JPH01292763A - Zinc-chloride battery - Google Patents

Zinc-chloride battery

Info

Publication number
JPH01292763A
JPH01292763A JP63121837A JP12183788A JPH01292763A JP H01292763 A JPH01292763 A JP H01292763A JP 63121837 A JP63121837 A JP 63121837A JP 12183788 A JP12183788 A JP 12183788A JP H01292763 A JPH01292763 A JP H01292763A
Authority
JP
Japan
Prior art keywords
chlorine
heat exchanger
heat
solvent
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63121837A
Other languages
Japanese (ja)
Inventor
Toshiaki Yabumoto
籔本 俊昭
Yoshikane Kitajima
北島 良金
Kunihiko Fujiwara
邦彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63121837A priority Critical patent/JPH01292763A/en
Publication of JPH01292763A publication Critical patent/JPH01292763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To improve the battery efficiency and prevent the electrolytic corrosion of the component material by sealing a highly electrically insulating heat transfer medium within a pipe line connecting an electrolytic cell to a heat exchanger provided in a circulating system of chlorine absorbing solvent and circulating the heat transfer medium to heat the chlorine absorbing solvent during the discharge. CONSTITUTION:An in-electrolytic-cell heat exchanger 2 is provided in an electrolytic cell 1 and an internal heat exchanger 5 is provided in a circulating system of chlorine absorbing solvent 3, for example in a storage cell 4, and both heat exchanger 2, 5 are connected by pipe lines 6, 6' and a highly electrically insulating heat transfer medium is sealed in these pipe lines, and the heat transfer medium is circulated between the heat exchangers 2, 5 during the discharge. Namely, the heat transfer medium is evaporated in the in-cell heat exchanger 2 by the heat of the electrolyte 7, and flows into the internal heat exchanger 5 via one pipe line 6' and liquefied therein by giving its heat to the low temperature solvent 3, then returns to the in-cell heat exchanger 2 again via the other pipe line 6 to receive heat therein, and further repeat the operation of giving heat in the internal heat exchanger 5 to heat the solvent 3. In this way, the efficiency of the battery is improved and the damage of the component material due to electrolytic corrosion is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は亜鉛−塩化物電池に関し、特に放電時に塩素吸
収溶剤を効率良く加熱するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a zinc-chloride battery, and particularly to a battery that efficiently heats a chlorine-absorbing solvent during discharge.

〔従来の技術〕[Conventional technology]

従来亜鉛−塩化物電池は第4図に示すように亜鉛極と塩
素極を対設した電極部(18)に電解液槽(1)から塩
化亜鉛を主成分とする電解液(7)を電解液ポンプ(1
7)により常時循環させ、充電時に正極である塩素極か
ら塩素ガスを発生させ、同時に負極である亜鉛極に金属
亜鉛を析出させる。この充電時には該塩素ガスはガスポ
ンプ(19)により塩素貯蔵槽(以下単に貯蔵槽という
)(3)に送られ、さらにその上端に設けた吸収塔(1
0)を通過する。このとき貯蔵槽(3)内で冷凍機(1
3)に接続した冷却用熱交換器(25)を用いて冷却さ
れた塩素吸収溶剤(以下単に溶剤という)(4)を溶剤
ポンプ(9)により吸収塔(10)上部から流下させて
上記塩素ガスと向流接触させ、該溶剤(4)に塩素ガス
を溶解・吸収させて貯蔵槽(3)に貯える。
In the conventional zinc-chloride battery, as shown in Figure 4, an electrolytic solution (7) containing zinc chloride as a main component is electrolyzed from an electrolytic solution tank (1) to an electrode part (18) in which a zinc electrode and a chlorine electrode are arranged opposite each other. Liquid pump (1
7), the battery is constantly circulated to generate chlorine gas from the chlorine electrode, which is the positive electrode, during charging, and at the same time, metal zinc is deposited on the zinc electrode, which is the negative electrode. During this charging, the chlorine gas is sent to a chlorine storage tank (hereinafter simply referred to as storage tank) (3) by a gas pump (19), and furthermore, an absorption tower (1
0). At this time, the refrigerator (1) is inside the storage tank (3).
The chlorine absorption solvent (hereinafter simply referred to as solvent) (4), which has been cooled using a cooling heat exchanger (25) connected to The chlorine gas is brought into countercurrent contact with the gas, and the chlorine gas is dissolved and absorbed in the solvent (4) and stored in the storage tank (3).

