JPH01291511A - Surface acoustic wave convolver - Google Patents

Surface acoustic wave convolver

Info

Publication number
JPH01291511A
JPH01291511A JP12071488A JP12071488A JPH01291511A JP H01291511 A JPH01291511 A JP H01291511A JP 12071488 A JP12071488 A JP 12071488A JP 12071488 A JP12071488 A JP 12071488A JP H01291511 A JPH01291511 A JP H01291511A
Authority
JP
Japan
Prior art keywords
surface acoustic
electrode
acoustic wave
electrodes
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12071488A
Other languages
Japanese (ja)
Inventor
Norihiro Mochizuki
望月 規弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12071488A priority Critical patent/JPH01291511A/en
Publication of JPH01291511A publication Critical patent/JPH01291511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To improve a characteristic by suppressing self convolution by providing at least one auxiliary electrode with different length in a direction of propagation between areas where a surface acoustic wave is propagated through first and second central electrodes, respectively. CONSTITUTION:The central electrodes 3a and 3b are formed on a piezoelectric substrate 1 along a direction where the surface acoustic wave radiated from an interdigital electrode 2 is propagated in parallel and adjacently with each other. Also, the auxiliary electrodes 4a and 4b are formed between the interdigital electrode 2 and the central electrodes 3a and 3b. And, for example, the area B of the auxiliary electrode 4a corresponding to the central electrode 3b is formed larger by DELTAl in the direction of propagation than the area A corresponding to the central electrode 3a. By covering the surface of the piezoelectric substrate 1 with a conductor of lithium niobate. etc., the speed of the surface acoustic wave is decreased compared with that of a free surface. And it is possible to shift the phase of the surface acoustic wave passing the areas A and B, respectively at, for example, 180 deg. by setting the difference DELTAl of the length at an appropriate level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は弾性表面波コンゴルパに係シ、特にいわゆるセ
ルフコン〆す、−ジョンの抑制全企図し次弾性表面波コ
ンM/I/パに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface acoustic wave converter, and more particularly to a so-called self-converter, a secondary surface acoustic wave converter M/I/P, which is entirely intended for suppression of self-consistency.

〔従来技術〕[Prior art]

第7図は、従来の弾性表面波コンゲルパの概略的構成図
である。
FIG. 7 is a schematic diagram of a conventional surface acoustic wave converter.

同図において、圧電基板1上に、一対の櫛形電極2と、
その間に中央電極3とが設けられている。
In the figure, a pair of comb-shaped electrodes 2 are placed on a piezoelectric substrate 1,
A central electrode 3 is provided between them.

櫛形電極2は弾性表面波信号を励振する電極であり、中
央電極3はその弾性表面波信号を互いに反対方向に伝搬
させ、且つ出力信号を取り出すための電極である。
The comb-shaped electrode 2 is an electrode that excites surface acoustic wave signals, and the center electrode 3 is an electrode that propagates the surface acoustic wave signals in opposite directions and extracts an output signal.

この櫛形電極2の一方に信号14t)lj” 、他方に
信号((the”te各々印加すると、圧電基板lの表
面には、互いに反対方向の二つの弾性表面波が伝搬する
。ここで、νは弾性表面波速度、Lは中央電極3の長さ
である。
When a signal 14t)lj'' is applied to one side of this comb-shaped electrode 2 and a signal ((the''te) is applied to the other side, two surface acoustic waves in opposite directions propagate on the surface of the piezoelectric substrate l.Here, ν is the surface acoustic wave velocity, and L is the length of the central electrode 3.

この伝搬路上では、非線形効果によって上記弾性表面波
の構成分が発生し、これが中央電極3の範囲で積分され
て取り出される。この出力信号音)(1)とすれば、次
式で表わされる。
On this propagation path, components of the surface acoustic wave are generated due to nonlinear effects, which are integrated within the range of the central electrode 3 and extracted. This output signal sound) (1) is expressed by the following equation.

ただし、αは比例定数である。However, α is a proportionality constant.

