JPH0129312B2 - - Google Patents

Info

Publication number
JPH0129312B2
JPH0129312B2 JP58049472A JP4947283A JPH0129312B2 JP H0129312 B2 JPH0129312 B2 JP H0129312B2 JP 58049472 A JP58049472 A JP 58049472A JP 4947283 A JP4947283 A JP 4947283A JP H0129312 B2 JPH0129312 B2 JP H0129312B2
Authority
JP
Japan
Prior art keywords
circuit
heating tube
section
current
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58049472A
Other languages
Japanese (ja)
Other versions
JPS59175584A (en
Inventor
Masao Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Engineering Co Ltd
Original Assignee
Chisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Engineering Co Ltd filed Critical Chisso Engineering Co Ltd
Priority to JP58049472A priority Critical patent/JPS59175584A/en
Publication of JPS59175584A publication Critical patent/JPS59175584A/en
Publication of JPH0129312B2 publication Critical patent/JPH0129312B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Pipe Accessories (AREA)

Description

【発明の詳細な説明】 本発明は複数区画よりなる表皮電流発熱管に関
する。更に詳しくは、2次誘導回路が相互に金属
的には接触せず絶縁又は絶縁に近い、複数区画よ
りなり、かつ単一電源に対し直列である誘導表皮
電流発熱管の回路(以下表皮電流発熱管の回路を
単に発熱管回路と呼ぶ)において、発熱管回路の
何れかにおける短絡事故(絶縁不良を含む)によ
る電流異状を、電源付近において容易に検出する
ようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a skin current heating tube having multiple sections. More specifically, the circuit of an induced skin current heating tube (hereinafter referred to as "skin current heating") consists of multiple sections in which the secondary induction circuits do not make metallic contact with each other and are insulated or nearly insulated, and are connected in series to a single power source. This invention relates to a system in which an abnormality in current due to a short circuit accident (including insulation failure) in any of the heating tube circuits can be easily detected in the vicinity of the power source in a tube circuit (simply referred to as a heating tube circuit).

ここで表皮電流発熱管について説明すると、表
皮電流発熱管とは、強磁性管とその中に通された
絶縁電線とからなり、前記電線に交流電流を通じ
たとき、これに対応して逆方向の交流電流が前記
強磁性管の内表面付近に集中されて流れるような
回路を有するものをいう。このような表皮電流発
熱管の有する回路には大きく分けて2種類ある。
第1のものは前記強磁性管とその中に通された絶
縁電線との、各一端が交流電源に電気的に接続さ
れ、各他端は相互に電気的に接続されたもので、
直列表皮電流発熱管と呼ばれる。このような回路
を持つ表皮電流発熱管の例は特公昭40−12128号
(日本特許第460224号)明細書に記載されている。
第2の種類のものは前記絶縁線の両端が交流電源
に電気的に接続されて閉回路を形成し、前記強磁
性管の両端は相互にできるだけインピーダンスが
低くなるように電気的に接続されて閉回路(2次
誘導回路)を形成しているものである。このよう
な回路を持つ表皮電流発熱管の例は特公昭46−
588号(日本特許第612750号)明細書に記載され
ていて誘導表皮電流発熱管と呼ばれる。但し該特
許明細書にいう表皮電流発熱管においては電流が
強磁性管の外側に実質的に流出しないよう、その
厚みに一定の限定が加えられているが、本明細書
ではそのような限定のあるものもないものも含め
て総称する。電流が強磁性管の外側に流出しない
ようにするためには他の手段がある。例えば特開
昭56−130551号に開示されているように並列する
強磁性管の肉厚が薄くてもそれらを比較的短かく
し、相互に密に配置すればよい。
To explain the skin current heating tube here, the skin current heating tube consists of a ferromagnetic tube and an insulated wire passed through it. It has a circuit in which alternating current flows in a concentrated manner near the inner surface of the ferromagnetic tube. There are roughly two types of circuits that such a skin current heating tube has.
The first one is the ferromagnetic tube and the insulated wire passed through it, each one end of which is electrically connected to an AC power source, and each other end of which is electrically connected to each other,
It is called a series skin current heating tube. An example of a skin current heating tube having such a circuit is described in Japanese Patent Publication No. 40-12128 (Japanese Patent No. 460224).
In the second type, both ends of the insulated wire are electrically connected to an AC power source to form a closed circuit, and both ends of the ferromagnetic tube are electrically connected to each other so that the impedance is as low as possible. It forms a closed circuit (secondary induction circuit). An example of a skin current heating tube with such a circuit is published in
It is described in the specification of No. 588 (Japanese Patent No. 612750) and is called an induced skin current heating tube. However, in the skin current heating tube referred to in the patent specification, certain limitations are placed on the thickness so that the current does not substantially flow out to the outside of the ferromagnetic tube, but in this specification, such limitations are not applied. A general term that includes things that exist and things that don't. There are other means to prevent current from flowing outside the ferromagnetic tube. For example, as disclosed in JP-A-56-130551, even if the parallel ferromagnetic tubes have thin walls, they can be made relatively short and arranged closely together.