また放電時には貯蔵槽(3)に内設した加熱用熱交換器
(26)に電解液槽(1)から電解液(7)を循環させ
て貯蔵槽(3)内の溶剤(4)を加熱し、この加熱され
た溶剤(4)を吸収塔(10)の上部から流下させるこ
とにより塩素ガスを発生させ、該塩素ガスを電解液槽(
1)に送り、電解液(7)中に供給する。該電解液(7
)は電極部(18)へ送られ塩素極で電解液(7)中の
塩素はイオン化されて溶は込み、同時に亜鉛極で金属亜
鉛はイオン化されて溶出する反応が起こる。
Also, during discharging, the electrolyte (7) is circulated from the electrolyte tank (1) to the heating heat exchanger (26) installed in the storage tank (3) to heat the solvent (4) in the storage tank (3). Then, this heated solvent (4) is caused to flow down from the upper part of the absorption tower (10) to generate chlorine gas, and the chlorine gas is transferred to the electrolyte tank (
1) and supplied into the electrolyte (7). The electrolyte (7
) is sent to the electrode part (18), and at the chlorine electrode, chlorine in the electrolytic solution (7) is ionized and infiltrated, and at the same time, at the zinc electrode, metallic zinc is ionized and eluted.

[発明が解決しようとする課題] このようにこの電池においては放電時には通常電解液を
加熱用熱交換器に循環させているのでこのための専用ポ
ンプが必要であったり、もしくは第4図に示すように電
解液ポンプ(17)で兼用する場合であってもその消費
動力は大きいものとなり、全体の電池効率を低下させて
いた。
[Problems to be Solved by the Invention] As described above, in this battery, the electrolyte is normally circulated through the heating heat exchanger during discharging, so a dedicated pump for this purpose is required, or a pump as shown in Fig. 4 is required. Even when the electrolyte pump (17) is used for the same purpose, the power consumption is large, reducing the overall battery efficiency.

また上記加熱用熱交換器の構成材料は常時電解液に接し
ているので常に電食の危険に曝されている。
Furthermore, since the constituent materials of the heating heat exchanger are constantly in contact with the electrolyte, they are always exposed to the danger of electrolytic corrosion.

さらに実用的な容量をもつ電池を作るには第4図に示す
電極部(18)と電解液槽(1)とを組合せた電池部を
複数設け、各電池部の電橋端子を並列あるいは直列に接
続して対処している。しかし、このような場合でも貯蔵
槽(3)における塩素の貯蔵能力は十分大きくすること
は可能であって、貯蔵槽(3)1基で複数の電池部を賄
う構成とすることができる。従って貯蔵槽(3)内の1
台の加熱用熱交換器(26)へはそれら複数の電解液槽
(1)から電解液を循環させることによって熱交換の効
率を向上させる手段がとられている。ところがこのよう
に複数の電極部の電解液が接触し、混合する場合にはこ
れら電解液の電位が少しづつ異なるので各電極部間で液
絡が発生するため電池容摂が低下してしまうという問題
も生じていた。
Furthermore, in order to create a battery with a more practical capacity, multiple battery parts each consisting of an electrode part (18) and an electrolyte tank (1) as shown in Fig. 4 are provided, and the bridge terminals of each battery part are connected in parallel or in series. are connected to and dealt with. However, even in such a case, the storage capacity of chlorine in the storage tank (3) can be made sufficiently large, and it is possible to configure one storage tank (3) to cover a plurality of battery units. Therefore, 1 in storage tank (3)
Measures are taken to improve heat exchange efficiency by circulating electrolyte from the plurality of electrolyte tanks (1) to the heating heat exchanger (26) of the stand. However, when the electrolytes of multiple electrodes come into contact and mix in this way, the potentials of these electrolytes differ slightly, causing liquid junctions to occur between each electrode, resulting in a decrease in battery capacity. There were also problems.