こうして、中央電極3から2つの信号1)とC(t)の
コンポリ、−ジョン信号を得ることができる。
In this way, a composite signal of two signals 1) and C(t) can be obtained from the central electrode 3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来例では、一方の櫛形電極2から
放射された信号が中央電極3に、通過して他方の櫛形電
極2に達すると、その一部が反射され、再び中央電極3
に到達する。このために、−方の櫛形電極2から放射さ
れた信号と、他方の櫛形電極2で反射されてもどって来
た信号とが中央電極3で重なり、上述したようにコンポ
リ、−シ璽ン信号が発生する。これを通常、セルフコン
メリュージョンという。
However, in the above conventional example, when the signal emitted from one comb-shaped electrode 2 passes through the center electrode 3 and reaches the other comb-shaped electrode 2, a part of the signal is reflected and returns to the center electrode 3.
reach. For this reason, the signal emitted from the - side comb-shaped electrode 2 and the signal reflected by the other comb-shaped electrode 2 and returned are overlapped at the center electrode 3, and as described above, a composite signal and a -signal signal are generated. occurs. This is usually called self-commelusion.

すなわち、従来ではセルフコン〆す、−ジョンによる不
要な信号が本来のコンポリ、−ジョン信号に重なってし
まうという問題点を有していた。
That is, the conventional system has had a problem in that an unnecessary signal due to the self-converting signal is superimposed on the original compensating signal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による弾性表面波コンボルバは、圧電基板上に、
弾性表面波を励振する少なくとも一対の励振電極と、該
励振電極からの弾性表面波を互いに反対方向に伝搬させ
且つ出力信号を取り出すための第1及び第2の中央電極
と、前記一対の励振電極と前記中央電極との間の少なく
とも一方に設けられ、前記弾性表面波が第1の中央電極
t−云伝搬する領域と第2の中央電極を伝搬する領域と
の間で伝搬方向の実質的な長さが異なる少なくとも一つ
の補助電極とを有することを特徴とする。
The surface acoustic wave convolver according to the present invention has a piezoelectric substrate on which
at least one pair of excitation electrodes for exciting surface acoustic waves; first and second center electrodes for propagating surface acoustic waves from the excitation electrodes in opposite directions and extracting output signals; and the pair of excitation electrodes. and the central electrode, the surface acoustic wave is provided between a region where the surface acoustic wave propagates through the first central electrode and a region where the surface acoustic wave propagates through the second central electrode, substantially in the propagation direction. and at least one auxiliary electrode having different lengths.

〔作用〕[Effect]

上記補助電極を設することによって、一方の励振電極か
ら放射された信号は、第1の中央電極を伝搬したものと
第2の中央電極を伝搬したものとで位相がずれる結果と
なる。そのために、他方の励振電極に到達した時に互い
に相殺された状態となり、反射波の発生を抑制すること
が可能となる。
By providing the auxiliary electrode, the signal emitted from one of the excitation electrodes has a phase shift between the signal propagated through the first central electrode and the signal propagated through the second central electrode. Therefore, when they reach the other excitation electrode, they cancel each other out, making it possible to suppress the generation of reflected waves.

すなわち、セルフコンメリューシ冒ンを抑えて特性改善
を達成することができる。
In other words, it is possible to suppress self-commerusion and improve characteristics.

〔実施例〕〔Example〕

以下、本発明の実施例を図面t−参照しながら詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

第1図は、本発明による弾性表面波コンゲルノ量の第1
実施例の概略的構成図である。
FIG. 1 shows the first surface acoustic wave conger quantity according to the present invention.
FIG. 1 is a schematic configuration diagram of an example.

同図において、圧電基板1上に、通常フォトリングラフ
ィ技術によりて櫛形電極2.中央電極3a及び3bが形
成される。
In the same figure, a comb-shaped electrode 2 is formed on a piezoelectric substrate 1 using a normal photolithography technique. Central electrodes 3a and 3b are formed.

中央′FJ1極3a及び3bは、櫛形電極2から放射さ
れる弾性表面波が伝搬する方向に沿って互いに平行に隣
接して形成されている。
The center'FJ1 poles 3a and 3b are formed parallel to each other and adjacent to each other along the direction in which the surface acoustic waves radiated from the comb-shaped electrode 2 propagate.

!た、櫛形電極2と中央電極3a及び3bとの間に補助
電極4a及び4bが形成され、ここでは補助電極4aの
中央電極3bに対応する領域Bが中央電極3aに対応す
る領域Aに比べて伝搬方向にJtだけ長く形成されてい
る。
! In addition, auxiliary electrodes 4a and 4b are formed between the comb-shaped electrode 2 and the center electrodes 3a and 3b, and here, the region B of the auxiliary electrode 4a corresponding to the center electrode 3b is larger than the region A corresponding to the center electrode 3a. It is formed to be longer by Jt in the propagation direction.