いずれの種類の表皮電流発熱管においても強磁
性管は、その横断面形状において、円形に限られ
ず例えば三角形、三日月形のものがありうる。前
記強磁性管の管壁の一部は加熱さるべき強磁性材
料の輸送管の管壁で構成されているものがありう
る。前記強磁性管は途中で切断された形になつて
いて、この形において形成されている隣り合う各
端が互に電気的に接続されているものがありう
る。又前記強磁性管の横断面形状は完全に閉じた
形になつていなくて、微小な隙間のあるものがあ
りうる。このようなものの例としては、横断面円
形の強磁性管にその長さ方向に切れ目を入れた
(これによつて切れ目を入れた長さに相当する前
記強磁性管の部分の発熱量を小さくすることがで
きる)ものがある。また他の例としては強磁性材
料の輸送管に横断面がL字形や円孤形等を持つ強
磁性材料の部材をそのくぼみが該輸送管に面する
ように乗せ、該部材のすそに当たる2つの端部と
該輸送管との間を千鳥溶接することによつて構成
された強磁性管がある。
In any type of skin current heating tube, the cross-sectional shape of the ferromagnetic tube is not limited to circular, but may be triangular or crescent-shaped, for example. A portion of the wall of the ferromagnetic tube may be formed of a wall of a transport tube for the ferromagnetic material to be heated. The ferromagnetic tube may be cut in the middle, and adjacent ends formed in this shape may be electrically connected to each other. Further, the cross-sectional shape of the ferromagnetic tube may not be completely closed, but may have a small gap. An example of this is a ferromagnetic tube with a circular cross section, in which a cut is made in the length direction (this reduces the amount of heat generated in the portion of the ferromagnetic tube corresponding to the length of the cut). There are things that can be done. Another example is to place a ferromagnetic material member with an L-shaped or arc-shaped cross section on a ferromagnetic material transport pipe so that its recess faces the transport pipe, and place a ferromagnetic material member with a ferromagnetic material member having an L-shaped or arc-shaped cross section on the transport pipe. There is a ferromagnetic tube constructed by staggered welding between two ends and the transport tube.

本発明の対象とする発熱管回路は、主として温
度保持を必要とする重油又は或る種の原油のパイ
プラインや鉄道のレールの融雪などに用いられる
比較的長い発熱管の回路であり、本発明はそのよ
うな長距離の電気発熱体の場合に経済性を発揮す
るものである。
The heat-generating tube circuit to which the present invention is applied is a relatively long heat-generating tube circuit mainly used for pipelines for heavy oil or certain types of crude oil that require temperature maintenance, snow melting for railway rails, etc. is economical for such long-distance electric heating elements.

例えば、前記パイプラインでは、そのルートに
おいて一部は陸上、他部は海底の地中のように、
周囲温度等の条件が相違する場合や海底の部分は
電気防蝕するが、陸上部分はこれを行う必要がな
いような場合がしばしばある。このような場合前
記それぞれの部分で発熱体の発熱量を変更する必
要があつたり、あるいは防蝕電流が防蝕を必要と
しない部分に流出して電力の無駄が発生しないよ
うにするため、一本のパイプラインを必要区画に
分割し相互に絶縁する必要が出てくる。この場合
当然のこととしてこれに付設された電気発熱体が
この分割絶縁を短絡しないよう、一般的に言つて
その発熱体も分割し相互に絶縁する等の配慮が必
要になる。
For example, in the pipeline, part of the route is on land and the other part is underground on the ocean floor.
There are many cases where the conditions such as ambient temperature are different, or where the seabed part is electrolytically protected, but the land part does not need to be protected against electrolytic corrosion. In such a case, it may be necessary to change the heat output of the heating element in each of the above parts, or to prevent corrosion protection current from flowing to parts that do not require corrosion protection, resulting in wasted power. It becomes necessary to divide the pipeline into necessary sections and insulate them from each other. In this case, as a matter of course, it is necessary to take precautions such as dividing the electric heating element attached thereto and insulating them from each other so that the electric heating element attached thereto does not short-circuit the divided insulation.