(課題を解決するための手段) 本発明はこれに鑑み種々検討した結果上記問題をすべて
解決した亜鉛−塩化物電池を開発したものである。
(Means for Solving the Problems) In view of this, the present invention has developed a zinc-chloride battery that solves all of the above problems as a result of various studies.

即ら本発明は亜鉛極と塩素極を対設した電極部に電解液
槽から電解液を循環させ、充電時に電極部から発生する
塩素ガスを、塩素貯蔵槽から塩素吸収溶剤を循環する循
環系内で、冷却された塩素吸収溶剤に吸収させて塩素貯
蔵槽に貯え、放電時に上記循環系内で、加熱された塩素
吸収溶剤から塩素を発生させて電解液に溶解する電池に
おいて、電解液槽内に熱交換器を設け、かつ塩素吸収溶
剤の循環系内に熱交換器を設け、それぞれの熱交換器を
管路で連結して内部に電気的絶縁性の高い熱媒体を封入
し、放電時にこれら熱交換器間を上記管路を通して熱媒
体を循環させることにより塩素吸収溶剤の加熱を行なわ
せたことを特徴とするものである。
That is, the present invention provides a circulation system in which an electrolyte is circulated from an electrolyte tank to an electrode part in which a zinc electrode and a chlorine electrode are disposed opposite each other, chlorine gas generated from the electrode part during charging is circulated, and a chlorine absorbing solvent is circulated from a chlorine storage tank. In a battery, chlorine is absorbed into a cooled chlorine-absorbing solvent and stored in a chlorine storage tank, and during discharge, chlorine is generated from the heated chlorine-absorbing solvent and dissolved in the electrolyte in the circulation system. A heat exchanger is installed inside the chlorine-absorbing solvent circulation system, and each heat exchanger is connected with a pipe, and a highly electrically insulating heat medium is sealed inside. The chlorine-absorbing solvent is sometimes heated by circulating a heat medium between these heat exchangers through the pipes.

そして塩素吸収溶剤の循環系内に設ける熱交換器を電解
液槽内に設ける熱交換器より高所に位置させることによ
り、または熱媒体を封入した管路にポンプを取付けるこ
とにより熱媒体を循環させるのは有効である。
Then, the heat medium is circulated by locating the heat exchanger installed in the chlorine absorption solvent circulation system higher than the heat exchanger installed in the electrolyte tank, or by installing a pump in the pipe line containing the heat medium. It is effective to do so.

[作 用] 第1図に示すように電解液槽(1)内に電解液槽内熱交
換器(以下槽内熱交換器という)(2)を設け、塩素吸
収溶剤(3)の循環系内として例えば貯蔵槽(4)内に
内部熱交換器(5)を設けてこれらを管路(6)(6°
)で連結し、管内に電気的絶縁性の高い熱媒体、例えば
フレオン等を封入し、放電時にこれら熱交換器(2)(
5)間を熱媒体が循環するようにしたのは、放電時に熱
媒体が槽内熱交換器(2)で電解液(旬の熱により蒸発
し、一方の管路(6°)を通って内部熱交換器(5)で
低温の溶剤(3)に放熱して液化し、使方の管路(6)
を通って再び槽内熱交換器(2)に戻って受熱しさらに
また内部熱交換器(5)で放熱する動作を繰り返すこと
により溶剤(3)を加熱する作用をなすからであるUな
お第1図では充電時に溶剤(3)を冷却するための冷媒
の経路は省略した。
[Function] As shown in Figure 1, an electrolyte tank heat exchanger (hereinafter referred to as the tank heat exchanger) (2) is provided in the electrolyte tank (1), and a circulation system for the chlorine absorption solvent (3) is installed. For example, an internal heat exchanger (5) is provided in the storage tank (4), and these are connected to the pipe (6) (6°
), and a highly electrically insulating heat medium, such as Freon, is sealed inside the tube, and these heat exchangers (2) (
5) The reason why the heat medium circulates between the two is that during discharge, the heat medium is evaporated by the heat of the electrolyte in the tank heat exchanger (2), and passed through one pipe (6°). The internal heat exchanger (5) releases heat to the low-temperature solvent (3), liquefies it, and transfers it to the pipe (6) for use.
This is because the action of heating the solvent (3) is achieved by repeating the process of returning to the tank internal heat exchanger (2) to receive heat and then dissipating the heat in the internal heat exchanger (5). In Figure 1, the refrigerant path for cooling the solvent (3) during charging is omitted.

