JPH0129284B2 - - Google Patents

Info

Publication number
JPH0129284B2
JPH0129284B2 JP58070659A JP7065983A JPH0129284B2 JP H0129284 B2 JPH0129284 B2 JP H0129284B2 JP 58070659 A JP58070659 A JP 58070659A JP 7065983 A JP7065983 A JP 7065983A JP H0129284 B2 JPH0129284 B2 JP H0129284B2
Authority
JP
Japan
Prior art keywords
fluororesin
insulating layer
current heating
insulated wire
skin current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58070659A
Other languages
Japanese (ja)
Other versions
JPS59196507A (en
Inventor
Masayoshi Watabe
Toshuki Oohori
Mikio Sho
Yataro Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP7065983A priority Critical patent/JPS59196507A/en
Publication of JPS59196507A publication Critical patent/JPS59196507A/en
Publication of JPH0129284B2 publication Critical patent/JPH0129284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、硫黄など常温では非常に高い粘度と
なる流体を輸送するパイプライン等にトレース施
工して当該流体を適度に低い粘度に調整するのに
適し、特に180℃を越える領域の高温に加熱する
ものに適した表皮電流発熱管用絶縁電線に関す
る。 〔従来の技術〕 一般に、重油などの流動性の小さい比較的高粘
性の流体をパイプラインで輸送することは困難で
あることから、当該パイプラインを構成する流体
輸送管を加熱して、輸送する流体の粘度を低く調
整し、もつて長距離にわたつて高粘度流体の輸送
の便に供することが行われている。 かかる流体輸送管の加熱手段として、代表的な
ものに、表皮電流発熱管があり、実際に広く採用
されているところである。 表皮電流発熱管の基本原理は、例えば特公昭40
−12128号公報に具体的に開示されているが、こ
れを第1図に基づいて説明すると、高磁性鋼管に
よつて得られる表皮電流発熱管1と、これの中に
挿通する絶縁電線2とを有し、当該絶縁電線2の
一端を表皮電流発熱管1の一端部に結線し、同絶
縁電線の他端を商用交流設備を利用する交流電源
3に継ぎ込み、そうして絶縁電線3を介して表皮
電流発熱管1を経由した電流閉路が形成される。 そして、上記のように構成されたことで、表皮
電流発熱管1に流れる電流は、管内表面に集中す
る所謂表皮電流となつて、その外表面には事実上
流れなくなる。従つて、被加熱物である流体輸送
管4にトレース施工しても、該輸送管4には電流
を流さずに高磁性鋼管1に生ずるジユール熱によ
り流体輸送管4を加熱し、もつて輸送管内の流体
5を粘度を適度に調整するものとしている。 さて、上記のようにして用いられる絶縁電線に
ついてみると、小サイズ(JIS G3452−65で規定
される呼び径Aが25;外径34mm、厚さ3.2mm程度)
で細長い高磁性鋼管1の中に引き入れることや発
熱する鋼管の中で加熱されること或いはまた長距
離トレース施工による高電圧化などから、適度の
可撓性と耐熱性さらには高い電気絶縁性能が要求
されるものであり、その要求を満足するものとし
て従来では、シリコンゴム被覆電線が採用されて
きた。 しかしながら、シリコンゴムによる絶縁被覆で
は、耐熱性能から見て一般に180℃以下の温度で
使用されているものであり、これ以上の高温で流
体を輸送する必要があるパイプライン(例えば硫
黄パイプライン)では、採用できない。 そこで、180℃を越えるような温度に加熱する
表皮電流発熱管のための絶縁電線としては、弗素
樹脂系の絶縁体を被覆材とすることが検討されて
きた。 〔発明が解決しようとする課題〕 かかる弗素樹脂絶縁被覆電線によれば、イオン
化(コロナ放電状態)が起こる条件下、即ち、例
えば3KVを越えるような高電圧課電下では、被
覆材としての弗素樹脂絶縁体が、導体の撚線に接
する側の強い電界の影響下にある内面においてコ
ロナ放電による高いエネルギーのガス状イオンが
衝突して、機械的に侵食(エロージヨン)されて
劣化し、それが徐々に外側に進行して遂にはそれ
自身の外部まで到達して絶縁破壊にまで至らし
め、そのために長期間安定して使用することがで
きない難点があつた。 従つて、一般に600v以下の低電圧回路でしか
採用することができず、表皮電流発熱管としての
本来の特徴である長距離トレース施工による長尺
一括加熱が行えず、短尺管のものにしか適用でき
なかつた。表皮電流発熱管が短尺になると交流電
源設備或いはその中継装置が多数散在させる必要
があり、付帯設備が増大し、通電上の管理も困難
化する問題があり、実際際的ではなかつた。 本発明は、以上の従来技術の問題点に鑑み、特
に180℃を越えるような高温加熱に供する表皮電
流発熱管において、被覆材として耐熱性に優れる
弗素樹脂絶縁体の特長を生かすべく該弗素樹脂絶
縁体がコロナ放電に弱いという点を補い、もつて
高電圧下で使用しても長期安定性が得られる、こ
の種表皮電流発熱管用絶縁電線の提供を目的とし
たものである。 〔課題を解決するための手段〕 本発明によれば、電流通電用導体の直上に無機
材料を主体とした絶縁層を施し、その絶縁層の直
上に弗素樹脂を塗布又は貼着した無機質のテープ
を巻回し、更にそのテープ巻回層の上に弗素樹脂
系の絶縁層を設けて構成することにより、当該目
的を達成するものである。 〔作用〕 上記のような特徴を有する表皮電流発熱管用絶
縁電線によれば、導体直上に施した無機材料を主
体とした絶縁層が、温度定格を高温に保てること
は勿論、コロナ放電電圧値を高くする作用をなし
て、耐コロナ特性の向上を図ることができる。 また、無機材料を主体とした絶縁層の上に弗素
樹脂を塗布又は貼着した無機質のテープ巻層が存
在するため、耐コロナ性能の補強を図れるととも
に、無機材料主体の絶縁層が通電用導体の通電に
より加熱されることでそれ自身に含まれる湿気や
接着剤などの微量の溶剤が気化しても、それを当
該テープ巻層によつて遮断して弗素樹脂絶縁層に
影響させることが無く、従つて、当該気化ガスに
よつて弗素樹脂絶縁層が発泡させるといつた不具
合が無くなる。 このように、無機材料主体の絶縁層により耐コ
ロナ特性の向上が図れるとともに、その無機材料
主体の絶縁層に対して加熱を受ける条件下では影
響を受け得る弗素樹脂絶縁層をその影響を無くし
て設けられることにより、耐熱特性の向上と耐コ
ロナ特性の向上との両立が図られる。 なお、最外層に弗素樹脂絶縁層が設けられるこ
とによつて、万が一管内に浸水があつても、弗素
樹脂による優れた耐水性により問題無く通電使用
することが可能であり、長期安定性に優れてい
る。 〔実施例〕 第2図は、本発明にかかる表皮電流発熱管用絶
縁電線の好ましい実施例であつて、可撓性に優れ
た撚線導体からなる電流通電用導体21の直上に
無機材料を主体とした絶縁層22が形成され、こ
の無機材料主体の絶縁層22の周囲に弗素樹脂塗
布無機質テープを密に巻いた層23を設け、その
弗素樹脂塗布無機質テープ巻層23の上に弗素樹
脂系の絶縁層24を形成してなるものである。 このように構成された絶縁電線であれば、弗素
樹脂系の絶縁層24の採用により、耐熱定格の向
上を図れることは勿論、電流通電により高温とな
る導体21の直上に無機材料主体の絶縁層22が
形成されていることにより、温度定格を高温に保
