JPH01292908A - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter

Info

Publication number
JPH01292908A
JPH01292908A JP12175188A JP12175188A JPH01292908A JP H01292908 A JPH01292908 A JP H01292908A JP 12175188 A JP12175188 A JP 12175188A JP 12175188 A JP12175188 A JP 12175188A JP H01292908 A JPH01292908 A JP H01292908A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
electrode
wave filter
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12175188A
Other languages
Japanese (ja)
Inventor
Takemitsu Takema
武馬 威光
Takashi Shiba
隆司 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12175188A priority Critical patent/JPH01292908A/en
Publication of JPH01292908A publication Critical patent/JPH01292908A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the preparation of a device from being difficult even when a frequency goes to be high while an unnecessary reflected wave is suppressed by selecting the material and film thickness of an electrode so that the reflection factor of a surface acoustic wave, which is caused by short-circuit due to the metallic electrode of a substrate electric field, can be zero. CONSTITUTION:A surface acoustic filter is composed of a substrate 1 and two interdigital solid type electrodes 2 and the material and film thickness of the electrode are selected so that the reflection factor of the surface acoustic wave, which is caused by the short-circuit due to the metallic electrode 2 in the electric field of the substrate 1, can be zero. Accordingly, in comparison with a conventional method, an electrode goes to be almost double and electrode operation goes to be easy. Thus, the necessary reflected wave is suppressed and an amplitude ripple and a group delay time ripple are decreased. Then, a problem that the width of the electrode goes to be narrow and the preparation of the device goes to be difficult with accompanying the high frequency is erased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板電界の金属電極による短絡に起因する不
用反射波(Maze ELactricaL Load
ing 。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the treatment of unnecessary reflected waves (Maze Electrical Load
ing.

略称xxr、)を抑圧した弾性表面波フィルタに関する
、 〔従来の技術〕 従来、基板電界の金属電極による短絡に起因する不用反
射波の抑圧については、米国電気電子学会論文誌 19
74年、エム・ティー・ティー22、第960−964
頁(IEEE Trans、 、 1974. MTT
−22゜9p、 960〜964)において論じられて
いる。このち消すようにした構造である。
[Prior art] Regarding the suppression of unnecessary reflected waves caused by short circuits of the substrate electric field by metal electrodes, there is a conventional technique for suppressing unnecessary reflected waves caused by short circuits of the substrate electric field by metal electrodes.
1974, MTT 22, No. 960-964
Page (IEEE Trans, 1974. MTT
-22°9p, 960-964). This is a structure that will be deleted soon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術では弾性表面波デバイスの周波数が高く
なるにつれて電極幅が細くなり、デバイスの作成が困難
になるという問題があった。
The conventional technology described above has a problem in that as the frequency of the surface acoustic wave device increases, the electrode width becomes narrower, making it difficult to fabricate the device.

本発明は、周波数が高くなってもデバイスの作成が困難
にならない構造にした弾性表面波フィルタを提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface acoustic wave filter having a structure that does not make it difficult to manufacture a device even when the frequency becomes high.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明においては、基板電界
の金属電極による短絡に起因する弾性表面波反射率が零
となるような電極材料と電極膜厚を選定することにした
、 基板電界の金属電極による短絡に起因する弾性表面波の
反射率εは規格化膜厚の関数として一般に次のよう忙表
わされる。
In order to solve the above problems, in the present invention, the electrode material and the electrode film thickness are selected so that the surface acoustic wave reflectance caused by the short circuit due to the metal electrode of the substrate electric field becomes zero. The reflectance ε of a surface acoustic wave caused by a short circuit caused by an electrode is generally expressed as a function of the normalized film thickness as follows.

但し λ:弾性表面波波長、ん:電極膜厚C1、CいC
8:基板定数 上記式によるeを零にするような規格化膜厚を選択する
ことによって目的を達成することが出来る。
However, λ: surface acoustic wave wavelength, n: electrode film thickness C1, C
8: Substrate constant The purpose can be achieved by selecting a normalized film thickness that makes e according to the above equation zero.