また鉄道のレールでは、レールに沿つて電気発
熱体を設けてレール付近の凍結、融雪等に利用さ
れることがしばしばある。鉄道のレールにおいて
も信号電流が他のレール区画に流出しないような
絶縁が行われているが、この絶縁を前記発熱体で
短絡しないように、発熱体を分割し相互に絶縁す
る等の配慮が必要になる。
Furthermore, on railway rails, electric heating elements are often installed along the rails and used for freezing, melting snow, etc. near the rails. Railway rails are also insulated to prevent signal current from flowing to other rail sections, but in order to prevent this insulation from short-circuiting at the heating element, consideration must be given to dividing the heating element and insulating it from each other. It becomes necessary.

このような配慮をしたものの例としては、パイ
プラインの場合について、特許第570099号(特公
昭44−25672号)「複数区画からなる発熱体への給
電方式」があり、鉄道のレールの場合について、
特許第872268号(特公昭52−1525号)「電気加熱
レール」がある。これらの例では先に述べたよう
に発熱管回路は複数区画に分割絶縁され、かつ相
互に直列であり電源は複数の区画からなる1組に
単一共通である。
Examples of things that take this kind of consideration into consideration are Patent No. 570099 (Special Publication No. 44-25672) ``Method of feeding power to a heating element consisting of multiple compartments'' for pipelines, and for railway rails. ,
There is a patent No. 872268 (Special Publication No. 52-1525) ``Electric heating rail.'' In these examples, as described above, the heating tube circuit is divided into a plurality of sections, which are insulated and connected in series with each other, and a single power supply is common to one set of the plurality of sections.

前記公知発明の概要を第1図によつて説明す
る。
An overview of the above-mentioned known invention will be explained with reference to FIG.

第1図においては例として直列表皮電流発熱管
が上下2組ある場合を示している。この図におい
て発熱管回路は電源変圧器3を共通する強磁性発
熱管1をもつ第1区画の発熱管回路と、これと直
列になる強磁性発熱管1′をもつ第2区画のそれ
があり、第1、第2区画で上の組を作つており、
下の組は電源変圧器103を共通にする強磁性発
熱管101をもつ第1区画の発熱回路と、これと
直列になる強磁性発熱管101′をもつ第2区画
の発熱回路よりなつている。以下前記強磁性発熱
管(前記表皮電流発熱管における強磁性管に等し
い。)を単に「発熱管」という。
As an example, FIG. 1 shows a case where there are two sets of upper and lower series skin current heating tubes. In this figure, the heating tube circuit consists of a first section having a ferromagnetic heating tube 1 that shares a power transformer 3, and a second section having a ferromagnetic heating tube 1' connected in series with this heating tube circuit. , the upper group is created in the first and second sections,
The lower set consists of a first section heat generating circuit having a ferromagnetic heat generating tube 101 that shares a power transformer 103, and a second section heat generating circuit having a ferromagnetic heat generating tube 101' in series with this heat generating circuit. . Hereinafter, the ferromagnetic heating tube (equivalent to the ferromagnetic tube in the skin current heating tube) will be simply referred to as a "heating tube."

図において2,102はそれぞれ発熱管1,1
01に通された、2′,102′はそれぞれ発熱管
1′,101′に通された絶縁電線で、4,104
はそれぞれの区画を絶縁する変圧器、5,6,
5′,6′は上の組の第1、第2区画の発熱管回路
のための接続であり、下の組も同様の接続10
5,106,105′,106′を持つている。
In the figure, 2 and 102 are heating tubes 1 and 1, respectively.
01, 2' and 102' are insulated wires passed through heating tubes 1' and 101', respectively.
are transformers that insulate each section, 5, 6,
5' and 6' are connections for the heating tube circuits of the first and second sections of the upper set, and the same connection 10 is used for the lower set.
5, 106, 105', 106'.

被加熱物体である、例えば、パイプラインは、
図示されていないが、その全長にわたつて、布設
された発熱管と電気的に一体であり、このパイプ
ラインの絶縁は絶縁フランジであるが、絶縁体7
によつて代表されているものとする。
The object to be heated, for example, a pipeline,
Although not shown in the figure, it is electrically integrated with the installed heating pipe over its entire length, and the insulation of this pipeline is an insulating flange, but the insulator 7
shall be represented by.