つことに何等の支障を与えることなくして、コロ
ナ放電電圧値を高く維持することができ、耐熱特
性のみならず耐コロナ特性の向上を図ることがで
きる。 また、弗素樹脂系の絶縁層が最外層に形成され
ていることにより、管内に万が一浸水が生じても
弗素樹脂の耐水性により、そのまま通電使用する
ことを許容し、長期にわたつて安定した通電を可
能にすることができる。 さらに、弗素樹脂系の絶縁層24は無機材料主
体の絶縁層22に対して弗素樹脂塗布テープ巻層
22を介して形成されているため、導体21の通
電時の発熱により無機材料主体の絶縁層22が加
熱されることでそれ自身から放出される湿気等が
当該弗素樹脂塗布無機質テープ巻層23にて遮断
されて弗素樹脂系の絶縁層24には至らないため
に、当該弗素樹脂系の絶縁層4が湿気と加熱の条
件で発泡するという問題を解消することができる
ものである。 なお、無機質テープとしては、ガラスクロスや
マイカ・ガラス短繊維を混抄したシート状物等か
ら作製される。 本実施例の絶縁電線において、耐コロナ特性の
向上を確認するため、コロナ放電電圧値を測定し
た。その結果を下記の表1に示す。 表中、試料W1は、サイズが22mm2の撚線導体上
にパーフルオロアルコキシ基の側鎖を有する4ふ
つ化エチレン樹脂を厚さ1.2mmで押出被覆した比
較例である。また、試料W2は、上記と同サイズ
の撚線導体上に厚さ1.08mmのガラスマイカ層、上
記と同材質の弗素樹脂をコーテイングしてなる厚
さ0.07mmのガラス層、上記と同様の弗素樹脂の押
出による厚さ2.0mmの弗素樹脂絶縁体層を順次形
成した本考案による実施例である。
[Industrial Application Field] The present invention is suitable for tracing a pipeline or the like that transports a fluid such as sulfur that has a very high viscosity at room temperature to adjust the viscosity of the fluid to a moderately low level, especially at 180°C. The present invention relates to an insulated wire for skin current heating tubes that is suitable for heating to high temperatures in the region exceeding . [Prior Art] Generally, it is difficult to transport relatively high viscosity fluids with low fluidity, such as heavy oil, by pipelines, so the fluid transport pipes that make up the pipelines are heated and transported. BACKGROUND ART The viscosity of fluids has been adjusted to be low to facilitate the transportation of highly viscous fluids over long distances. A typical example of heating means for such a fluid transport tube is a skin current heating tube, which is actually widely used. The basic principle of the skin current heating tube is, for example,
This is specifically disclosed in the Publication No. 12128, and it will be explained based on FIG. One end of the insulated wire 2 is connected to one end of the skin current heating tube 1, and the other end of the insulated wire is connected to an AC power source 3 using commercial AC equipment, and the insulated wire 3 is connected to one end of the skin current heating tube 1. A current closed circuit is formed through the skin current heating tube 1. With the above configuration, the current flowing through the skin current heating tube 1 becomes a so-called skin current that concentrates on the inner surface of the tube, and virtually no longer flows on the outer surface. Therefore, even if tracing is carried out on the fluid transport pipe 4, which is the object to be heated, no current is passed through the transport pipe 4, and the fluid transport pipe 4 is heated by the Joule heat generated in the highly magnetic steel pipe 1, and the fluid transport pipe 4 is then transported. The viscosity of the fluid 5 in the pipe is adjusted appropriately. Now, if we look at the insulated wires used as described above, they are small (nominal diameter A specified by JIS G3452-65 is 25; outer diameter 34 mm, thickness about 3.2 mm).
It has appropriate flexibility and heat resistance as well as high electrical insulation performance because it is drawn into a long and thin high magnetic steel pipe 1, heated in a heat-generating steel pipe, and high voltage is generated by long-distance tracing construction. Conventionally, silicone rubber-covered electric wires have been adopted as a wire that satisfies these demands. However, insulating coatings made of silicone rubber are generally used at temperatures below 180°C due to their heat resistance, and are not suitable for pipelines that need to transport fluids at higher temperatures (for example, sulfur