〔作用〕[Effect]

基板電界の金属電極による短絡に起因する弾性表面波反
射率が零となるような規格化膜厚を選択することにより
不用反射波が抑圧されるため、従来、問題となっていた
振幅リップル、群遅延時間リップル等を減少させること
ができる。また、従来の手法では高周波化に伴い電極作
成が困難となるが、本発明によれば、従来の手法に比べ
電極指幅がほぼ2倍となるため、電極作用は容易になる
Unwanted reflected waves are suppressed by selecting a standardized film thickness such that the surface acoustic wave reflectance caused by short circuits caused by metal electrodes in the substrate electric field becomes zero, thereby eliminating amplitude ripples and clusters, which have been problems in the past. Delay time ripples and the like can be reduced. Furthermore, with the conventional method, it becomes difficult to create electrodes as the frequency increases, but according to the present invention, the width of the electrode finger is approximately twice that of the conventional method, so the electrode function becomes easier.

〔実施例〕〔Example〕

本発明を第1〜6図を用いて更に詳細に説明する。弾性
表面波フィルタで、第1図に示すような電極幅がλ/4
のソリッド型電極2(1は弾性表面波基板)を入出力電
極として用いると、従来の構造では入出力電極間で不用
な反射波が発生する。
The present invention will be explained in more detail using FIGS. 1 to 6. In a surface acoustic wave filter, the electrode width is λ/4 as shown in Figure 1.
When the solid type electrode 2 (1 is a surface acoustic wave substrate) is used as an input/output electrode, in the conventional structure, unnecessary reflected waves are generated between the input and output electrodes.

これは、ソリッド型電極2が基板電界を短絡する為に生
じた反射波(MEL)で、振幅リップル、群遅延リップ
ルの原因となる。この反射波を抑圧するため、第2図に
示すスプリット型電極3が用いられてきた。これは、電
極幅をλ/8として、反射波が夫々打消し合うようにし
たものである。この方法は有効な手段であるが、スプリ
ット型電極は電極指幅がソリッド型電極の1/2と細く
なるため、高周波化に判い作成が困難となる。しかし、
第3図に示す規格化膜厚と反射率εの関係を利用して、
eが零となる膜厚を選択して反射波を抑圧すれば、第1
図に示すようなソリッド電極でも反射波を抑圧できる(
従って第1図は実施例図となる)。第3図に示した特性
は、基板に水晶、電極材料にアルミニウムを用いた場合
を示している。
This is a reflected wave (MEL) generated because the solid type electrode 2 short-circuits the substrate electric field, and causes amplitude ripples and group delay ripples. In order to suppress this reflected wave, a split type electrode 3 shown in FIG. 2 has been used. In this case, the electrode width is set to λ/8 so that the reflected waves cancel each other out. Although this method is an effective means, the width of the electrode fingers of the split type electrode is 1/2 that of the solid type electrode, so it is difficult to manufacture at higher frequencies. but,
Using the relationship between normalized film thickness and reflectance ε shown in Figure 3,
If the reflected wave is suppressed by selecting a film thickness such that e becomes zero, the first
Reflected waves can be suppressed even with solid electrodes as shown in the figure (
Therefore, FIG. 1 is an example diagram). The characteristics shown in FIG. 3 are for the case where crystal is used as the substrate and aluminum is used as the electrode material.

ここで反射率εは次のように表わされる。Here, the reflectance ε is expressed as follows.