接地8,8′,108,108′等は第1図では
それぞれ1個所で示されているが、通常その全長
に沿つて分布しているとしても良い。そして2つ
の発熱管1,1′の間には絶縁7があり、金属的
には接続されていないが、接地8,8′が数オー
ム内至は数十オームの程度の抵抗値となるように
通常50〜100mおきに設けられているので完全な
絶縁でなくそれに近い状態である。
Although the groundings 8, 8', 108, 108', etc. are each shown at one location in FIG. 1, they may normally be distributed along their entire length. There is an insulator 7 between the two heating tubes 1 and 1', and although they are not connected metallically, the resistance value of the ground 8 and 8' is within several ohms to several tens of ohms. They are usually installed every 50 to 100 meters, so they are not completely insulated, but close to it.

発熱管101,101′の回路も発熱管1,
1′の回路同様であり、この上下2組で同一パイ
プラインを加熱するために用いられているとして
も良いし、別々のパイプライン(多分この場合に
はこれらのパイプラインは余り離れていなくて並
行する)と考えても良い。
The circuit of the heating tubes 101, 101' is also the heating tube 1,
It is the same as circuit 1', and the upper and lower sets may be used to heat the same pipeline, or separate pipelines (perhaps in this case, these pipelines are not too far apart) You can think of them as parallel).

そして通常の運転状態において上の組の第1区
画の発熱管回路には電流i1が、第2区画のそれに
は電流i1′が、下の組の第1区画の発熱管回路には
電流i2が、第2区画には電流i2′が流れているもの
とする。
Under normal operating conditions, the heating tube circuit of the first section of the upper group receives a current i 1 , that of the second section receives a current i 1 ', and the heating tube circuit of the first section of the lower group receives a current. Assume that current i 2 ' is flowing in the second section.

このような回路で上又は下の組の第1区画の発
熱管回路の電線2又は102の何れかで絶縁不良
が発生した場合は問題は簡単で電流i1又はi2が定
常値と相違するから差動リレー10が動作して図
示されてはいないが警報又は電源遮断することが
可能になる。
In such a circuit, if an insulation failure occurs in either wire 2 or 102 of the heating tube circuit in the first section of the upper or lower group, the problem is simple: the current i 1 or i 2 differs from the steady value. The differential relay 10 operates from this point, and although not shown, it becomes possible to issue an alarm or shut off the power.

そして第1図のような結線では絶縁変圧器4又
は104の負荷回路である第2区画の発熱管回路
に例えば図の11で絶縁不良が発生しても、この
回路の電流i1′の変化は絶縁変圧器4を介してi1
影響して、差動リレー10を動作させることが可
能で、絶縁不良による事故の拡大を防止できる。
With the wiring connection as shown in Figure 1, even if an insulation failure occurs in the heating tube circuit of the second section, which is the load circuit of the isolation transformer 4 or 104, for example at 11 in the figure, the current i 1 ' in this circuit will change. can influence i 1 via the isolation transformer 4 to operate the differential relay 10, and can prevent the spread of accidents due to poor insulation.

この方法は上下2つの組の回路のうち、どちら
かの1つの微少電流変化、例えば2%程度の電流
変化でも検出可能であり、単に2つの回路の短絡
電流のみならず、発熱体である管1、電線2等は
温度によつてその抵抗が変化し、従つて電流も変
化するので、2つの回路が別々のパイプラインを
加熱保温している場合、それぞれのパイプライン
の温度異状さえも検出可能である。
This method can detect even a minute current change, for example a current change of about 2%, in either one of the two sets of upper and lower circuits. 1. The resistance of electric wires 2, etc. changes depending on the temperature, and therefore the current changes, so if two circuits heat and keep separate pipelines warm, it is difficult to detect even temperature abnormalities in each pipeline. It is possible.

第1図では電源変圧器3に対し、絶縁変圧器4
が1台、電源変圧器103に対し、絶縁変圧器1
04が1台対応する場合を示したが、絶縁変圧器
は1台のみでなく、必要によつては絶縁変圧器4
の更に負荷側に別の絶縁変圧器を設けて第3区画
の発熱管回路を作ることもできるが、差動リレー
10の動作については先に述べたのと同一であ
る。
In Figure 1, an isolation transformer 4 is used as a power transformer 3.
1 unit, power transformer 103, isolation transformer 1
Although the case where one 04 is supported is shown, the number of isolation transformers is not limited to one, but if necessary, the number of isolation transformers 4
It is also possible to provide another isolation transformer on the load side to create a third section heating tube circuit, but the operation of the differential relay 10 is the same as described above.