pipelines). , cannot be hired. Therefore, it has been considered to use fluororesin-based insulators as a coating material for insulated wires for skin current heating tubes that are heated to temperatures exceeding 180°C. [Problems to be Solved by the Invention] According to such a fluororesin-insulated electric wire, under conditions where ionization (corona discharge state) occurs, that is, under high voltage application exceeding 3 KV, for example, the fluorine resin as a coating material High-energy gaseous ions from corona discharge collide with the resin insulator on its inner surface, which is under the influence of a strong electric field on the side in contact with the stranded wires of the conductor, causing mechanical erosion and deterioration. The problem was that it gradually progressed outward and eventually reached the outside of itself, leading to dielectric breakdown, making it impossible to use it stably for a long period of time. Therefore, it can generally only be used in low-voltage circuits of 600V or less, and cannot perform long-distance tracing at once, which is the original feature of skin current heating tubes, and can only be applied to short tubes. I couldn't do it. When the skin current heating tube becomes short, it is necessary to have a large number of AC power supply equipment or their relay devices scattered around, which increases the number of incidental equipment and makes it difficult to manage current supply, which is not practical. In view of the above-mentioned problems of the prior art, the present invention aims to take advantage of the features of fluororesin insulators, which have excellent heat resistance, as coating materials in skin current heating tubes that are subjected to high-temperature heating, particularly in excess of 180°C. The object of the present invention is to provide an insulated wire for a skin current heating tube, which compensates for the insulator's vulnerability to corona discharge and provides long-term stability even when used under high voltage. [Means for Solving the Problems] According to the present invention, an inorganic tape is provided in which an insulating layer mainly made of an inorganic material is provided directly above a current-carrying conductor, and a fluororesin is coated or adhered directly above the insulating layer. This object is achieved by winding the tape and further providing a fluororesin-based insulating layer on the tape winding layer. [Function] According to the insulated wire for skin current heating tubes having the above-mentioned characteristics, the insulating layer mainly made of inorganic material applied directly on the conductor not only maintains the temperature rating at a high temperature but also maintains the corona discharge voltage value. This has the effect of increasing the corona resistance, thereby improving corona resistance. In addition, since there is an inorganic tape layer coated or attached with a fluororesin on the insulating layer mainly made of inorganic material, corona resistance can be reinforced, and the insulating layer mainly made of inorganic material can be used as a current conductor. Even if a small amount of moisture or adhesives or other solvents contained in the tape vaporizes when heated by electricity, it is blocked by the tape wrapping layer and does not affect the fluororesin insulation layer. Therefore, problems caused by foaming of the fluororesin insulating layer due to the vaporized gas are eliminated. In this way, it is possible to improve the corona resistance properties