ε −c、+  c、・ (ル/λ )十〇、・ (A
/λ )2・・・・・・・・・・・・ (1)但し C
I、 (’2 、 C3は基板定数で実験により、cl
−0,005* CI冨−1,2+ ’s −”と求め
られた。この結果から、反射率6が零となh/λ≒ 4
.5 X 10−’ l 5.5 X 10−” トな
る。ヨっテ、この規格化膜厚で弾性表面波フィルタを作
成すると不用反射波が抑圧され、振幅リップル、群遅延
リップルを減少できる。実施例では、中心周波数280
3fHz、εが零となる規格化膜厚5.3x11)−z
より電極膜厚5BOF&s+基板42.75°y−x水
晶、ソリッド型入力電極対数30対、ソリッド型出力電
極対数48対の構成とした。この時の周波数特性を第6
図に示す。また、比較のため電極膜厚を500amとし
た時の周波数特性を第5図に示す。この二つの周波数特
性より、本発明の実施例では振幅リップル、群遅延リッ
プルがほとんど見られず、不用反射波を抑圧しているこ
とが判る。また、本実施例では、反射率εが零となる規
格化膜厚として5.3 x 10−”なる値を選択した
が、4.5 x 10−”なる値を選択しても同様な効
果が得られる。その他の実施例として第4図に示すもの
がある。これは、反射率εが規格化膜厚の値によって正
負の値を敗るため、絶対値が等しく、符号が逆の規格化
膜厚を選択し、交互に配置することにより反射波をそれ
ぞれ打ち上記条件を満たしている。また、本実施例では
ソリッド型電極を用いているがスプリットWt極を用い
た場合は、膜厚がばらついた場合でも不用反射波を抑圧
できるという利点がある。
ε −c, + c, · (le/λ) 10, · (A
/λ)2・・・・・・・・・・・・ (1) However, C
I, ('2, C3 is the substrate constant and experimentally determined that cl
−0,005* CI depth −1,2+ 's −''. From this result, the reflectance 6 is zero and h/λ≒ 4
.. 5 x 10-' l 5.5 x 10-'' If you create a surface acoustic wave filter with this standardized film thickness, unnecessary reflected waves can be suppressed and amplitude ripples and group delay ripples can be reduced. In the example, the center frequency is 280
3fHz, normalized film thickness at which ε becomes zero: 5.3x11)-z
Therefore, the structure was made such that the electrode film thickness was 5BOF&s+substrate 42.75°y-x crystal, the number of pairs of solid type input electrodes was 30, and the number of pairs of solid type output electrodes was 48 pairs. The frequency characteristics at this time are
As shown in the figure. Further, for comparison, the frequency characteristics when the electrode film thickness is 500 am are shown in FIG. From these two frequency characteristics, it can be seen that in the embodiment of the present invention, hardly any amplitude ripple or group delay ripple is observed, and unnecessary reflected waves are suppressed. In addition, in this example, a value of 5.3 x 10-" was selected as the normalized film thickness at which the reflectance ε becomes zero, but the same effect can be obtained even if a value of 4.5 x 10-" is selected. is obtained. Another embodiment is shown in FIG. This is because the reflectance ε has a positive or negative value depending on the value of the normalized film thickness, so by selecting normalized film thicknesses with equal absolute values and opposite signs and arranging them alternately, each reflected wave can be struck. The above conditions are met. Further, in this embodiment, a solid type electrode is used, but when a split Wt electrode is used, there is an advantage that unnecessary reflected waves can be suppressed even if the film thickness varies.

また、文献[正負反射製弾性表面波反射器及び共振器」
、性向、山之内電子通信学会技術研究報告、USB5−
11  より、第7図に示す特性から基板1にリチウム
タンタレートを用いた場合、電極材り人 料に金を用い、規格化膜厚]をT #5.6 x 10
−”  とすることで反射率eを零にすることが出来る
。そして第8図に示す特性から基板1にリチウムナイオ
ベートを用いた場合、電極材料にアルミニウムを用い規
格化膜厚h/λをh/λ≒2.5 x 10−”  と
することにより反射率eを零とすることが出来る。
In addition, the literature [Positive and negative reflection surface acoustic wave reflector and resonator]
, Propensity, Yamanouchi Institute of Electronics and Communication Engineers Technical Research Report, USB5-
11, from the characteristics shown in FIG. 7, when lithium tantalate is used for the substrate 1, gold is used for the electrode material, the standardized film thickness is T #5.6 x 10
-", the reflectance e can be made zero. From the characteristics shown in Fig. 8, when lithium niobate is used for the substrate 1, the normalized film thickness h/λ is By setting h/λ≈2.5×10−”, the reflectance e can be made zero.

本実施例では、純アルミニウム、金を用いて説明したが
、上記材料を主材とし、それに不純物を含めた場合にも
同様の効果があることはいうまでもない。また、水晶基
板にアルミニウムと金の混合比をほぼ1対1とした電極
材料を用いると、反射率は膜厚に関係なくほぼ零を示す
ことが実験により判ったため、この電極材料を用いるこ
とで反射波を抑圧することができる。その他に異なる2
種類の電極材料を交互に配置した第10図に示すような
構造において、電極材料にアルミニウムと金の2種類を
用い、基板に水晶またはリチウムタンタレートを用いる
と、電極材料により反射係数の符号が異なるためアルミ
ニウム電極部と金電極部での反射波位相が逆相となる。
Although this embodiment has been described using pure aluminum and gold, it goes without saying that the same effect can be obtained even when the above materials are used as main materials and impurities are included therein. In addition, experiments have shown that when an electrode material with a mixing ratio of aluminum and gold of approximately 1:1 is used on a quartz substrate, the reflectance is almost zero regardless of the film thickness. Reflected waves can be suppressed. Other differences 2
In the structure shown in Figure 10, in which different types of electrode materials are arranged alternately, if two types of electrode materials, aluminum and gold, are used and quartz or lithium tantalate is used for the substrate, the sign of the reflection coefficient will change depending on the electrode material. Because of the difference, the phases of the reflected waves at the aluminum electrode portion and the gold electrode portion are opposite to each other.