次に第2図は前記特公昭52−1525号「電気加熱
レール」に開示された回路の1例であり、12は
電源変圧器、13は第1区画の発熱管回路と第2
区画の発熱管回路を電気的には絶縁しているが、
磁気的には結合させて給電するための絶縁変圧器
である。他の番号は第1図と同様の意味をもつも
のと考えてよい。
Next, Figure 2 shows an example of the circuit disclosed in the above-mentioned Japanese Patent Publication No. 52-1525 "Electrical Heating Rail", in which 12 is a power transformer, 13 is a heating tube circuit in the first section, and a heating tube circuit in the second section.
Although the compartment's heating tube circuit is electrically insulated,
It is an isolation transformer for magnetically coupling and supplying power. The other numbers may be considered to have the same meanings as in FIG.

そうするとこのような回路で10で示す差動リ
レーは第1区画でおきた電線2又は102の絶縁
不良では動作するが、第2区画側、例えば図の1
1で示す絶縁不良に対しては差動リレー10は動
作しない。
Then, in such a circuit, the differential relay indicated by 10 will operate if there is poor insulation in the electric wire 2 or 102 placed in the first section, but if the differential relay is in the second section, for example 1 in the figure.
The differential relay 10 does not operate in response to an insulation failure indicated by 1.

以上第1,2図で説明した公知の回路では高価
な絶縁変圧器を必要とするのみならず、第2図に
示したものでは電源変圧器側とは絶縁された、第
2区画側の絶縁不良に対しては差動リレー10を
動作させることはできない。
The known circuits explained above in Figures 1 and 2 not only require an expensive isolation transformer, but also the circuit shown in Figure 2 requires insulation on the second section side, which is isolated from the power transformer side. The differential relay 10 cannot be operated in response to a defect.

本発明では相互に絶縁された複数区画の発熱管
回路間に絶縁変圧器を置かないで単一の共通電源
を使用し、しかもリレーを設けた最初の発熱管回
路の区画以外の区画の発熱管回路においても電線
の絶縁不良などによる故障電流の検出を可能にし
ようとするものである。
In the present invention, a single common power source is used without placing an isolation transformer between the heating tube circuits in multiple sections that are mutually insulated, and the heating tubes in sections other than the first heating tube circuit section are provided with relays. The aim is to enable the detection of fault currents caused by poor insulation of electric wires in circuits as well.

本発明は単一共通の電源及び共通の1次回路を
持つ複数区画の相互に直列である誘導表皮電流発
熱管において、それぞれの表皮電流発熱管の2次
回路(以下「発熱管2次回路」という)を相互に
絶縁し、又はそれに近いものにし、それぞれの発
熱管回路に短絡事故が生じた際の電流異状を前記
電源付近において検出する差動リレーを設け、そ
れぞれの発熱管2次回路をインピーダンスをもつ
て接続し、前記インピーダンスは、前記複数区画
の表皮電流発熱管のうち最も電源に近い区画以外
の区画において短絡事故が生じたとき、その区画
及びそれより電源に近い区画を接続するものにお
いて1〜1000mAの電流が流れるようなものとし
てなる複数区画の表皮電流発熱管を要旨とする。
The present invention provides a secondary circuit of each skin current heating tube (hereinafter referred to as a "heating tube secondary circuit") in an induced skin current heating tube having a single common power supply and a common primary circuit and having multiple sections connected in series. ) are insulated from each other, or something close to it, and a differential relay is installed near the power supply to detect abnormal current when a short circuit occurs in each heating tube circuit, and each heating tube secondary circuit is When a short-circuit accident occurs in a section other than the section closest to the power source among the skin current heating tubes in the plurality of sections, the impedance connects that section and the section closer to the power source. The gist of this invention is a multi-section skin current heating tube through which a current of 1 to 1000 mA flows.

