JPH01292825A - Low pressure preparation chamber apparatus - Google Patents

Low pressure preparation chamber apparatus

Info

Publication number
JPH01292825A
JPH01292825A JP12178388A JP12178388A JPH01292825A JP H01292825 A JPH01292825 A JP H01292825A JP 12178388 A JP12178388 A JP 12178388A JP 12178388 A JP12178388 A JP 12178388A JP H01292825 A JPH01292825 A JP H01292825A
Authority
JP
Japan
Prior art keywords
gas
air supply
exhaust
chamber
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12178388A
Other languages
Japanese (ja)
Inventor
Yoko Ichikawa
市川 洋子
Koichi Tsuzuki
浩一 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12178388A priority Critical patent/JPH01292825A/en
Publication of JPH01292825A publication Critical patent/JPH01292825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a low pressure preparation chamber with less residual foreign matter and contamination by foreign matter of materials such as wafer by constituting the gas outlet and gas inlet on a line in the plane in parallel with the upper surface of a sample and providing these inlet and outlet with the apertures thereof provided opposed to each other. CONSTITUTION:The gas outlet 4 and the gas inlet 3 are provided in such a manner that these are located on a line in the plane parallel to the upper surface of a sample and the apertures of these are provided opposed to each other. The gas outlet 4 and gas inlet 3 which are provided to form a line in a plane parallel to the upper surface of a sample such as wafer placed on the sample board as described above assure smooth flow, at the time of exhausting the gas or supply the gas to the low pressure preparation chamber, of the gas in the low pressure preparation chamber without any deviation even under the existence of volume and gas within the pipe in the exhaust side or those within the pipe of supply side and always cause the gas to flow in the constant direction even in the case of exhaustion or supply of gas. Thereby, the gas including splashed foreign matters quickly flows at the lower side of upper surface of sample.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、減圧準備室装置に係り、特に半導体素子基板
等の試料を処理するのに好適な減圧準備室装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reduced pressure preparation chamber apparatus, and particularly to a reduced pressure preparation chamber apparatus suitable for processing samples such as semiconductor element substrates.

〔従来の技術〕[Conventional technology]

減圧準備室装置としては1例えば特開昭60−2381
33号に記載のように、処理室の加工品搬出入用の正面
又は後方の閉鎖手段の1方に外部の真空排気手段と連結
した小室を設け、室内に弁を設けて、処理室(真空室)
を大気に曝さずに加工品を搬出入するようにした。ロー
ドロック室が知られている。この装置には室内を給気し
て大気圧に戻す給気口と、室内を排気して処理室(真空
室)と同じ圧力にする排気口をもつ、上記給気口により
、ロードロック室内を給気して大気圧に戻して開放し、
開放されたロードロック室内にウェハ等の試料を搬入し
て再びロードロック室を気密封止し、室内を排気して減
圧した後、ロードロック室内と処理室(真空室)とを連
通させて試料をロードロック室から処理室にうつし、処
理室にて試料を加工処理後、逆操作により処理室からロ
ードロック室を通して搬出するものである。この装置の
ロードロック室の給気口位置は、ウェハ等試料上面上方
に横向きに設置されている。排気口は試料裏面方向に対
向するように設置されている。
As a decompression preparation chamber device, for example, JP-A-60-2381
As described in No. 33, a small chamber connected to an external evacuation means is provided on one of the front or rear closing means for carrying in and out processed products in the processing chamber, and a valve is provided inside the chamber to close the processing chamber (vacuum). room)
Processed products can be transported in and out without exposing them to the atmosphere. Load-lock chambers are known. This device has an air supply port that supplies air into the room and returns it to atmospheric pressure, and an exhaust port that exhausts the room and brings it to the same pressure as the processing chamber (vacuum chamber). Supply air, return it to atmospheric pressure, and open it.
A sample such as a wafer is carried into the open load-lock chamber, the load-lock chamber is hermetically sealed again, and the chamber is evacuated to reduce the pressure.The load-lock chamber and processing chamber (vacuum chamber) are communicated with each other to remove the sample. The sample is transferred from the load-lock chamber to the processing chamber, processed in the processing chamber, and then transferred from the processing chamber through the load-lock chamber by reverse operation. The air supply port of the load lock chamber of this apparatus is installed horizontally above the top surface of a sample such as a wafer. The exhaust port is installed so as to face the back surface of the sample.

この他の例として、特開昭60−250644号のもの
は、給気口、排気口とも同じ方向を向いて設置されてい
る。特開昭60−91642号のものは、試料上面方向
に横向きに給気口が設置され、試料裏面方向に対向する
ように排気口が2つ設置されている。
As another example, in Japanese Patent Application Laid-Open No. 60-250644, both the air supply port and the exhaust port are installed facing the same direction. In the device disclosed in JP-A No. 60-91642, an air supply port is installed horizontally toward the top surface of the sample, and two exhaust ports are installed facing each other toward the back surface of the sample.

特開昭62−181440号のものは、ウェハ上面方向
から高圧パージを行って、垂直な流れを作るもので。
The method disclosed in JP-A-62-181440 performs high-pressure purge from the upper surface of the wafer to create a vertical flow.