なお、圧電基板lとしては、例えばニオブ酸リチウム(
LINbO,)が用いられ、電極2,3&及び3bK#
iアルミニウム、銀、金等の導体が用いられる。
Note that as the piezoelectric substrate l, for example, lithium niobate (
LINbO,) is used, and electrodes 2, 3 & and 3bK#
i Conductors such as aluminum, silver, and gold are used.

このように、圧電基板lの表面が導体によりて榎われる
と、電界短絡効果や質量負荷効果によって弾性表面波の
速度が自由表面における速度に比べて減少する。この現
象を利用することで、補助電極4aにおける領域A及び
Bの長さの差Δz’6適当に設定して、領域^及びBi
各々通過した弾性表面波の位相を180°ずらすことが
可能となる。
In this way, when the surface of the piezoelectric substrate l is covered by a conductor, the velocity of the surface acoustic wave decreases compared to the velocity on the free surface due to the electric field short circuit effect and the mass loading effect. By utilizing this phenomenon, the length difference Δz'6 of regions A and B in the auxiliary electrode 4a is set appropriately, and the regions ^ and Bi
It is possible to shift the phases of the surface acoustic waves that have passed through each by 180 degrees.

以下、詳述する。The details will be explained below.

まず、長さの差Δtを次式をほぼ/il!iたすように
設定し、圧電基板1上に補助電極4a及び4b′ft形
成する。
First, the length difference Δt is expressed as approximately /il! Auxiliary electrodes 4a and 4b'ft are formed on the piezoelectric substrate 1.

Δt−f・−−−−n+−・・・(1)vrI、foま ただし、ヤ。は導体被覆表面における弾性表面波の速度
、ちは自由表面における弾性表面波の速度、fは入力信
号の中心周波数、n#i整数である・式(1)を満たす
長さの差Δtがあれば、一方の櫛形電極2から同位相で
励振された弾性表面波は、補助電極4at−通過する間
に互いに位相がずれ。
Δt-f・----n+-...(1) vrI, fo madashi, ya. is the velocity of the surface acoustic wave on the conductor coating surface, is the velocity of the surface acoustic wave on the free surface, f is the center frequency of the input signal, and n#i is an integer.If there is a length difference Δt that satisfies equation (1), For example, surface acoustic waves excited in the same phase from one comb-shaped electrode 2 are out of phase with each other while passing through the auxiliary electrode 4at.

領域A及びBを各々通過し友禅性表面波の位相は180
°ずれた状態となって他方の櫛形電極2へ到達する。
The phase of the Yuzen surface wave passing through regions A and B is 180
It reaches the other comb-shaped electrode 2 in a shifted state.

このために、他方の櫛形電極を構成する☆電極指にて電
気的に中和され、再励起による反射波は発生しない。し
たがって、従来の問題点であるセルフコンポリ、−ジョ
ンを抑圧することができる。
For this reason, it is electrically neutralized by the ☆ electrode fingers constituting the other comb-shaped electrode, and no reflected waves are generated due to re-excitation. Therefore, self-composition, which is a conventional problem, can be suppressed.

なお、電極指の構成をダブル電極にすnば、更に反射波
の抑制効果が増し、コンボルバとしての特性を向上させ
ることができる。
Note that if the electrode fingers are configured as double electrodes, the effect of suppressing reflected waves is further increased, and the characteristics as a convolver can be improved.

更に詳細に説明するために、第1図において中央電極3
aの左端t−x−0とし、その紙面右方向にX軸をとる
ものとする。
To explain in more detail, in FIG.
It is assumed that the left end of a is t-x-0, and the X axis is taken to the right of the page.

同図において、中央電極3mg互いに反対方向に伝搬す
る2つの弾性表面波は、次式で表わさnる。
In the same figure, two surface acoustic waves propagating in opposite directions at the central electrode 3mg are expressed by the following equation.

ただし、ω−2πfである。However, it is ω-2πf.

一方、中央電極3bを互いに反対方向に伝搬する2つの
弾性表面波は次式で表わされる。
On the other hand, two surface acoustic waves propagating in opposite directions through the center electrode 3b are expressed by the following equation.

F(t−−−ハ) eja+(t −、、−Jt ) 
  及びm 中央電極3a及び3bの各々においては、互いに反対方
向に伝搬する2つの弾性表面波が重畳するために、非線
形効果によりコンざリュージョン信号a、(t)及びH
Jt)が発生し、各々次式で表わされる。
F (t---c) eja+(t -,, -Jt)
and m In each of the central electrodes 3a and 3b, since two surface acoustic waves propagating in opposite directions are superimposed, the confluence signals a, (t) and H are generated due to nonlinear effects.
Jt) is generated, and each is expressed by the following equation.