本発明を第3図によつて説明する。第3図にお
いて特記しない番号は第1図と同じ意味である
が、12は電源変圧器で、電源に近い発熱管1と
101との作る第1区画の発熱管回路は、図示さ
れていないが、海底パイプラインを加熱保温して
いるものとし、この部分のパイプラインは電気防
蝕を必要としているので、防蝕電源15が装備さ
れている。電源より遠い発熱管1′と101′との
作る第2区画の発熱管回路は、図示されていない
が、前記海底パイプラインに接続される陸上パイ
プラインを加熱保温しており、この部分は電気防
蝕を必要としていないので海底部分の防蝕電流
が、陸上部に流出して損失とならないようにパイ
プラインは絶縁フランジによつて接続されるがそ
れに伴つて発熱管2次回路も前記の区画に区分さ
れ絶縁7が必要になる。
The present invention will be explained with reference to FIG. In Fig. 3, the numbers not specified have the same meanings as in Fig. 1, but 12 is a power transformer, and the heating tube circuit of the first section formed by heating tubes 1 and 101 near the power source is not shown. , the undersea pipeline is heated and kept warm, and since this portion of the pipeline requires electrical corrosion protection, a corrosion protection power source 15 is installed. Although not shown, the heating tube circuit of the second section formed by the heating tubes 1' and 101', which is far from the power source, heats and keeps the land pipeline connected to the submarine pipeline, and this part is electrically connected. Since corrosion protection is not required, the pipeline is connected with an insulating flange so that the corrosion-protective current from the seabed does not flow to the land and cause a loss, and the secondary circuit of the heating tube is also divided into the above sections. Therefore, insulation 7 is required.

一方発熱管1,1′,101,101′に通され
る絶縁電線2,2′,102,102′はそれ自体
絶縁被覆されているから、これらは海底及び陸上
のパイプラインの絶縁フランジを短絡することは
ない。
On the other hand, the insulated wires 2, 2', 102, 102' that pass through the heating tubes 1, 1', 101, 101' are themselves coated with insulation, so they short-circuit the insulated flanges of the pipelines on the sea floor and on land. There's nothing to do.

さてこのような回路で、いま接地8,8′及び
特別に設けられる予定のインピーダンス14の存
在を考慮外とすれば、第1区画の電線2又は10
2と発熱管1又は101との間に絶縁不良が発生
した場合には差動リレー10(過電流リレーでも
良い)が動作するが、第2区画の電線2′又は1
02′に絶縁不良、例えば電線2′に絶縁不良11
が発生しても差動リレー10は動作しないことは
説明するまでもない。
Now, in such a circuit, if we do not take into account the presence of the ground 8, 8' and the impedance 14 that is specially planned, then the electric wire 2 or 10 of the first section
2 and the heating tube 1 or 101, the differential relay 10 (an overcurrent relay may also be used) is activated.
Insulation failure in wire 02', for example insulation failure in wire 2'11
It goes without saying that the differential relay 10 does not operate even if .

しかし実際のパイプラインではパイプラインと
大地との間の絶縁は完全でなく、海底部分の接地
8は望ましくないが、存在しうるし、陸上部の接
地8′はパイプラインが石油類を通すときは静電
気除去のために必要になることもある。
However, in actual pipelines, the insulation between the pipeline and the earth is not perfect, and although grounding 8 on the seabed is undesirable, it can exist, and grounding 8' on land is necessary when the pipeline passes petroleum. It may be necessary to remove static electricity.

従つて接地8,8′は時には数オーム程度と絶
縁7を不完全ではあるが短絡しており、このため
に絶縁不良11において発生した地絡電流はこの
短絡を通つて差動リレー10を動作させるかも知
れない。
Therefore, the grounding 8, 8' short-circuits the insulation 7, although imperfectly, sometimes by several ohms, and for this reason, the ground fault current generated in the insulation defect 11 operates the differential relay 10 through this short-circuit. I might let it happen.

本発明ではこのような接地8,8′による不確
実さを避けるためインピーダンス14を設けてい
る。
In the present invention, an impedance 14 is provided to avoid such uncertainties caused by the grounding 8, 8'.

このインピーダンス14の値は、差動電流リレ
ー10が動作する電流値(通常1〜1000mA好ま
しくは10〜500mA)となるようにアース8,
8′を考慮して決定される。インピーダンスの種
類はリアクトル、レジスタンス、コンデンサ又は
これらの組合わせがありうる。例えば防蝕電流
(直流)をできるだけ通さないものが望ましいこ
ともある。この目的のためには差動電流リレー1
0の動作電流(交流)は通すが、防蝕電流(直
流)を通さないものが望ましく、従つてコンデン
サが理想的である。
The value of this impedance 14 is such that the ground 8,
8'. The type of impedance may be a reactor, a resistance, a capacitor, or a combination thereof. For example, it may be desirable to use a material that does not allow corrosion-protective current (direct current) to pass through it as much as possible. For this purpose a differential current relay 1
It is desirable to have a capacitor that allows zero operating current (alternating current) to pass through, but does not allow corrosion protection current (direct current) to pass through. Therefore, a capacitor is ideal.