このとき熱媒体としてはフレオンR−22のような低沸
点の流体を用いるのが良く、ざらに電解液温度である2
5℃以下の沸点をもつものが望ましい。
At this time, it is best to use a fluid with a low boiling point such as Freon R-22 as the heat medium, which is approximately the temperature of the electrolyte 2.
It is desirable to have a boiling point of 5°C or less.

また熱媒体としては電気的に絶縁物を用いることにより
熱交換器や管路の電食の問題はなくなる利点を有し、さ
らに複数の電池部を並列接続して使用する場合でも各電
極部間の熱媒体を通じての液絡は発生しない。なおこの
場合熱交換器や管路等に金属材料を使用したときの各電
解液槽内の槽内熱交換器材料の電位差による液絡に対し
ては第1図に示すように各槽内熱交換器(2)の直後の
管路(6)(6°)の材料を電気的絶縁配管(8) (
8’ )  とし、該配管(8) (8’ )と溶剤加
熱用の熱交換器(第1図では内部熱交換器(5)を指す
)との間の管路同士を連結すれば良い。
In addition, by using an electrically insulating material as a heat medium, there is no problem of electrolytic corrosion of heat exchangers and conduits, and even when multiple battery units are connected in parallel, there is a gap between each electrode unit. No liquid junction occurs through the heat medium. In this case, when metal materials are used for the heat exchanger, conduits, etc., the heat exchanger in each electrolyte tank due to the potential difference between the heat exchanger materials in each tank will be affected as shown in Figure 1. The material of the pipe line (6) (6°) immediately after the exchanger (2) is electrically insulated pipe (8) (
8'), and the pipes between the pipes (8) (8') and a heat exchanger for heating the solvent (internal heat exchanger (5) is shown in FIG. 1) may be connected to each other.

また熱交換器の材質としては特に塩素に対して耐食性の
高いものが望ましく、例えばチタン。
The material for the heat exchanger is preferably one that has high corrosion resistance against chlorine, such as titanium.

タンタル又はテフロン等のフッ素樹脂等を使用するのが
良い。
It is preferable to use fluororesin such as tantalum or Teflon.

さらに上記熱媒体を密閉した循環系とし、貯蔵槽内の熱
交換器の設置位置を電解液槽内の熱交換器の設置位置よ
り高所とすれば熱媒体の循環に関して外部からの動力を
加えなくとも、貯蔵槽内の熱交換器内で液化した熱媒体
の液体は位置エネルギーの小さい電解液槽内の熱交換器
へ自然流下して蒸発し再びガス化して貯蔵槽内の熱交換
器に入り液化する動作を繰り返す利点がある。
Furthermore, if the above-mentioned heat medium is used in a closed circulation system and the heat exchanger in the storage tank is installed at a higher location than the heat exchanger in the electrolyte tank, external power can be added to circulate the heat medium. At the very least, the heat medium liquid liquefied in the heat exchanger in the storage tank naturally flows down to the heat exchanger in the electrolyte tank with low potential energy, evaporates, gasifies again, and returns to the heat exchanger in the storage tank. It has the advantage of repeating the action of entering and liquefying.

また管路にポンプを取付けることにより、それぞれの熱
交換器の位置関係は自由に選択できる特徴がある。
Furthermore, by installing a pump in the pipeline, the positional relationship of each heat exchanger can be freely selected.