粒子を上方より下方へ輸送するものである。It transports particles from above to below.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術における減圧準備室においては、排気口の
位置及び給気口の位置は、排気口・給気口の互いの相対
位置関係、及び給気口・排気口とウェハ等試料上面との
位置関係は特に考慮されずに設計されている。一般に減
圧準備室の排気口は。
In the depressurization preparation chamber in the above conventional technology, the position of the exhaust port and the position of the air supply port are determined by the relative positional relationship of the exhaust port and the air supply port with each other, and the position of the air supply port and the exhaust port and the top surface of the sample such as a wafer. The relationship is designed without any particular consideration. Generally, the exhaust port of the decompression preparation room.

排気側配管径と接続されており、この配管の途中には電
磁弁がとりつけられている。同様にして減圧準備室の給
気口は、給気側配管系に接続されており、この配管の途
中にも電磁弁がとりつけられている。従って、上記排気
口と排気側電磁弁の間。
It is connected to the exhaust pipe diameter, and a solenoid valve is installed in the middle of this pipe. Similarly, the air supply port of the decompression preparation chamber is connected to the air supply side piping system, and a solenoid valve is also installed in the middle of this piping. Therefore, between the above exhaust port and the exhaust side solenoid valve.

及び上記給気口と排気側電磁弁の間にはある容積をもつ
という事実しなければならない、減圧準備室を排気する
時は、排気側電磁弁を開き給気側電磁弁を閉じるため、
排気は減圧準備室内と同時に給気口から給気側電磁弁に
至る給気側配管系内も行っていることになる。また逆に
減圧準備室を給気する時は、給気側電磁弁を開き排気側
電磁弁は閉じるため、給気は減圧準備室内と同時に排気
口から排気口電磁弁に至る排気側配管系内も行っている
ことになる。従って事実上排気時も給気時も、減圧準備
室に生じる気体の流れの形状は、上記排気側配管系内部
容積、内部気体及び上記給気側排管系内部容積、内部気
体の存在ゆえに、排気口と給気口の相対位置によって影
響をうけるということを考慮しなくてはならない、それ
にも関わらず、上記従来技術における減圧準備室装置に
おいては、排気口と給気口の位置は、室内に生じる気体
の流れを全く考慮されずに減圧準備室外の装置の設計上
の都合により設定されているのが実状である。
And there must be a certain volume between the air supply port and the exhaust side solenoid valve.When exhausting the decompression preparation chamber, the exhaust side solenoid valve is opened and the supply side solenoid valve is closed.
Exhaust is carried out simultaneously within the depressurization preparation chamber and also within the air supply side piping system from the air supply port to the air supply side solenoid valve. Conversely, when supplying air to the decompression preparation chamber, the air supply side solenoid valve is opened and the exhaust side solenoid valve is closed, so that the air is supplied into the decompression preparation chamber and simultaneously into the exhaust side piping system from the exhaust port to the exhaust port solenoid valve. This means that they are also doing so. Therefore, in fact, the shape of the gas flow that occurs in the depressurization preparation chamber during both exhaust and air supply is determined by the internal volume of the exhaust side piping system, the internal gas, the internal volume of the air supply side exhaust pipe system, and the presence of the internal gas. It must be taken into consideration that the relative positions of the exhaust port and the air supply port are affected by the relative positions of the exhaust port and the air supply port. The actual situation is that this setting is made based on the design of the equipment outside the depressurization preparation room, without any consideration given to the gas flow that occurs during the decompression preparation room.

このために、排気口と給気口の相対位置が不適切である
と、排気時及び給気時に生じる気体の流れは、減圧準備
室内を大きく旋回するような偏った流れとなり、また、
排気時と給気時では、流れの方向が逆転する箇所も予備
室内に生じてしまう。
For this reason, if the relative positions of the exhaust port and the air supply port are inappropriate, the gas flow that occurs during exhaust and air supply will be uneven, with a large swirl inside the decompression preparation chamber.
There are places in the preliminary chamber where the flow direction is reversed during exhaust and air supply.

従って何らかの原因で流れが異物を含んだ場合。Therefore, if the flow contains foreign matter for some reason.

この偏った気体の流れによってすみやかに排出されずに
、ウェハ等試料上面を横切ってから排出されるという経
路をたどるため、ウェハ等試料は異物の付着によって汚
染されてしまい、歩留りを悪くするという問題があった
。また偏った流れと、排気時と給気時で方向が逆転する
流れにより、異物が滞る場所が生じ、減圧準備室の一部
に広範囲な異物の残留領域が生じてしまい、このような
残留異物が累積すると、ウェハを更に汚染させる原因と
なるという問題もあった。
Due to this biased gas flow, the gas is not discharged quickly, but instead crosses the top surface of the wafer or other sample before being discharged, which results in the wafer or other sample being contaminated by foreign matter, which reduces yield. was there. In addition, due to the uneven flow and the flow whose direction is reversed during exhaust and air supply, there are places where foreign matter gets stuck, resulting in a wide area where foreign matter remains in a part of the decompression preparation chamber. There is also a problem in that the accumulation of these substances causes further contamination of the wafer.