しかしコンデンサも防蝕電圧は直流数ボルトと
低いが電線2′又は102′等の絶縁不良の位置、
程度によつてコンデンサにかかる交流電圧が変化
するのでこれに耐えるものでなければならない。
However, although the corrosion protection voltage of capacitors is as low as a few volts DC,
The AC voltage applied to the capacitor varies depending on the degree of change, so it must be able to withstand this.

以上はパイプラインの場合について説明した
が、前記した鉄道のレールの場合についても本発
明を同様に適用することが可能である。
Although the case of pipelines has been described above, the present invention can be similarly applied to the case of railway rails as described above.

第3図では発熱管回路の区画が2つ、従つてイ
ンピーダンス14が1個の場合について説明した
が、区画が3以上でも相互にインピーダンス14
で接続して行けば、いずれの区画の絶縁不良も検
出できるようになる。インピーダンス14の数が
多くなれば、これらは相互に直列に接続されるか
ら、これらのインピーダンスの総和が1番大きく
なる区画、すなわち差動リレー10から見て最遠
の区画の発熱管回路における絶縁不良に対しても
差動リレー10が動作するようなインピーダンス
の値を選ばなければならぬことは勿論である。
In FIG. 3, the case where the heating tube circuit has two sections and therefore one impedance 14 has been explained, but even if there are three or more sections, the impedance 14
If the connections are made, insulation defects in any section can be detected. As the number of impedances 14 increases, they are connected in series with each other, so the insulation in the heating tube circuit of the section where the sum of these impedances is the largest, that is, the section farthest from the differential relay 10 Of course, it is necessary to select an impedance value that allows the differential relay 10 to operate even in the event of a failure.

なお差動リレー10は第3図では電源変圧器の
2次巻線の中央と、第1区画発熱管回路の接続5
とを接続する点とを結ぶ位置に置いたが第1図に
示されるように、第3図においても電線2,10
2にそれぞれ変流器を挿入してその電流差をとる
ように接続しても良い。この方がむしろ一般的で
あるかも知れない。
In Fig. 3, the differential relay 10 connects the center of the secondary winding of the power transformer and the connection 5 of the first section heating tube circuit.
As shown in Fig. 1, in Fig. 3 the electric wires 2 and 10 are
Alternatively, a current transformer may be inserted into each of 2 and connected to take the difference in current. This may be more common.

以上の説明においては絶縁電線2,102,
2′,102′および発熱管1,101,1′,1
01′等の材質、寸法等について触れなかつたが、
これらは相互に等しい場合は勿論、不等であつて
も本発明が適用できることは勿論である。
In the above explanation, the insulated wires 2, 102,
2', 102' and heating tubes 1, 101, 1', 1
Although I did not mention the material, dimensions, etc. of 01' etc.,
Of course, the present invention is applicable not only when these are equal but also when they are unequal.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は公知の複数区画発熱回路の図、第
3図は本発明の複数区画発熱管回路の図である。 これらの図において、番号は各図に共通で次の
ものを表わす。1,101,1′,101′は強磁
性発熱管、2,102,2′,102′は前記強磁
性管に通された絶縁電線、3,103および12
は電源変圧器、4,104,13は絶縁変圧器、
5,6,105,106,5′,6′,105′,
106′は前記発熱管相互又はこれと電線を結ぶ
接続、7は各発熱区画を絶縁する絶縁フランジ、
ソケツト等の絶縁物、8,8′,108,10
8′は発熱管又はそれと1体に電気的に接続され
たパイプ又はレールの接地、9,109は変流
器、10は差動リレー、11は電線の絶縁不良、
14は各発熱区画を接続するインピーダンス、1
5は電気防蝕の電源。
1 and 2 are diagrams of a known multi-section heat generating circuit, and FIG. 3 is a diagram of a multi-section heat generating tube circuit of the present invention. In these figures, the numbers are common to each figure and represent the following: 1,101, 1', 101' are ferromagnetic heating tubes, 2,102, 2', 102' are insulated wires passed through the ferromagnetic tubes, 3,103 and 12
is a power transformer, 4, 104, 13 is an isolation transformer,
5, 6, 105, 106, 5', 6', 105',
106' is a connection for connecting electric wires to each other or to the heat generating tubes; 7 is an insulating flange for insulating each heat generating section;
Insulators such as sockets, 8, 8', 108, 10
8' is the grounding of the heating tube or a pipe or rail electrically connected to it, 9 and 109 are current transformers, 10 is a differential relay, 11 is poor insulation of the electric wire,
14 is the impedance connecting each heat generating section, 1
5 is an electric corrosion protection power source.