by using an insulating layer mainly made of inorganic materials, and to eliminate the effects of the fluororesin insulating layer, which can be affected by heating conditions on the insulating layer mainly made of inorganic materials. By providing this, it is possible to achieve both improvement in heat resistance characteristics and improvement in corona resistance characteristics. Furthermore, by providing a fluororesin insulating layer as the outermost layer, even if water intrudes into the tube, the fluororesin's excellent water resistance allows it to be used with electricity without any problems, resulting in excellent long-term stability. ing. [Embodiment] FIG. 2 shows a preferred embodiment of the insulated wire for a skin current-generating tube according to the present invention, in which an inorganic material is mainly used directly above the current-carrying conductor 21 made of a stranded wire conductor with excellent flexibility. An insulating layer 22 is formed, and a layer 23 made of a fluororesin-coated inorganic tape is provided around this insulating layer 22 mainly made of an inorganic material. An insulating layer 24 is formed. With an insulated wire constructed in this way, the heat resistance rating can of course be improved by employing the fluororesin-based insulating layer 24, and an insulating layer mainly made of an inorganic material is provided directly above the conductor 21, which becomes hot when current is applied. 22, it is possible to maintain a high corona discharge voltage value without any hindrance to maintaining the temperature rating at a high temperature, improving not only heat resistance characteristics but also corona resistance characteristics. be able to. In addition, since a fluororesin-based insulating layer is formed as the outermost layer, even if water intrudes into the pipe, the water resistance of the fluororesin allows it to be used as is, ensuring stable energization over a long period of time. can be made possible. Furthermore, since the fluororesin-based insulating layer 24 is formed with the fluororesin-coated tape wrapping layer 22 interposed between the insulating layer 22 mainly made of inorganic material, the heat generated when the conductor 21 is energized causes the insulating layer 22 mainly made of inorganic material to 22 is heated and released from itself is blocked by the fluororesin-coated inorganic tape wrapping layer 23 and does not reach the fluororesin-based insulating layer 24. This solves the problem that layer 4 foams under conditions of humidity and heat. Note that the inorganic tape is made from glass cloth, a sheet-like material mixed with mica/glass short fibers, or the like. In order to confirm the improvement in the corona resistance of the insulated wire of this example, the corona discharge voltage value was measured. The results are shown in Table 1 below. In the table, sample W 1 is a comparative example in which a stranded wire conductor with a size of 22 mm 2 is extruded and coated with a tetrafluoroethylene resin having a perfluoroalkoxy group side chain to a thickness of 1.2 mm. In addition, sample W 2 consists of a 1.08 mm thick glass mica layer on a stranded wire conductor of the same size as above, a 0.07 mm thick glass layer coated with fluororesin of the same material as above, and a 0.07 mm thick glass layer coated with fluororesin of the same material as above. This is an example of the present invention in which fluororesin insulator layers with a thickness of 2.0 mm were successively formed by extruding fluororesin.

