りに反比例する。
In other words, when winding a square end package as shown in Figure 2, in order to keep the winding speed constant, the rotational speed N (rotations per unit time) of the winding drum should theoretically be adjusted to the winding diameter as shown in Figure 3. number) is inversely proportional to the winding diameter.

また巻糸の時間と巻径の関係は、巻径変化をd→Dとし
た時の増加体積より求めると、V=−(D2−d2) 
L           ・・・(2)V=RT   
            ・・・(3)ここで、■:時
rr:ITにおける増加体積L:トラバース幅 R:みかけ紡糸容量 T:d−D変化時間 (1)、(2)両式より T=AD”               ・・・(5
)通常巻取機においては巻始め径Dsは既知であり、ま
た巻取り最大径も既知である。いま、巻始め径をDs、
巻取り最大径に近い想定径をDfとすると(1)式より
、 Nf=Nsx −・・・(7) Df が得られ、Ds、Dfが既知であるためNsを決定する
と、(7)式よりNfが決り、(6)式よりKが決まる
Also, the relationship between the winding time and the winding diameter is determined from the increased volume when the winding diameter change is d→D: V=-(D2-d2)
L...(2)V=RT
...(3) Here, ■: Time rr: Increased volume L at IT: Traverse width R: Apparent spinning capacity T: d-D change time From both equations (1) and (2), T=AD"...・(5
) In a normal winder, the winding start diameter Ds is known, and the winding maximum diameter is also known. Now, the diameter at the beginning of the winding is Ds,
If the assumed diameter close to the maximum winding diameter is Df, then from equation (1), Nf=Nsx −...(7) Df is obtained, and since Ds and Df are known, when Ns is determined, equation (7) is obtained. Nf is determined from this, and K is determined from equation (6).

また、(1)式と(5)式から、 きる、そしてこの式を関数発生器を有する設定器1に記
憶演算させる。
Also, from equations (1) and (5), we obtain the following equation, and then store and calculate this equation in the setting device 1 having a function generator.

したがって、(a)巻始め回転速度Nsと(b)想定径
Dfまでの経過時間tの2人力を設定することによって
、巻取速度を一定とする制御出力を演算して出すことが
できる。この出力に応じたコントロールをフィードバッ
ク回路で行なえばよい。
Therefore, by setting two manual forces: (a) the rotational speed Ns at the start of winding and (b) the elapsed time t until reaching the assumed diameter Df, it is possible to calculate and output a control output that keeps the winding speed constant. Control according to this output may be performed using a feedback circuit.

次に、ワインド比演算は次のようになされる。Next, the wind ratio calculation is performed as follows.

今トラバースアームがトラバース幅の距離を片道移動す
る時の巻取ドラム回転数をワインド数Wを呼ぶ、トラバ
ースカム回転速度Ntと巻取ドラム回転数Nとは次のよ
うに一定比となる2Nt=eN (eは定数)    
          −(9)従って、前記巻取軸回転
速度設定器lからの第8式にもとづく信号を受けて、ワ
インド比演算器はトラバースカム回転速度Ntを演算出
力する。
The number of rotations of the take-up drum when the traverse arm moves one way over the distance of the traverse width is called the wind number W. The rotation speed of the traverse cam Nt and the number of rotations of the take-up drum N have a constant ratio as follows: 2Nt= eN (e is a constant)
-(9) Therefore, upon receiving the signal based on the formula 8 from the take-up shaft rotation speed setter 1, the wind ratio calculator calculates and outputs the traverse cam rotation speed Nt.

次に、トラバースアーム離行速度の演算は次のようにな
される。今、ボビンをトラバースアームが第4図のよう
な位置関係にあるとき、次式が成立する。
Next, the traverse arm departure speed is calculated as follows. Now, when the bobbin and the traverse arm are in the positional relationship as shown in FIG. 4, the following equation holds true.