特に今後更に普及していくと考えられる枚葉式の減圧準
備室においては、枚葉式であるために。
Especially in single-wafer type decompression preparation chambers, which are expected to become more popular in the future, because they are single-wafer type.

減圧準備室内部の容積が小さくなり、このような場合、
相対的に上記排気側配管系及び上記給気側配管系の容積
と同程度となるため、上に述べたような排気・給気時の
減圧準備室内の気体の流れの偏りは著しくなり、ウェハ
等試料を汚染しやすくしてしまうという問題もあった。
In such a case, the volume inside the decompression preparation chamber becomes smaller.
Since the volumes of the exhaust side piping system and the air supply side piping system are relatively the same, the imbalance in the gas flow in the depressurization preparation chamber during exhaust and air supply as described above becomes significant, and the wafer There was also the problem that the sample was easily contaminated.

尚、従来技術の減圧準備室装置における、給気口及び排
気口の位置は、ウェハ等試料の上面上方に給気口を設置
し、減圧準備室下方に排気口を設置するものが多いが、
試料上面方向から気体の流れが直接流れるのは、試料の
異物付着汚染に影響を及ぼすという問題もあった。
Note that in conventional depressurization preparation chamber devices, the air supply port and exhaust port are often installed above the top surface of a sample such as a wafer, and the exhaust port is installed below the depressurization preparation chamber.
Directly flowing the gas from the upper surface of the sample also has the problem of affecting the contamination of the sample with foreign matter.

つまり従来技術では、排気口と給気口双方の相対位置は
、それが給・排気時に生じる気体の流れに影響を与える
ということを全く考慮されずに設定されているため、そ
の相対位置いかんでは、異物粒子が室内に残留したり、
異物を含んだ気体の流れがウェハ等試料上面を横切った
りすることで試料を異物で汚染してしまうという問題が
あった。
In other words, in the conventional technology, the relative positions of both the exhaust port and the air supply port are set without any consideration being given to the effect that this will have on the gas flow that occurs during supply and exhaust. , foreign particles remain in the room,
There is a problem in that the flow of gas containing foreign matter crosses the top surface of a sample such as a wafer, contaminating the sample with foreign matter.

本発明は、上記の事柄にもとづき、排気・給気時の気体
の偏った流れが生じることがなく、異物の残留やウェハ
等材料の異物汚染の少ない減圧準備室を提供することに
ある。
The present invention is based on the above-mentioned considerations, and an object of the present invention is to provide a depressurization preparation chamber that does not cause uneven gas flows during exhaust and gas supply, and is free from residual foreign matter and foreign matter contamination of materials such as wafers.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、真空の処理室の一部に、この処理室に試料
を搬入出するための減圧準備室を設け。
For the above purpose, a vacuum preparation chamber is provided in a part of the vacuum processing chamber to carry samples into and out of the processing chamber.

前記減圧準備室は、室内を画成する壁とこの室内を移動
する試料支持台と前記室内の気圧を下げるための排気口
部と気圧を上げるための給気口部とを備える減圧準備室
において、前記排気口と、前記給気口が試料の上面と平
行な面内の一直線上に構成されるように、前記排気口と
前記給気口を設置し、かつ排気口部の開口部と、給気口
部の開口部を互いに対向するように設置することにより
The decompression preparation room is a decompression preparation room that includes a wall that defines a room, a sample support that moves within the room, an exhaust port for lowering the air pressure in the room, and an air supply port for increasing the air pressure. , the exhaust port and the air supply port are installed so that the exhaust port and the air supply port are arranged on a straight line in a plane parallel to the upper surface of the sample, and an opening of the exhaust port portion, By arranging the openings of the air supply ports to face each other.

達成される。achieved.

〔作用〕[Effect]

試料台に設置されるウェハ等試料の上面と平行なある面
内の一直線を構成するように設置された排気口及び給気
口は、減圧準備室を排気する際、もしくは給気する際に
生じる、減圧準備室内の気体の流れを、前記排気側配管
系内部の容積・気体及び前記給気側配管系内部の容積・
気体の存在によっても、流れが偏ることがなく流れさせ
、排気の場合でも給気の場合でも、気体の流れは常に一
定方向に流れさせるように動作する。
Exhaust ports and air supply ports that are installed to form a straight line in a plane parallel to the top surface of a sample such as a wafer installed on a sample stage are generated when evacuating or supplying air to the decompression preparation chamber. , the flow of gas in the decompression preparation chamber is determined by the volume and gas inside the exhaust side piping system and the volume and gas inside the air supply side piping system.
Even in the presence of gas, the flow is made to flow unbiased, and the flow of gas is always made to flow in the same direction, whether in the case of exhaust or air supply.