〔発明の効果〕〔Effect of the invention〕

以上説明してきて明らかなように、本発明の表
皮電流発熱管用絶縁電線によれば、特に180℃を
越えるような高温加熱に供する表皮電流発熱管に
おいて、被覆材として耐熱性に優れる弗素樹脂絶
縁体の特長を生かすべく該弗素樹脂絶縁体がコロ
ナ放電に弱いという点を補い、もつて高電圧下で
使用しても長期安定性が得られる、この種表皮電
流発熱管用絶縁電線を提供するという所期の目的
は十二分に達成され、もつて高温加熱にして長尺
一条布設つまり高電圧化に対応できるこの種表皮
電流加熱管用絶縁電線の提供を可能にしている。
このことによつて、電源設備等の付帯設備数を多
くすることもなくなり、保守容易で経済的にも有
利な表皮電流発熱管を提供することができる。
As is clear from the above explanation, according to the insulated wire for a skin current heating tube of the present invention, a fluororesin insulator with excellent heat resistance is used as a coating material, especially in a skin current heating tube that is subjected to high-temperature heating exceeding 180°C. To provide this type of insulated wire for skin current heating tubes, which makes use of the characteristics of the fluororesin insulator, which compensates for the weakness of the fluororesin insulator against corona discharge, and which provides long-term stability even when used under high voltage. The purpose of the present invention has been more than fully achieved, and it has now become possible to provide this type of insulated wire for skin current heating tubes that can be heated at high temperatures and installed in long lengths, that is, can be used at high voltages.
This eliminates the need to increase the number of auxiliary equipment such as power supply equipment, making it possible to provide a skin current heating tube that is easy to maintain and is economically advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A及びBは表皮電流発熱管を高粘性流体
輸送管にトレース施工した例を示す横断面説明図
及び側面説明図であり、第2図A及びBは本発明
にかかる表皮電流発熱管用絶縁電線の一実施例を
示す横断面説明図及び側面説明図、第3図は、表
皮電流発熱管用絶縁電線の試験状況を示す説明図
である。 図中、1は表皮電流発熱管、2は通電用導体、
3は電源、4は高粘性流体輸送管、5は高粘性流
体通路、21は通電用導体、22は無機物質主体
の絶縁層、23は弗素樹脂含有テープ巻層、24
は弗素樹脂系の被覆層である。
1A and 1B are a cross-sectional explanatory view and a side explanatory view showing an example in which a skin current heating tube is traced to a high viscosity fluid transport pipe, and FIGS. 2A and 2B are a cross-sectional view and a side view showing an example in which a skin current heating tube is traced to a high viscosity fluid transport pipe, and FIGS. 2A and B are for a skin current heating tube according to the present invention. A cross-sectional explanatory view and a side explanatory view showing an example of an insulated wire, and FIG. 3 are explanatory views showing a test situation of an insulated wire for a skin current heating tube. In the figure, 1 is a skin current heating tube, 2 is a current conductor,
3 is a power supply, 4 is a high viscosity fluid transport pipe, 5 is a high viscosity fluid passage, 21 is a current conductor, 22 is an insulating layer mainly composed of an inorganic substance, 23 is a fluororesin-containing tape wrapping layer, 24
is a fluororesin-based coating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 高磁性の金属管内に挿通し、該金属管の端部
に接続して当該金属管の内表皮を通る電流閉路を
構成する表皮電流発熱管用絶縁電線において、電
流通電用導体の直上に無機材料を主体とした絶縁
層を施し、その絶縁層の上に弗素樹脂を塗布又は
貼着した無機質のテープを巻回し、更にそのテー
プ巻回層の上に弗素樹脂系の絶縁層を設けて構成
されていることを特徴とする表皮電流発熱管用絶
縁電線。
1. In an insulated wire for a skin current-generating tube that is inserted into a highly magnetic metal tube and connected to the end of the metal tube to form a current closed circuit passing through the inner skin of the metal tube, an inorganic material is placed directly above the current-carrying conductor. An insulating layer consisting mainly of An insulated wire for skin current heating tubes.
JP7065983A 1983-04-21 1983-04-21 Insulated wire for skin current heating tube Granted JPS59196507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7065983A JPS59196507A (en) 1983-04-21 1983-04-21 Insulated wire for skin current heating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7065983A JPS59196507A (en) 1983-04-21 1983-04-21 Insulated wire for skin current heating tube