このため反射波を抑圧することが出来る。また、第9図
に示す如く電極指輪の半分ずつ、夫々異なる膜厚とし、
対向する隣接電極指の半分が同じ膜厚になるように配置
することによっても同様に反射波が逆相で加わるため抑
圧することができる。その他に反射波抑圧のための構造
として第11図に示すものを用いることができる。これ
は、すだれ状電極の一部分を弾性表面波基板内に埋め込
むことによって反射率を零とし反射波を抑圧するもので
ある。
Therefore, reflected waves can be suppressed. In addition, as shown in FIG. 9, each half of the electrode ring has a different film thickness,
By arranging half of the adjacent electrode fingers facing each other so that they have the same film thickness, the reflected waves can be similarly suppressed because they are applied in opposite phases. In addition, the structure shown in FIG. 11 can be used as a structure for suppressing reflected waves. In this method, a part of the interdigital electrode is buried in the surface acoustic wave substrate to reduce the reflectance to zero and suppress reflected waves.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ソリッド型電極を
用いて不用反射波を抑圧しながら、振幅リップル、群遅
延リップルを減少させる効果が得られる。実施例では、
振幅リップルが3dB 、群遅延リップルが100 n
z改善された。
As described above, according to the present invention, it is possible to obtain the effect of reducing amplitude ripples and group delay ripples while suppressing unnecessary reflected waves using solid electrodes. In the example,
Amplitude ripple is 3dB, group delay ripple is 100n
zImproved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例図、第2図は従来例図、第3
図は水晶基板とアルミニウム電極を用いた場合の規格化
膜厚と反射率の間の関係を示す特性図、第4図はその他
の実施例図、第5図は反射率が零でない時の周波数特性
図、第6図は反射率を零とした時の周波数特性図、第7
図はリチウムナイオベート基板とアルミニウム電極を用
いた場合の規格化膜厚に対する反射率特性図、第8図は
リチウムタンタレート基板と金電極を用いた場合の規格
化膜厚に対する反射率特性図、第9.10.11図は更
に他の実施例を示す図である。 1・・・・・・・・・・・・基板 2・・・・・・・・・・・・ソリッド型電極3・・・・
・・・・・・・・スプリット型電極代理人 弁理士 小
 川 勝 男 41図 〒2図 閘5図 夕月L ネ4イと、膜 刀1 むくヌ、(2ン A−A’断面図 〒5図 周51LfLmHzフ 犬克、ネ7トイ1:、O乃ト ヘ/〉。 夫り格イし月!厚 狭 党c3図 (2ン A−A’l!IT菌囚 八−A′断面図 A−A′m面図
Figure 1 is a diagram of an embodiment of the present invention, Figure 2 is a diagram of a conventional example, and Figure 3 is a diagram of a conventional example.
The figure is a characteristic diagram showing the relationship between normalized film thickness and reflectance when using a crystal substrate and aluminum electrode, Figure 4 is a diagram of other examples, and Figure 5 is the frequency when the reflectance is not zero. Characteristic diagram, Figure 6 is the frequency characteristic diagram when the reflectance is zero, Figure 7 is the frequency characteristic diagram when the reflectance is zero.
The figure shows the reflectance characteristics versus normalized film thickness when using a lithium niobate substrate and an aluminum electrode, and Figure 8 shows the reflectance versus normalized film thickness when using a lithium tantalate substrate and gold electrode. Figures 9.10.11 are diagrams showing still another embodiment. 1......Substrate 2...Solid type electrode 3...
・・・・・・・・・Split-type electrode representative Patent attorney Katsutoshi Ogawa 41 Figure 2 Figure 5 Yuzuki L Ne 4 A, Membrane sword 1 Mukunu, (2 N A-A' cross-sectional view 〒5 figure circumference 51LfLmHzfudogatsu,ne7toy1:,Onotohe/>. Cross-sectional view A-A'm view