Claims (1)

【特許請求の範囲】[Claims] 1 単一共通の電源及び共通の1次回路を持つ複
数区画の相互に直列である誘導型の表皮電流発熱
管において、前記それぞれの表皮電流発熱管の2
次回路を相互に絶縁し、又はそれに近いものに
し、それぞれの発熱管回路に短絡事故が生じた際
の電流異状を前記電源付近において検出する差動
リレーを設け、それぞれの発熱管2次回路をイン
ピーダンスをもつて接続し、前記インピーダンス
は、前記複数区画の表皮電流発熱管のうち最も電
源に近い区画以外の区画において短絡事故が生じ
たとき、その区画及びそれより電源に近い区画を
結ぶものにおいて1〜1000mAの電流が流れるよ
うなものとすることを特徴とする複数区画の表皮
電流発熱管。
1. In an induction-type skin current heating tube having a single common power source and a common primary circuit and having multiple sections connected in series, two of the skin current heating tubes of each of said skin current heating tubes are
The secondary circuits are insulated from each other or nearly so, and a differential relay is installed near the power source to detect abnormal current when a short circuit occurs in each heating tube circuit, and the secondary circuits of each heating tube are isolated from each other. When a short-circuit accident occurs in a section other than the section closest to the power source among the plurality of skin current heating tubes, the impedance is the impedance that connects that section and the section closer to the power source. A skin current heating tube having multiple sections, characterized in that it allows a current of 1 to 1000 mA to flow therethrough.
JP58049472A 1983-03-24 1983-03-24 Malfunction detecting series plural zone skin current heating tube circuit Granted JPS59175584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58049472A JPS59175584A (en) 1983-03-24 1983-03-24 Malfunction detecting series plural zone skin current heating tube circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58049472A JPS59175584A (en) 1983-03-24 1983-03-24 Malfunction detecting series plural zone skin current heating tube circuit

Publications (2)

Publication Number Publication Date
JPS59175584A JPS59175584A (en) 1984-10-04
JPH0129312B2 true JPH0129312B2 (en) 1989-06-09

Family

ID=12832089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58049472A Granted JPS59175584A (en) 1983-03-24 1983-03-24 Malfunction detecting series plural zone skin current heating tube circuit

Country Status (1)

Country Link
JP (1) JPS59175584A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860335A (en) * 1971-11-30 1973-08-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860335A (en) * 1971-11-30 1973-08-24

Also Published As

Publication number Publication date
JPS59175584A (en) 1984-10-04

Similar Documents

Publication Publication Date Title
US6617556B1 (en) Method and apparatus for heating a submarine pipeline
GB2341442A (en) A heating system for crude oil pipelines
NL2007780C2 (en) Thermally isolated heated pipeline made of double casing sections and laying process for such a pipeline.
JP3694053B2 (en) Branch device for submarine communication system
JPS5852315B2 (en) Epidermal current heating pipeline
US10641424B2 (en) Subsea direct electric heating system
EP3262663B1 (en) Subsea transformer with seawater high resistance ground
US4645912A (en) Pipeline heated by a diagonal feeding, band-form, electrical heat-generating apparatus
JPH0129312B2 (en)
US3571561A (en) Circuit for detecting abnormality in electric heating apparatus of pipe lines
Halperin et al. Reduction of sheath losses in single-conductor cables
US3516917A (en) Cathode protection device
JPH0142596B2 (en)
CN208062733U (en) A kind of cross interconnected case based on barrier blocks
Harder et al. Protection of pilot-wire circuits
US1753219A (en) Bus and switch station
US1196301A (en) Means for minimizing inductive interference.
US1196302A (en) Means for minimizing inductive interference.
US1154394A (en) Safety connection for electric mains.
US1603849A (en) Power system
JPH028437B2 (en)
Wollaston et al. Cable sheath jacket requirements to withstand abnormal voltage stresses
US1858838A (en) Cable sheath bonding
US1809591A (en) Sheath bonding and method
KR830001381B1 (en) Cuticle current heating pipeline