[実施例] 次に本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

実施例(1) 第2図に示すように貯蔵槽(4)から溶剤(3)を溶剤
ポンプ(9)により吸収塔(10)へ導く経路の途中で
あって、電解液槽(1)より高い位置に、循環する溶剤
(3)を加熱又は冷却する外部熱交換器(11)を設け
、電解液槽(1)内には槽内熱交換器(2)を設け、こ
れらを管路(6)(6°)で連結し、内部にフレオンR
−22を封入した。
Example (1) As shown in Fig. 2, in the middle of the route leading the solvent (3) from the storage tank (4) to the absorption tower (10) by the solvent pump (9), from the electrolyte tank (1). An external heat exchanger (11) for heating or cooling the circulating solvent (3) is installed at a high position, and an internal heat exchanger (2) is installed in the electrolyte tank (1), which is connected to a pipe ( 6) Connected at (6°), Freon R inside
-22 was enclosed.

ざらに管路の一部を絶縁性のフッ素樹脂絶縁管(12H
12’)とし、該管路(6)(6°)の途中に充電時に
冷凍機(13)からの冷媒である上記と同じフレオンR
−22を外部熱交換器(11)に供給するための冷媒配
管(14H14’)を接続し、該冷媒配管(14) (
14’ )には冷媒切換バルブ(15)(15’)を取
付け、管路(6H6’)の槽内熱交換器(2)側には熱
媒体切換バルブ(16016’)を取付けた構成とした
Roughly insulate a part of the conduit with fluororesin insulated pipe (12H
12'), and the same Freon R as above, which is the refrigerant from the refrigerator (13) during charging, is placed in the middle of the pipe (6) (6°).
Connect the refrigerant pipe (14H14') for supplying -22 to the external heat exchanger (11), and connect the refrigerant pipe (14) (
14') is equipped with a refrigerant switching valve (15) (15'), and a heat medium switching valve (16016') is installed on the tank heat exchanger (2) side of the pipe line (6H6'). .

上記構成の溶剤加熱・冷却機構をもつ亜鉛−塩化物電池
の放電時は電解液槽(1)から電解液ポンプ(17)に
より電解液(7)を電(へ部(18)に循環させ、冷媒
切換バルブ(15)(15°)は全開、熱媒体切換バル
ブ(16H16’)は全開にすることにより槽内熱交換
器(2)で受熱した熱を外部熱交換器(11)で放熱し
て溶剤ポンプ(9)により貯蔵H’!(4)から循環さ
せられている溶剤(3)を加熱している。
During discharging of a zinc-chloride battery having the solvent heating/cooling mechanism configured as described above, the electrolyte (7) is circulated from the electrolyte tank (1) to the cell (18) by the electrolyte pump (17), By fully opening the refrigerant switching valve (15) (15°) and fully opening the heat medium switching valve (16H16'), the heat received by the internal heat exchanger (2) is radiated by the external heat exchanger (11). The solvent pump (9) heats the solvent (3) which is being circulated from the storage H'! (4).

この加熱された溶剤(3)は吸収塔(10)を流下する
間に溶解している塩素ガスが効率よく分離されて再び貯
蔵槽(3)に戻る。ざらに吸収塔(10)内で発生した
塩素ガスはガスポンプ(19)によりガス循環経路(2
0)内を常時循環している不活性ガスと共に電fj!液
槽(7)に送られ、該塩素ガスは循環する電解液中に供
給され、電極部(18)内の塩素極でイオン化される。
While the heated solvent (3) flows down the absorption tower (10), dissolved chlorine gas is efficiently separated and returns to the storage tank (3). The chlorine gas generated in the Zarani absorption tower (10) is transferred to the gas circulation path (2) by the gas pump (19).
0) Electric fj! along with the inert gas constantly circulating inside. The chlorine gas is sent to the liquid tank (7), supplied into the circulating electrolyte, and ionized at the chlorine electrode in the electrode section (18).