このために、減圧準備室内壁面に付着している等の理由
で減圧準備室内に存在する異物が、排気、もしくは給気
によって生じた気体の流れによって飛散し気体とともに
流れていく時も、減圧準備室内の気体の流れに偏りがな
く、また気体の流れに飛散した異物が含まれていても、
ウェハ等試料上面に近ずかずに、排気口より排出される
ために、ウェハ等試料が異物によって汚染されることが
大幅に低減される。また同時に、排気及び給気時に生じ
る気体の流れに偏りがなく、排気、給気のどちらでも常
に一方向に流れ、室内には排気時と給気時では流れが逆
転する箇所はないので、減圧準備室内に異物は残留しに
(く、すみやかに外部に排出される。
For this reason, even when foreign matter that exists in the vacuum preparation chamber due to adhesion to the wall surface of the vacuum preparation chamber is scattered by the gas flow generated by exhaust or supply air and flows with the gas, Even if there is no bias in the flow of gas in the room, and even if the gas flow contains scattered foreign objects,
Since the sample is discharged from the exhaust port without coming close to the upper surface of the sample such as the wafer, contamination of the sample such as the wafer with foreign matter is greatly reduced. At the same time, the gas flow that occurs during exhaust and air supply is not biased, and both exhaust and air supply always flow in one direction, and there is no place in the room where the flow is reversed between exhaust and air supply, so it is possible to reduce pressure. Foreign matter will not remain in the preparation room and will be promptly discharged outside.

(実施例〕 以下、本発明の実施例を図面に従って説明する。(Example〕 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すもので、この実施例で
の減圧準備室の例では、半導体製造装置内のロードロッ
ク室であり、駆動部の一部が接続されている可動の上部
外壁1と、ウェハW等の試料支持台をその一部に持った
下部外壁2によって気密な室を形成する。この気密な室
内部の気体は排気口3により室外に排気され、また給気
口4より清浄な気体が供給される。排気口4はロードロ
ック室外に、排気側配管系を経て、真空ポンプを含む排
気機構に接続されている。この排気側配管系には、バル
ブ及び電磁弁6が設置されており、排気流量はバルブで
調整できるようになっている。
FIG. 1 shows an embodiment of the present invention. In this embodiment, the depressurization preparation chamber is a load lock chamber in semiconductor manufacturing equipment, and is a movable chamber to which a part of the drive unit is connected. An airtight chamber is formed by an upper outer wall 1 and a lower outer wall 2 having a sample support such as a wafer W in a part thereof. The gas inside the airtight room is exhausted to the outside through the exhaust port 3, and clean gas is supplied through the air supply port 4. The exhaust port 4 is connected to the outside of the load lock room through an exhaust side piping system to an exhaust mechanism including a vacuum pump. A valve and a solenoid valve 6 are installed in this exhaust side piping system, and the exhaust flow rate can be adjusted by the valve.

電磁弁6は、排気の時に開放され、給気の時には閉鎖さ
れる。また給気口4はロードロック室外に、給気側配管
系を経て、清浄な気体を供給する機構に接続されている
。この給気側配管系にも、バルブ及び電磁弁7が設置さ
れており、給気流量はバルブで調整できるようになって
いる。給気側配管系の電磁弁7は、給気の時に開放され
、排気の時は閉鎖される。
The solenoid valve 6 is opened when exhausting air, and closed when air is being supplied. Further, the air supply port 4 is connected to a mechanism for supplying clean gas to the outside of the load lock chamber via an air supply side piping system. A valve and a solenoid valve 7 are also installed in this air supply side piping system, and the air supply flow rate can be adjusted by the valve. The solenoid valve 7 in the air supply side piping system is opened when air is supplied, and closed when air is exhausted.

ウェハWは、ウェハ設置台5に設置される。The wafer W is installed on a wafer installation stand 5.

給気口4と排気口3は、その給気ロ4開ロ部中心と、排
気ロ3開ロ部中心とが、ウェハ設置台5に設置されたウ
ェハW上面と平行である面内の一直線を構成するように
、設置され、かっ給気ロ4開ロ部と排気ロ3開ロ部を、
互いに対向するように設置されている。
The air supply port 4 and the exhaust port 3 are arranged in a straight line in a plane in which the center of the opening of the air supply port 4 and the center of the opening of the exhaust port 3 are parallel to the upper surface of the wafer W installed on the wafer installation table 5. It is installed so as to constitute the intake air 4 opening part and the exhaust 3 opening part,
They are placed facing each other.