そして、パルスモータからトラバースアーム支軸までの
増速比をS、パルスモータが1パルス当たり1.8°回
動するとすれば、 そこで、第10式からαを求め、これを上式に代入すれ
ば、 これに第1式からのDを代入すれば、 従って、前記と同様に設定器1からのNの信号を受けて
、トラバース離行速度演算器官 はパルスモータへのパ
ルス数Pを演算出力する。
Then, if the speed increase ratio from the pulse motor to the traverse arm support shaft is S, and the pulse motor rotates 1.8 degrees per pulse, then calculate α from equation 10 and substitute it into the above equation. For example, by substituting D from the first equation into this, the traverse departure speed calculation unit receives the N signal from the setting device 1 in the same way as above, and calculates and outputs the number of pulses P to the pulse motor. do.

これらの速度Ntとパルス数Pにもとづく信号が送られ
て、前記巻取軸回転速度の制御と同様にコントロールさ
れる。
A signal based on the speed Nt and the number of pulses P is sent to control the winding shaft rotation speed in the same way as the control of the winding shaft rotation speed.

なお、前記(1)式および(5)式について、各々の実
際状態に近い近似式を用いて(8)式に相当する近似式
を適用してもよい、また、前記インバータ4、誘導モー
タ5の組合せに代替して、直流モータまたは交流サーボ
系が用いられる。
Note that for the above equations (1) and (5), an approximate equation corresponding to equation (8) may be applied using an approximate equation close to each actual state. Instead of this combination, a DC motor or an AC servo system is used.

G、効 果 本発明は以上のごとく、巻取軸回転速度設定器に糸条の
巻取速度を一定にするための巻取軸の回転速度と巻取時
間との関係を表わす関数が記憶され、巻始め回転速度と
巻取最大径に近い想定径になるまでの経過時間の2つの
入力を設定することによって、巻取速度を一定とする制
御出力を演算して出力するようにした。従って、糸条を
一定速度で巻取る場合において、巻始めの回転速度と巻
始めから巻終りまでの巻取時間の2つの入力を回転数設
定器に入力することにより、簡単にフィードバック制御
が可能となったのである。また、ワインド比演算器とト
ラバース離行速度演算器とによって、トラバースは簡単
に電気的に制御できる。
G. Effects As described above, the present invention stores a function representing the relationship between the rotational speed of the winding shaft and the winding time in order to keep the yarn winding speed constant in the winding shaft rotation speed setting device. By setting two inputs: the rotational speed at the start of winding and the elapsed time until the expected diameter is close to the maximum winding diameter, a control output that keeps the winding speed constant is calculated and output. Therefore, when winding yarn at a constant speed, feedback control is easily possible by inputting two inputs, the rotational speed at the start of winding and the winding time from the start of winding to the end of winding, to the rotation speed setting device. It became. Further, the traverse can be easily electrically controlled by the wind ratio calculator and the traverse departure speed calculator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電気回路図、第2図は巻取
りパッケージの軸断面図、第3図は巻取回転速度Nと巻
取径りおよび巻取時間Tとの関係を示すグラフ、第4図
はトラバース部の説明図である。 1・・・巻取軸回転速度設定器、2・・・巻取軸の回転
速度検出器、3・・・PID!I制御器、4・・・イン
バータ、5・・・巻取軸駆動モータ 特許出願人  株式会社島津製作所 代理人  弁理士 犬 飼 新 平 代理人  弁理士 西 教 圭一部 代理人  弁理士 本 城 雅 削 節1図 第2r!A
Fig. 1 is an electric circuit diagram of an embodiment of the present invention, Fig. 2 is an axial sectional view of a winding package, and Fig. 3 shows the relationship between the winding rotation speed N, the winding diameter, and the winding time T. The graph shown in FIG. 4 is an explanatory diagram of the traverse section. 1... Take-up shaft rotation speed setting device, 2... Take-up shaft rotation speed detector, 3... PID! I controller, 4... Inverter, 5... Take-up shaft drive motor Patent applicant: Shimadzu Corporation Agent Patent attorney: Shinpei Inukai, Attorney Patent attorney: Nori Nishi Keiichi, Attorney: Patent attorney Masa Motojo, Kebushi Figure 1, 2nd r! A