次に充電時には熱媒体切換バルブ(16) (16°)
を仝閉、冷媒切換バルブ(15)(15’)を全開とし
て冷凍機(13)を運転し、循環している溶剤(3)を
外部熱交換器(11)内で冷却する。
Next, when charging, heat medium switching valve (16) (16°)
The refrigerator (13) is operated with the refrigerant switching valves (15) (15') fully open and the circulating solvent (3) cooled in the external heat exchanger (11).

この冷却された溶剤(3)は吸収塔(10)を流下する
間に電極部(18)で発生しガス循環経路(20)内を
循環する塩素ガスを溶解・吸収して再び貯蔵槽(3)に
戻るので塩素ガスは貯蔵槽(4)内に貯えられることに
なる。
While flowing down the absorption tower (10), this cooled solvent (3) dissolves and absorbs the chlorine gas generated in the electrode section (18) and circulates in the gas circulation path (20), and returns to the storage tank (3). ), the chlorine gas is stored in the storage tank (4).

なお(21)は溶剤のバイパスラインに設けられた溶剤
バイパスバルブ、(22)はガスのバイパスラインに設
けられたガスバイパスバルブであって通常運転時はいず
れも閉じている。また(23)は放電時に用いる加熱調
整用弁である。
Note that (21) is a solvent bypass valve provided in a solvent bypass line, and (22) is a gas bypass valve provided in a gas bypass line, both of which are closed during normal operation. Further, (23) is a heating adjustment valve used during discharge.

実施例(2) 第3図に示すように槽内熱交換器(2)と外部熱交換器
(11)間を連結する管路(6)(6°)に熱媒体循環
ポンプ(24)を取付()、他の構成は実施例(1)と
同一の亜鉛−塩化物電池を作製した。この電池を運転し
放電時には冷媒切換バルブ(15)(15’)を仝閉、
熱媒体切換バルブ(16) (16°)を全開として、
該熱媒体循環ポンプ(24)を運転してフレオンR−2
2を強制的に循環させ、外部熱交換器(11)で溶剤(
3)を加熱して塩素を発生させた。
Example (2) As shown in Fig. 3, a heat medium circulation pump (24) is installed in the pipe line (6) (6°) connecting the internal heat exchanger (2) and the external heat exchanger (11). A zinc-chloride battery was fabricated with the same mounting () and other configurations as in Example (1). When operating this battery and discharging, close the refrigerant switching valves (15) (15').
Fully open the heat medium switching valve (16) (16°),
Freon R-2 is operated by operating the heat medium circulation pump (24).
2 is forcibly circulated, and the solvent (
3) was heated to generate chlorine.

一方充電時には熱媒体切換バルブ(16) (1B°)
を全開、冷媒切換バルブ(15)(15°)を全開とし
、熱媒体循環ポンプ(24)を停止し、冷凍機(13)
を運転して外部熱交換器(11)で溶剤(3)を冷却し
て塩素を吸収させた。この場合熱媒体循環ポンプ(24
)を使用しているので両前交換器(2)(11)の位置
関係は自由である。
On the other hand, when charging, the heat medium switching valve (16) (1B°)
fully open, refrigerant switching valve (15) (15°) fully open, heat medium circulation pump (24) stopped, and refrigerator (13)
was operated to cool the solvent (3) in the external heat exchanger (11) and absorb chlorine. In this case, the heat medium circulation pump (24
), the positional relationship between both front exchangers (2) and (11) is free.

上記実施例(1)及び実施例(2)のいずれの場合にお
いても放電時に外部熱交換器(11)により溶剤(3)
を効果的に加熱できるので該溶剤からの塩素ガスの発生
が効率良く行なわれた。
In both of the above embodiments (1) and (2), the solvent (3) is removed by the external heat exchanger (11) during discharge.
Since the solvent can be heated effectively, chlorine gas can be efficiently generated from the solvent.