前述したように、ロードロツタ室を排気する際は、給気
側の電磁弁7を閉じ、排気側電磁弁6を開いて、前記排
気機構により、ロードロック室内を排気する。またロー
ドロック室内に清浄な気体を供給する際は、排気側の電
磁弁6を閉じ、給気側の電磁弁7を開いて、前記清浄気
体供給機構により、気体をロードロック室内に供給する
。従って、排気の時は、ロードロック室内の気体と同時
に、給気側電磁弁7から給気口4に至る給気側配管系内
の気体も同様に排気される。この給気側配管系内の気体
は、給気口4より一部ロードロツタ室内に流れ込み、ロ
ードロック室内を経て、排気口3から外部に排出される
。同様に、給気の時は。
As described above, when evacuating the load lock chamber, the air supply side solenoid valve 7 is closed, the exhaust side solenoid valve 6 is opened, and the inside of the load lock chamber is evacuated by the exhaust mechanism. When supplying clean gas into the load lock chamber, the solenoid valve 6 on the exhaust side is closed, the solenoid valve 7 on the air supply side is opened, and the clean gas supply mechanism supplies gas into the load lock chamber. Therefore, at the time of exhaust, the gas in the air supply side piping system from the air supply side electromagnetic valve 7 to the air supply port 4 is also exhausted at the same time as the gas in the load lock chamber. A portion of the gas in the air supply side piping system flows into the load lock chamber through the air supply port 4, passes through the load lock chamber, and is discharged to the outside through the exhaust port 3. Similarly, when supplying air.

供給された気体がロードロック室内と同様に、ロードロ
ック室内を経て、排気側電磁弁6から排気口3に至る排
気側配管系にまで流れる。
The supplied gas passes through the load-lock chamber and flows from the exhaust-side solenoid valve 6 to the exhaust-side piping system leading to the exhaust port 3, as in the load-lock chamber.

従来、ロードロック室を設計する時には、ロードロック
室を給・排気する際に生じる気体の流れに対する、給気
側及び排気側配管系の存在及び内部気体の影響は全く考
慮されていなかった。しかし、上述したような、給気側
及び排気側配管系の存在及び内部気体の存在が、ロード
ロック室内の給・排気時の流れに影響し、ウェハの異物
汚染にも大幅に影響する。本実施例において、ロードロ
ック室内の異物が、室内を排気及び給気を一回ずつ行っ
た後、どの位移動するか、そしてどの程度残留するかを
検討したのが第5図(a)、(b)である、θは給気口
と排気口が周方向になす角度である。この実験は、ロー
ドロック室内の任意の場所に、故意に異物粒子を付着さ
せ、その付着位置が、排気・給気を一回ずつ行った時に
どう移動したか、どの程度残留したかを記録したもので
ある。本実施例では、排気口付近に多少具られるものの
、その量は非常に少ない。
Conventionally, when designing a load lock chamber, the existence of piping systems on the air supply side and the exhaust side and the influence of internal gas on the flow of gas that occurs when supplying and exhausting the load lock chamber were not considered at all. However, as described above, the presence of the air supply and exhaust side piping systems and the presence of internal gas affect the flow during supply and exhaust in the load lock chamber, and significantly affect the contamination of wafers with foreign substances. In this example, we investigated how far the foreign matter in the load lock chamber moves and how much it remains after the chamber is evacuated and air supplied once, as shown in Fig. 5(a). (b), θ is the angle formed by the air supply port and the exhaust port in the circumferential direction. In this experiment, foreign particles were intentionally attached to arbitrary locations in the load lock chamber, and how the attached position moved and how much remained after each exhaust and supply were recorded. It is something. In this embodiment, although some amount is present near the exhaust port, the amount is very small.

本実施例以外の相対位置で、給気口と排気口を設定させ
た場合、ロードロック室内には本実施例よりも、広範囲
で多量な異物粒子の残留領域が生じる。また、給・排気
時に生じる流れも、室内を旋回するような偏った形状の
流れになると考えられる。また室内に、給気時と排気時
では流れが逆転する箇所も生じると考えられるにれらの
理由により、ウェハの異物汚染が増加してしまう。
If the air supply port and the exhaust port are set at relative positions other than those in this example, a larger amount of foreign particles will remain in the load lock chamber over a wider area than in this example. In addition, the flow that occurs during supply and exhaust is also thought to have a biased shape, as if swirling inside the room. Furthermore, it is thought that there will be places in the room where the flow is reversed during air supply and air exhaust, resulting in an increase in foreign matter contamination of wafers.

これらの現象が生じてしまう原因について考察してみる
。上述したように、排気の際は、給気側配管系の気体が
給気口よりロードロック室に流れ込み、ロードロック室
を経て、排気口から排出される。給気の際は、供給され
る気体はロードロック室のみならず、排気口を経て排気
側配管系に流れ込む、従って、ロードロック室の給気口
と排気口の相対位置が適切でないと、給・排気時に生じ
る気体の流れは室内において、よどんだり、室内を旋回
するように偏ってしまう。ロードロック室内壁に付着し
ている異物粒子は、気体の力によって飛散するが、この
時、気体の流れが偏っていると、異物を含んだ「汚れた
」気体はウェハの上面を旋回するように流れる。このた
めにウェハに異物が付着しやすく汚染されやすい、また
流れの偏りにより、異物もすみやかに排出されずに、ロ
ードロックに多量に残留してしまう。気体の偏りの他に
、給気時と排気時の流れの方向が逆転する箇所もあると
、考えられることも、残留量が多い原因となる。これら
の傾向は上述の理由より、どの相対位置でもほとんど見
られると考えられる。
Let's consider the causes of these phenomena. As described above, during exhaust, gas in the air supply side piping system flows into the load lock chamber from the air supply port, passes through the load lock chamber, and is discharged from the exhaust port. When supplying air, the supplied gas flows not only into the load-lock chamber but also through the exhaust port and into the exhaust piping system. Therefore, if the relative positions of the air supply port and exhaust port in the load-lock chamber are not appropriate, the supply gas will・The gas flow generated during exhaust becomes stagnant in the room or becomes uneven as it swirls around the room. Foreign particles adhering to the walls of the load lock chamber are scattered by the force of the gas, but at this time, if the gas flow is unbalanced, the "dirty" gas containing foreign particles will swirl around the top surface of the wafer. flows to For this reason, foreign matter easily adheres to the wafer and causes contamination, and due to the unevenness of the flow, a large amount of foreign matter remains in the load lock without being promptly discharged. In addition to the imbalance of gas, the fact that there are places where the direction of flow during air supply and air exhaust is reversed is also a cause of the large residual amount. For the above-mentioned reasons, it is thought that these trends can be observed almost at any relative position.