Claims (1)

【特許請求の範囲】 糸条の巻取速度を一定にするための巻取軸の回転速度N
と巻取時間Tとの関係が N=B{1/√(T)} で表される関数が記憶され、そこで演算されるようにな
っている巻取軸回転速度設定器と、該設定器への巻始め
回転速度と巻取最大径に近い想定径になるまでの経過時
間の2つの入力を設定する手段と、 前記巻取軸回転速度設定器からの信号を受けて、Nt=
eN(eは定数) の式に従って、トラバースカム回転速度Ntを演算出力
するワインド比演算器と、 前記設定器からのNの信号を受けて、 P=h(1/N^2)(hは定数) の式で、パルスモータへのパルス数Pを演算出力するト
ラバース離行速度演算器とを含むことを特徴とするガラ
ス繊維巻取機の巻取軸回転およびトラバース部駆動速度
制御装置。
[Claims] Rotational speed N of the winding shaft to keep the yarn winding speed constant
and a winding shaft rotation speed setting device in which a function in which the relationship between and winding time T is expressed as N=B{1/√(T)} is stored and calculated, and the setting device means for setting two inputs: a rotational speed at the start of winding and an elapsed time until the expected diameter is close to the maximum winding diameter, and receiving a signal from the winding shaft rotational speed setting device,
A wind ratio calculator calculates and outputs the traverse cam rotational speed Nt according to the formula eN (e is a constant), and receives the N signal from the setting device, P=h(1/N^2) (h is 1. A winding shaft rotation and traverse section drive speed control device for a glass fiber winder, comprising: a traverse takeoff speed calculator which calculates and outputs the number of pulses P to a pulse motor using the formula:
JP12671988A 1988-05-23 1988-05-23 Winding shaft rotation and traverse section drive speed control device for glass fiber winder Expired - Lifetime JPH0635302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12671988A JPH0635302B2 (en) 1988-05-23 1988-05-23 Winding shaft rotation and traverse section drive speed control device for glass fiber winder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12671988A JPH0635302B2 (en) 1988-05-23 1988-05-23 Winding shaft rotation and traverse section drive speed control device for glass fiber winder

Publications (2)

Publication Number Publication Date
JPH01294171A true JPH01294171A (en) 1989-11-28
JPH0635302B2 JPH0635302B2 (en) 1994-05-11

Family

ID=14942175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12671988A Expired - Lifetime JPH0635302B2 (en) 1988-05-23 1988-05-23 Winding shaft rotation and traverse section drive speed control device for glass fiber winder

Country Status (1)

Country Link
JP (1) JPH0635302B2 (en)

Also Published As

Publication number Publication date
JPH0635302B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US6405966B1 (en) Process and cross-winding device for laying a thread
US4515320A (en) Traverse winding frame for producing the winding of a package
CN1332867C (en) Traverse controlling device
US4567418A (en) Operation control apparatus for robots
US3615060A (en) Apparatus for winding endless yarns on a spool
US3779480A (en) Translating winder for electric cables
JPH01294171A (en) Winding shaft rotation of glass fiber winder and traverse section driving speed control device
US4951889A (en) Programmable perfect layer winding system
JPH0558548A (en) Traverse device for fiber winder
CN1403360A (en) Apparatus for winding filamentary materials
JPH0220545B2 (en)
JPS5842562A (en) Yarn winder
US4228965A (en) Assembly for winding yarns and the like on a bobbin
US5605295A (en) Method and device for winding a yarn
JP3641812B2 (en) Tape winding device
JPS61263570A (en) Inertial tension compensation winding device
JPH0441802B2 (en)
JPS63212678A (en) Winding shaft speed controller
JP2803376B2 (en) Winding machine and method of controlling winding machine
JP2533946Y2 (en) Turret-type thin wire continuous winding device
SU811330A1 (en) Central winding device
JPH05299284A (en) Split winding toroidal coil winder and controlling method thereof
JPS6231482B2 (en)
JPH0246503B2 (en) CHOSOKUMA KITORIKI
JPH05806Y2 (en)