Publications (2)

Publication Number Publication Date
JPS59196507A JPS59196507A (en) 1984-11-07
JPH0129284B2 true JPH0129284B2 (en) 1989-06-09

Family

ID=13437999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7065983A Granted JPS59196507A (en) 1983-04-21 1983-04-21 Insulated wire for skin current heating tube

Country Status (1)

Country Link
JP (1) JPS59196507A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274990A (en) * 1989-04-15 1990-11-09 Matsushita Electric Works Ltd Mounting structure for door and wing panel
JP4957565B2 (en) * 2008-01-24 2012-06-20 三菱自動車工業株式会社 Valve mechanism of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212935U (en) * 1975-07-16 1977-01-29
JPS5560212A (en) * 1978-10-31 1980-05-07 Sumitomo Electric Industries Heat resistant insulating wire
JPS5711416A (en) * 1980-06-25 1982-01-21 Fujikura Ltd Refractory insulated wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119210U (en) * 1980-02-13 1981-09-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212935U (en) * 1975-07-16 1977-01-29
JPS5560212A (en) * 1978-10-31 1980-05-07 Sumitomo Electric Industries Heat resistant insulating wire
JPS5711416A (en) * 1980-06-25 1982-01-21 Fujikura Ltd Refractory insulated wire

Also Published As

Publication number Publication date
JPS59196507A (en) 1984-11-07

Similar Documents

Publication Publication Date Title
US2142625A (en) High tension cable
US3259684A (en) Shielded resin insulated electric cable
KR101314789B1 (en) System with a superconducting cable
US4806416A (en) Insulating coating
US1912794A (en) High tension cable
US4436565A (en) Method of making a heating device for utilizing the skin effect of alternating current
US11006484B2 (en) Shielded fluoropolymer wire for high temperature skin effect trace heating
Yahaya et al. Power loss due to corona on High Voltage Transmission lines.
US3755650A (en) Elongated heat-generating apparatus providing for a reduction in the highest voltage to be applied
Khatoon et al. A review of the flashover performance of high voltage insulators constructed with modern insulating materials
US2386634A (en) Flexible electrical insulating layer
US10959295B2 (en) Shielded wire for high voltage skin effect trace heating
US3396231A (en) Stress graded cable termination
JPH0129284B2 (en)
Taheri et al. Electrical performance evaluation of EHV post insulators covered with ice under different air gap configurations
US20180279418A1 (en) High Voltage Skin Effect Heater Cable with Ribbed Semiconductive Jacket
WO2019162757A1 (en) Shielded fluoropolymer wire for high temperature skin effect trace heating
US2096840A (en) High tension rubber insulated cable
US2728879A (en) Electrical coil
Khan et al. Experimental simulation of effects of copper sulphide on insulation system of transformers
Belhoul et al. Small air gap’s performance under non-uniform electrical field with silicone tubular barriers under AC voltage
Whitehead The dielectric strength and life of impregnated-paper insulation—I: The influence of the density of the paper
RU2789980C2 (en) Shielded fluoroplastic wire for high-temperature satellite heating of pipelines based on the skin effect
Wei et al. Improvements to the performance of silicone rubber housed composite bushings by means of a resistive coating
Enoksen et al. Temperature and Electric Field Dependence of the Time Domain Dielectric Response of a Medium Voltage Cable Joint Stress Control Sleeve