しかし本実施例(θ=180°)のように、排気口開口
部中心と、給気口開口部中心が、ウェハ上面と平行な面
内にある一直線を構成するように設置し、かつ開口部を
互いに対向するように設置すると、給気側及び排気側配
管系の存在は、ロードロック室内の流れの形状には影響
を与えない。
However, as in this embodiment (θ=180°), the center of the exhaust port opening and the center of the air supply port are installed so that they form a straight line in a plane parallel to the top surface of the wafer, and the opening are installed opposite each other, the presence of the supply and exhaust piping systems has no effect on the flow shape within the load lock chamber.

従って、排気時も給気時も、気体の流れは、排気口開口
部中心と給気口開口部中心を結ぶ直線を軸として常に軸
対称に流れるため、よどんだり、室内を旋回して偏るこ
とはない、また排気時も給気時も、常に気体の流れは一
方向である。このために、飛散した異物粒子もウェハ上
面に近づかず、すみやかに排気口より排出されるのでウ
ェハは汚染されず、また異物もロードロック室に残留す
ることが大幅に減少する。
Therefore, both during exhaust and air supply, the gas flow is always axially symmetrical with respect to the straight line connecting the center of the exhaust port opening and the center of the air supply port opening, so it does not stagnate or swirl inside the room. There is no, and the gas flow is always unidirectional, both during exhaust and air supply. For this reason, the scattered foreign particles do not come close to the upper surface of the wafer and are promptly discharged from the exhaust port, so that the wafer is not contaminated and the number of foreign particles remaining in the load lock chamber is greatly reduced.

以上の実験結果及び考察から、本実施例は、従来のロー
ドロック室に比べ、気体の流れの形状を給気口と排気口
がなす直線を軸に、常に軸対称に流れ、かつウェハ設置
台側部すなわちウェハ上面より下方を一方向に流れるた
め、ウェハ汚染となる異物粒子をウェハに近づけずに効
率よく排出し。
From the above experimental results and considerations, compared to the conventional load-lock chamber, in this example, the shape of the gas flow is always axially symmetrical with respect to the straight line formed by the air supply and exhaust ports, and the wafer installation table is Since it flows in one direction from the side, that is, below the top surface of the wafer, it efficiently discharges foreign particles that could contaminate the wafer without bringing them close to the wafer.

ロードロック室に異物を残留させることを極力なくすこ
とで、ウェハの異物汚染低減に極めて有効であることが
特徴であるロードロック室であることが明らかである。
It is clear that the load-lock chamber is characterized by being extremely effective in reducing foreign-matter contamination of wafers by eliminating as much foreign matter as possible from remaining in the load-lock chamber.

尚、θ=180’±10°の範囲ならば同様な効果が期
待される。
Note that a similar effect is expected if θ=180'±10°.

この他の実施例としては、第3図に示すように、給気口
に比べ排気口の開口部断面積を大きくとり、排気口から
外側の配管断面積を除々に小さくし、最終的には、配管
を下部外壁を通して下方に通したものがある。このよう
な構成にすると、給・排気時に生じた気体の流れが、よ
どんだり、ロードロック室内を旋回するような偏ったも
のになることなく、すみやかに流れるので、壁面の異物
が気体の力によって飛散しても、ウェハに付着しにくい
。更に、このような構成にすると、たとえわずかに異物
が残留しても、その残留領域はウェハからより遠い方に
寄せられ、やがて排気されるので。
As another example, as shown in Fig. 3, the opening cross-sectional area of the exhaust port is made larger than that of the air supply port, and the cross-sectional area of the piping outside from the exhaust port is gradually reduced. , there is one in which the piping is passed downward through the lower outer wall. With this configuration, the gas flow generated during supply and exhaust will flow quickly without stagnation or uneven circulation inside the load lock chamber, so foreign objects on the wall will be removed by the force of the gas. Even if it scatters, it is difficult to adhere to the wafer. Furthermore, with such a configuration, even if a small amount of foreign matter remains, the remaining area will be moved further away from the wafer and will eventually be evacuated.