Claims (9)

【特許請求の範囲】[Claims] 1.弾性表面波基板上に少なくとも2個のすだれ状電極
を配置した弾性表面波フィルタにおいて、基板電界の金
属電極による短絡に起因する弾性表面波反射波の反射率
が零となるような電極材料と電極膜厚にしたことを特徴
とする弾性表面波フィルタ。
1. In a surface acoustic wave filter in which at least two interdigital electrodes are arranged on a surface acoustic wave substrate, the electrode material and electrode are such that the reflectance of surface acoustic wave reflected waves caused by short circuit of the substrate electric field by the metal electrode is zero. A surface acoustic wave filter characterized by a thick film.
2.弾性表面波基板に水晶を、電極材料にアルミニウム
を主材とする金属材料を用い、電極膜厚をh、弾性表面
波波長をλで表したとき、 h/λ≒4.5×10^−^3又はh/λ≒5.3×1
0^−^2となるようにしたことを特徴とする請求項1
記載の弾性表面波フィルタ。
2. Using crystal as the surface acoustic wave substrate and a metal material mainly made of aluminum as the electrode material, when the electrode film thickness is expressed by h and the surface acoustic wave wavelength is expressed by λ, h/λ≒4.5×10^- ^3 or h/λ≒5.3×1
Claim 1 characterized in that 0^-^2.
The surface acoustic wave filter described.
3.弾性表面波基板にリチウムタンタレートを、電極材
料に金を主材とする金属材料を用い、電極膜厚をh、弾
性表面波波長をλで表したとき、A/λ≒3.6×10
^−^3となるようにしたことを特徴とする請求項1記
載の弾性表面波フィルタ。
3. Using lithium tantalate as the surface acoustic wave substrate and a metal material mainly composed of gold as the electrode material, when the electrode film thickness is expressed by h and the surface acoustic wave wavelength is expressed by λ, A/λ≒3.6×10
2. The surface acoustic wave filter according to claim 1, wherein the surface acoustic wave filter has an angle of .
4.弾性表面波基板にリチウムナイオペートを、電極材
料にアルミニウムを主材とする金属材料を用い、電極膜
厚をh、弾性表面波波長をλで表したとき、h/λ≒2
.5×10^−^2となるようにしたことを特徴とする
請求項1記載の弾性表面波フィルタ。
4. Using lithium niopate as the surface acoustic wave substrate and a metal material mainly made of aluminum as the electrode material, when the electrode film thickness is expressed by h and the surface acoustic wave wavelength is expressed by λ, h/λ≒2.
.. 2. The surface acoustic wave filter according to claim 1, wherein the surface acoustic wave filter is 5×10^-^2.
5.弾性表面波基板上に少なくとも2個のすだれ状電極
を配置した弾性表面波フィルタにおいて、一方のすだれ
状電極の電極膜厚をh_Aで、他方の電極の膜厚をh_
Bで作成し、膜厚h_Aでの基板電界の金属電極による
短絡に起因する弾性表面波反射率をε_A、膜厚h_B
での反射率をε_Bとするとき、上記膜厚が、ε_A=
−ε_Bなる関係を満足するようにしたことを特徴とす
る請求項1記載の弾性表面波フィルタ。
5. In a surface acoustic wave filter in which at least two interdigital electrodes are arranged on a surface acoustic wave substrate, the electrode film thickness of one interdigital electrode is h_A, and the film thickness of the other electrode is h_
The surface acoustic wave reflectance caused by the short circuit of the substrate electric field due to the metal electrode at the film thickness h_A is ε_A, and the film thickness h_B is
When the reflectance at ε_B is ε_B, the above film thickness is ε_A=
2. The surface acoustic wave filter according to claim 1, wherein the surface acoustic wave filter satisfies the following relationship: -ε_B.
6.弾性表面波基板に水晶またはリチウムタンタレート
を用い、その基板上に少なくとも2個のすだれ状電極を
配置した弾性表面波フィルタにおいて、アルミニウムを
材料とした電極指と金を材料とした電極指を交互に配置
したすだれ状電極で構成されていることを特徴とする請
求項1記載の弾性表面波フィルタ。
6. In a surface acoustic wave filter in which a surface acoustic wave substrate is made of quartz or lithium tantalate and at least two interdigital electrodes are arranged on the substrate, electrode fingers made of aluminum and electrode fingers made of gold are arranged alternately. 2. The surface acoustic wave filter according to claim 1, wherein the surface acoustic wave filter is comprised of interdigital electrodes disposed in the interdigitated electrodes.
7.電極材料にアルミニウムと金の混合比がほぼ1対1
である合金を用いたことを特徴とする請求項1記載の弾
性表面フィルタ。
7. The mixing ratio of aluminum and gold in the electrode material is approximately 1:1.
The elastic surface filter according to claim 1, characterized in that an alloy is used.
8.すだれ状電極の各電極指が、電極指幅の1/2が残
り幅1/2の膜厚と異なる膜厚に構成され、かつ幅方向
に対向する隣接電極指端部の膜厚が同じになるように配
置したことを特徴とする請求項1記載の弾性表面波フィ
ルタ。
8. Each electrode finger of the interdigital electrode is configured such that 1/2 of the width of the electrode finger is different from the thickness of the remaining 1/2 width, and the thickness of the adjacent electrode finger end portions facing each other in the width direction is the same. 2. The surface acoustic wave filter according to claim 1, wherein the surface acoustic wave filter is arranged so that
9.すだれ状電極を弾性表面波基板内に其の一部分また
は全体を埋め込んだことを特徴とする請求項1記載の弾
性表面波フィルタ。
9. 2. The surface acoustic wave filter according to claim 1, wherein the interdigital interdigital electrode is partially or entirely embedded within the surface acoustic wave substrate.
JP12175188A 1988-05-20 1988-05-20 Surface acoustic wave filter Pending JPH01292908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12175188A JPH01292908A (en) 1988-05-20 1988-05-20 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12175188A JPH01292908A (en) 1988-05-20 1988-05-20 Surface acoustic wave filter