なお上記いずれの場合も管路(6)(6°)には−部に
フッ素樹脂絶縁管(12)(12°)を用いているので
電池部を複数設ける場合にも各槽内熱交換器は互いに電
気的に絶縁されるので、液絡の問題は発生しない。
In any of the above cases, the fluororesin insulated tube (12) (12°) is used at the negative part of the pipe line (6) (6°), so even when multiple battery sections are provided, each tank heat exchanger are electrically isolated from each other, so no liquid junction problem occurs.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば補機消費動力が小ざくなり、
ざらに液絡の発生もないので電池効率が向上し、また構
成部材の電食による損傷もない等顕著な効果を秦するも
のである。
In this way, according to the present invention, the power consumption of auxiliary equipment is reduced,
Since there is no occurrence of liquid junctions, the battery efficiency is improved, and there is no damage to the structural members due to electrolytic corrosion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の作用を示す説明図、第2図及び第3図
はそれぞれ本発明の一実施例を示す説明図、第4図は従
来例を示す説明図である。 1・・・・・・・・電解液槽 2・・・・・・・・電解液槽内熱交換器3・・・・・・
・・塩素吸収溶剤 4・・・・・・・・塩素貯蔵槽 5・・・・・・・・内部熱交換器 6.6゛・・・・・・管路 7・・・・・・・・電解液 8.8゛・・・・・・電気的絶縁配管 9・・・・・・・・溶剤ポンプ 10・・・・・・・・吸収塔 11・・・・・・・・外部熱交換器 12.12°・・・・フッ素樹脂絶縁管13・・・・・
・・・冷凍機 14、14°・・・・冷媒配管 15、15°・・・・冷媒切換バルブ 18、16’・・・・熱媒体切換バルブ17・・・・・
・・・電解液ポンプ 18・・・・・・・・電極部 19・・・・・・・・ガスポンプ 20・・・・・・・・ガス循環経路 21・・・・・・・・溶剤バイパスバルブ22・・・・
・・・・ガスバイパスバルブ23・・・・・・・・加熱
調整用弁 24・・・・・・・・熱媒体循環ポンプ25・・・・・
・・・冷却用熱交換器 26・・・・・・・・加熱用熱交換器。 代理人  弁理士 箕 浦  清
FIG. 1 is an explanatory diagram showing the operation of the present invention, FIGS. 2 and 3 are explanatory diagrams each showing an embodiment of the present invention, and FIG. 4 is an explanatory diagram showing a conventional example. 1... Electrolyte tank 2... Electrolyte tank internal heat exchanger 3...
... Chlorine absorption solvent 4 ... Chlorine storage tank 5 ...... Internal heat exchanger 6.6゛ ... Pipe line 7 ......・Electrolyte 8.8゛...Electrical insulation piping 9...Solvent pump 10...Absorption tower 11...External heat Exchanger 12.12°...Fluororesin insulation tube 13...
... Refrigerator 14, 14° ... Refrigerant piping 15, 15° ... Refrigerant switching valve 18, 16' ... Heat medium switching valve 17 ...
... Electrolyte pump 18 ... Electrode section 19 ... Gas pump 20 ... Gas circulation path 21 ... Solvent bypass Valve 22...
... Gas bypass valve 23 ... Heating adjustment valve 24 ... Heat medium circulation pump 25 ...
... Cooling heat exchanger 26 ... Heating heat exchanger. Agent Patent Attorney Kiyoshi Minoura

Claims (3)