ウェハ汚染を低減するのに非常に効果的である。Very effective in reducing wafer contamination.

尚、従来技術によるロードロック室の給気口は、ウェハ
上面上方にウェハ方向に向って設置されているものが多
い、しかし、この位置に給気口があると、ウェハに異物
が付着しやすいので、ウェハ汚染の低減には効果が期待
できない、従って本実施例の方がウェハ汚染低減に有効
であると考えられる。
In addition, the air supply port of the load lock chamber according to conventional technology is often installed above the top surface of the wafer, facing toward the wafer. However, if the air supply port is located in this position, foreign matter is likely to adhere to the wafer. Therefore, no effect can be expected in reducing wafer contamination.Therefore, it is considered that this embodiment is more effective in reducing wafer contamination.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、減圧準備室内を給気及び排気する際に
生じる、減圧準備室内の気体の流れは、減圧準備室外に
設置した給気側配管系内部の容積・気体、及び排気側配
管系内部の容積・気体の存在によっても、流れが偏るこ
とがない、すなわち、気体の流れは排気口と給気口を結
ぶ直線を軸にして、軸対称に流れる。また、それと同時
に、給気の場合でも排気の場合でも、気体の流れは常に
一定方向に流れ、給気時と排気時では気体の流れが逆転
してしまう箇所が生じることがない。
According to the present invention, the gas flow inside the decompression preparation chamber that occurs when air is supplied and exhausted from the decompression preparation chamber is divided into the volume and gas inside the air supply side piping system installed outside the decompression preparation chamber and the exhaust side piping system. The flow is not biased even by the internal volume or the presence of gas; that is, the gas flows axially symmetrically with respect to the straight line connecting the exhaust port and the air supply port. Moreover, at the same time, the gas flow always flows in a fixed direction, whether in the case of air supply or exhaust, and there is no place where the gas flow is reversed between air supply and exhaust.

これらの理由より、例えば何らかの原因で減圧準備室壁
面に付着している異物が、給・排気時に生じる気体の流
体力により飛散しても、飛散した異物を含む気体の流れ
は、減圧準備室に設置されたウェハ等の試料上面を横切
ることなく、試料上面の下方をすみやかに流れる。また
流れは旋回するような偏ったものではなく、給気口と排
気口を結んだ軸に軸対称な形状で流れるので、減圧準備
室内では、異物のふきたまりは出来に<<、異物粒子の
残留量の多い、広範囲な残留領域が生じず。
For these reasons, for example, even if foreign matter that has adhered to the wall of the decompression preparation chamber for some reason is scattered due to the fluid force of the gas generated during supply and exhaust, the flow of gas containing the scattered foreign matter will not reach the decompression preparation chamber. It quickly flows below the top surface of the sample, such as a wafer, without crossing the top surface of the sample. In addition, the flow does not swirl or deviate, but rather flows in an axially symmetrical shape to the axis connecting the air supply and exhaust ports, so that in the decompression preparation chamber, there are no particles of foreign matter. Large residual amount and wide residual area do not occur.

異物粒子は速やかに減圧準備室外に排出される。Foreign particles are promptly discharged outside the decompression preparation chamber.

また給気時と排気時では、気体の流れの方向が逆転して
しまう箇所が生じてしまうということがなく、給気時で
も排気時でも常に気体の流れは一方向に流れるので、異
物は速やかに排気口側に寄せられ、排気口より減圧準備
室外に排出されるため、異物粒子の多量で広範囲な残留
領域が生じることを防止できる。
In addition, there is no point where the direction of gas flow is reversed during air supply and exhaust, and the gas always flows in one direction both during air supply and exhaust, so foreign substances can be removed quickly. Since the foreign particles are gathered toward the exhaust port side and discharged from the exhaust port to the outside of the depressurization preparation chamber, it is possible to prevent a large amount of foreign particles from remaining in a wide area.