Publications (1)

Publication Number Publication Date
JPH01292908A true JPH01292908A (en) 1989-11-27

Family

ID=14818984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12175188A Pending JPH01292908A (en) 1988-05-20 1988-05-20 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JPH01292908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396199A (en) * 1992-09-02 1995-03-07 Mitsubishi Denki Kabushiki Kaisha Surface acoustic wave device
US7626314B2 (en) 2006-12-27 2009-12-01 Murata Manufacturing Co., Ltd. Surface acoustic wave device
WO2022045088A1 (en) * 2020-08-24 2022-03-03 株式会社村田製作所 Elastic wave device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518805B2 (en) * 1975-04-15 1980-05-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518805B2 (en) * 1975-04-15 1980-05-21

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396199A (en) * 1992-09-02 1995-03-07 Mitsubishi Denki Kabushiki Kaisha Surface acoustic wave device
US7626314B2 (en) 2006-12-27 2009-12-01 Murata Manufacturing Co., Ltd. Surface acoustic wave device
WO2022045088A1 (en) * 2020-08-24 2022-03-03 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
US7728699B2 (en) Acoustic wave filter
US7479855B2 (en) Longitudinally-coupled-resonator-type elastic wave filter device
US20200389147A1 (en) Acoustic wave device
JPS60169210A (en) Surface wave device
JP2004135267A (en) Surface acoustic wave device
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JPH01292908A (en) Surface acoustic wave filter
JPS6231860B2 (en)
JPH1188100A (en) Surface acoustic wave device
US11606079B2 (en) Transducer structure for source suppression in saw filter devices
JP3040928B2 (en) Surface acoustic wave transducer
JPS6142447B2 (en)
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
EP1480338A2 (en) Surface acoustic wave device
JPH02250413A (en) Surface acoustic wave device
JP3197883B2 (en) Surface acoustic wave transducer
KR100773700B1 (en) Elastic surface-wave filter
JP2006157557A (en) Surface acoustic wave device
JPH02250412A (en) Surface acoustic wave device
JPH01252015A (en) Surface acoustic wave transducer
JPH11205071A (en) Surface acoustic wave device
JP2583384B2 (en) Internal reflection type unidirectional surface acoustic wave converter and electronic device using the same
JPH02260908A (en) Surface acoustic wave device
JP2000151337A (en) Surface acoustic wave resonator filter
JPH04331505A (en) Surface acoustic wave convolver