【特許請求の範囲】[Claims] (1)亜鉛極と塩素極を対設した電極部に電解液槽から
電解液を循環させ、充電時に電極部から発生する塩素ガ
スを、塩素貯蔵槽から塩素吸収溶剤を循環する循環系内
で、冷却された塩素吸収溶剤に吸収させて塩素貯蔵槽に
貯え、放電時に上記循環系内で、加熱された塩素吸収溶
剤から塩素を発生させて電解液に溶解する電池において
、電解液槽内に熱交換器を設け、かつ塩素吸収溶剤の循
環系内に熱交換器を設け、それぞれの熱交換器を管路で
連結して内部に電気的絶縁性の高い熱媒体を封入し、放
電時にこれら熱交換器間を上記管路を通して熱媒体を循
環させることにより塩素吸収溶剤の加熱を行なわせたこ
とを特徴とする亜鉛−塩化物電池。
(1) Electrolyte is circulated from an electrolyte tank to an electrode section with a zinc electrode and a chlorine electrode arranged opposite each other, and chlorine gas generated from the electrode section during charging is collected in a circulation system that circulates a chlorine absorbing solvent from a chlorine storage tank. In a battery, chlorine is absorbed into a cooled chlorine-absorbing solvent and stored in a chlorine storage tank, and during discharge, chlorine is generated from the heated chlorine-absorbing solvent and dissolved in the electrolyte in the circulation system. A heat exchanger is installed in the circulation system of the chlorine-absorbing solvent, and each heat exchanger is connected with a conduit and a highly electrically insulating heat medium is sealed inside. A zinc-chloride battery, characterized in that the chlorine-absorbing solvent is heated by circulating a heat medium between the heat exchangers through the pipes.
(2)塩素吸収溶剤の循環系内に設ける熱交換器を電解
液槽内に設ける熱交換器より高所に位置させることによ
り熱媒体を循環させる請求項(1)記載の亜鉛−塩化物
電池。
(2) The zinc-chloride battery according to claim (1), wherein the heat exchanger provided in the circulation system for the chlorine-absorbing solvent is located at a higher location than the heat exchanger provided in the electrolyte tank to circulate the heat medium. .
(3)熱媒体を封入した管路にポンプを取付けることに
より、熱媒体を循環させる請求項(1)記載の亜鉛−塩
化物電池。
(3) The zinc-chloride battery according to claim (1), wherein the heat medium is circulated by attaching a pump to the conduit containing the heat medium.
JP63121837A 1988-05-20 1988-05-20 Zinc-chloride battery Pending JPH01292763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121837A JPH01292763A (en) 1988-05-20 1988-05-20 Zinc-chloride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121837A JPH01292763A (en) 1988-05-20 1988-05-20 Zinc-chloride battery

Publications (1)

Publication Number Publication Date
JPH01292763A true JPH01292763A (en) 1989-11-27

Family

ID=14821157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121837A Pending JPH01292763A (en) 1988-05-20 1988-05-20 Zinc-chloride battery

Country Status (1)

Country Link
JP (1) JPH01292763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111325A1 (en) * 2017-12-05 2019-06-13 日立化成株式会社 Warming device and warming system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111325A1 (en) * 2017-12-05 2019-06-13 日立化成株式会社 Warming device and warming system

Similar Documents

Publication Publication Date Title
US3969145A (en) Fuel cell cooling system using a non-dielectric coolant
US3964930A (en) Fuel cell cooling system
US4200684A (en) High rate discharge primary battery
JPS60249879A (en) Thermoelectric generator
NO148051B (en) ELECTROLYTE COOLING DEVICE FOR BATTERY BATTERIES
TW201145640A (en) Thermal management of an electrochemical cell by a combination of heat transfer fluid and phase change material
Hamed et al. A review on recent key technologies of lithium-ion battery thermal management: External cooling systems
CN110800154A (en) Battery module with thermal management design, battery device and battery system
CN114006103A (en) Immersed liquid cooling battery system
CN111952510A (en) Immersed liquid cooling energy storage system
CN104701587A (en) Battery pack cooling device and battery module using same
JPH01292763A (en) Zinc-chloride battery
JPH0335384B2 (en)
JP2005049135A (en) Liquid metal-cooled nuclear power plant
JPH05321613A (en) Heat using device and impurity removal device therefor
CN114566734A (en) Lithium battery pack stability maintaining device based on feedback system and water cooling condition
JPS62294897A (en) Heat accumulation type heat exchanger
JP2001280774A (en) Cooling system for electric apparatus
JPS63201494A (en) Regenerative heat exchanger
JPS6266581A (en) Fuel cell
CN109786884A (en) Fast charging type lithium battery pack and its heat management and cooling device
JP2003217628A (en) Fuel cell unit
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
US11721858B2 (en) SuCCoR: a super critical cooling regulator to mitigate heating of batteries and other devices
CN218042259U (en) Converter cooling system