更に、今後、現状以上に短時間のスループットを実現す
るために、減圧準備室の容積は減少されることが予想さ
れるので、相対的に、給気側配管系容積、及び排気側配
管系容積が、減圧準備室容積よりも大きくなり、給気口
と排気口の相対位置いかんでは減圧準備室に生じる気体
の流れに更に影響し、ウェハ等の試料の異物付着汚染に
悪影響を及ぼすと考えられる。しかし、本発明ならば基
本的には、配管系容積は流れの形状に影響しないので、
ウェハ等の試料の清浄度を保持できる。同様の理由で、
設計上配管系の容積が大きくなっても1本発明では、や
はり減圧準備室内の流れの形状に影響しないので、ウェ
ハ等の試料の清浄度を保持することができる。
Furthermore, in order to achieve a shorter throughput than currently possible, the volume of the depressurization preparation chamber is expected to be reduced in the future, so the relative volume of the supply-side piping system and the exhaust-side piping system volume will be is larger than the volume of the depressurization preparation chamber, and the relative position of the air supply port and exhaust port will further affect the gas flow generated in the decompression preparation chamber, which is thought to have a negative effect on foreign matter adhesion and contamination of samples such as wafers. . However, with the present invention, the volume of the piping system basically does not affect the shape of the flow, so
The cleanliness of samples such as wafers can be maintained. For similar reasons,
Even if the volume of the piping system increases due to design, the present invention still does not affect the shape of the flow in the depressurization preparation chamber, so the cleanliness of samples such as wafers can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は第1
図の■−■矢視図である。第3図は本発明のその他の一
実施例を示す断面図、第4図は第3図のI’V−rV矢
視図である。第5図(a)、(b)は、本発明の一実施
例を用いて、異物粒子の移動・残留状況を実験した結果
の図である。 1・・・上部外壁、2・・・下部外壁、3・・・給気口
、4・・・排気口、5・・・ウェハ設置台、6・・・給
気側電磁弁、勇1図 纂 2 図 4−−一給気口  W−一−ウェハ 第 4 図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
It is a view taken along the ■-■ arrow in the figure. FIG. 3 is a sectional view showing another embodiment of the present invention, and FIG. 4 is a view taken along the line I'V-rV in FIG. FIGS. 5(a) and 5(b) are diagrams showing the results of an experiment on the movement and residual state of foreign particles using an embodiment of the present invention. 1... Upper outer wall, 2... Lower outer wall, 3... Air supply port, 4... Exhaust port, 5... Wafer installation stand, 6... Air supply side solenoid valve, Figure 1 Wire 2 Figure 4--One air supply port W-One-Wafer Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、真空の処理室の一部に設けられ、この処理室に試料
を搬出入するための減圧準備室であつて、室内を構成す
る壁と、この室内を移動する試料支持台と、前記室内の
気圧を下げるための排気口部と、気圧を上げるための給
気口部を備える減圧準備室において、前記排気口と前記
給気口が試料の上面と平行な面内の一直線上に構成され
るように、前記排気口と前記給気口部を設置し、かつ排
気口部の開口部と給気口部の開口部を互いに対向するよ
うに設置したことを特徴とする減圧準備室装置。
1. A depressurization preparation chamber provided in a part of a vacuum processing chamber for transporting samples into and out of the processing chamber, which includes walls forming the chamber, a sample support stand that moves within the chamber, and a vacuum preparation chamber for transporting samples into and out of the processing chamber. In the decompression preparation chamber, the exhaust port and the air supply port are arranged in a straight line in a plane parallel to the upper surface of the sample, and A depressurization preparation chamber device, characterized in that the exhaust port and the air supply port are installed so that the exhaust port and the air supply port are located opposite each other.
JP12178388A 1988-05-20 1988-05-20 Low pressure preparation chamber apparatus Pending JPH01292825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12178388A JPH01292825A (en) 1988-05-20 1988-05-20 Low pressure preparation chamber apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12178388A JPH01292825A (en) 1988-05-20 1988-05-20 Low pressure preparation chamber apparatus

Publications (1)

Publication Number Publication Date
JPH01292825A true JPH01292825A (en) 1989-11-27

Family

ID=14819784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12178388A Pending JPH01292825A (en) 1988-05-20 1988-05-20 Low pressure preparation chamber apparatus

Country Status (1)

Country Link
JP (1) JPH01292825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067213A (en) * 2005-08-31 2007-03-15 Mitsubishi Electric Corp Vapor-phase epitaxy device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067213A (en) * 2005-08-31 2007-03-15 Mitsubishi Electric Corp Vapor-phase epitaxy device

Similar Documents

Publication Publication Date Title
US5421889A (en) Method and apparatus for inverting samples in a process
US6750155B2 (en) Methods to minimize moisture condensation over a substrate in a rapid cycle chamber
US6589361B2 (en) Configurable single substrate wet-dry integrated cluster cleaner
JPH05251350A (en) Particulate reducing system in manufacturing of semiconductor
US20060065194A1 (en) Diffuser and semiconductor device manufacturing equipment having the same
KR19990003264A (en) Semiconductor device manufacturing equipment and method of driving the same
US8794896B2 (en) Vacuum processing apparatus and zonal airflow generating unit
US20040069409A1 (en) Front opening unified pod door opener with dust-proof device
JPH01292825A (en) Low pressure preparation chamber apparatus
US5237756A (en) Method and apparatus for reducing particulate contamination
JPH10303099A (en) Substrate treatment device
JP2000068209A (en) Substrate processing apparatus
TWI695448B (en) Vacuum processing apparatus and operating method of vacuum processing apparatus
JP2001070781A (en) Vacuum treatment device
JPH0945755A (en) Wafer chuck and wafer suction method
JPH02184333A (en) Load locker
US12100605B2 (en) Gas purge device and gas purging method
US12027399B2 (en) Gas purge device and gas purging method
JPH0513002Y2 (en)
KR20240086972A (en) Substrate processing apparatus and loadlock chamber
JP4903948B2 (en) Highly clean space forming device
KR100752148B1 (en) Substrate processing apparatus
JPH10303090A (en) Control system for vacuum vessel
KR20210001237A (en) Substrate processing apparatus preventing vortex
JPH01109724A (en) Decompression anteroom device