ここでJt 富(n+ 2 )・アであり、またJtは
F(t)の変動に比べて十分小さいので、 となる。したがりて、H,(t)とH2(t)とは位相
が1800異なっているので、出力信号は中央電極3&
及び3bから差動の形で取シ出せばよい。
Here, Jt wealth (n+ 2 ) · a, and Jt is sufficiently small compared to the fluctuation of F(t), so the following equation is obtained. Therefore, since H,(t) and H2(t) have a phase difference of 1800, the output signal is
and 3b in the form of a differential.

第2図は、本発明の第2実施例の概略的構成図である。FIG. 2 is a schematic diagram of a second embodiment of the present invention.

本実施例では、補助電極4aの領域人及びBの長さの差
をJt1、補助°電極4bのそれをJt2とし、Δt、
及びΔt2t−はぼ次式の関係に設定する。
In this embodiment, the difference in length between the area and B of the auxiliary electrode 4a is Jt1, that of the auxiliary electrode 4b is Jt2, and Δt,
and Δt2t− are set to have the following equation.

すなわち、第1実施例における式(1)でΔ1−Δt、
+Δt2  となるように設定する。これによって、第
1実施例と同様に、領域At伝搬した弾性表面波と領域
Bi伝搬した弾性表面波とでは位相が180°異なり、
他方の櫛形電極2に到達した際、この2つの弾性表面波
は電気的に中和され、再励起による反射波は発生しまい
That is, in equation (1) in the first embodiment, Δ1−Δt,
+Δt2. As a result, as in the first embodiment, the surface acoustic waves propagated in the area At and the surface acoustic waves propagated in the area Bi have a phase difference of 180°,
When reaching the other comb-shaped electrode 2, these two surface acoustic waves are electrically neutralized and no reflected waves are generated due to re-excitation.

また、同図において、中央電極3&を互いに反対方向に
伝搬する2つの弾性表面波は、次式で表わされる。
Furthermore, in the figure, two surface acoustic waves propagating in opposite directions through the center electrode 3& are expressed by the following equation.

一方、中央電極3bi互いに反対方向に伝搬する2つの
弾性表面波は次式で表わされる。
On the other hand, two surface acoustic waves propagating in mutually opposite directions on the center electrode 3bi are expressed by the following equation.

そして、中央電極3&及び3bには、既に述べたように
、コンゲリュージョン信号H,(t)、H2(t)が発
生する。
As already mentioned, congelus signals H,(t) and H2(t) are generated at the center electrodes 3& and 3b.

であり、またΔt1.Δ121−1各々F1t) 、 
G(t)の変動に比べて十分小さいので。
and Δt1. Δ121-1 each F1t),
This is sufficiently small compared to the fluctuation of G(t).

となる。したがりて、馬(1)とH2(t)とは位相が
1800異なっているので、出力信号は中央電極3a及
び3bから差動の形で取り出せばよい。
becomes. Therefore, since the phases of H2(t) and H2(t) differ by 1800, the output signals can be extracted from the central electrodes 3a and 3b in a differential manner.

なお、補助電極4a及び4bの形状は上記各実施例に限
定されるものではなく、領域A及びB以外の領域では次
に示すように任意の形状でよい。
Note that the shape of the auxiliary electrodes 4a and 4b is not limited to the above embodiments, and in regions other than regions A and B, any shape may be used as shown below.

第3図(、)〜(c)は、それぞれ本発明の第3〜g5
実施例の概略的構成図である。
Figures 3(,) to (c) are 3 to g5 of the present invention, respectively.
FIG. 1 is a schematic configuration diagram of an example.

同図(&)では、伝搬路の外側まで補助電極4凰及び4
bt−広げ、領域Aの部分だけ各々Δt1及びΔt2だ
け短かくした段状の形状としている。
In the same figure (&), auxiliary electrodes 4 and 4 are connected to the outside of the propagation path.
It has a step-like shape in which the area A is widened and shortened by Δt1 and Δt2, respectively.

同図(b)では、領域AとBとの間を斜めに形成し。In the same figure (b), the space between regions A and B is formed diagonally.

同図(c)では補助電極4bを4b、と4b2とに分割
して長さΔtの電極4b2?領域B側に形成している。
In the same figure (c), the auxiliary electrode 4b is divided into 4b and 4b2, and the electrode 4b2? has a length Δt. It is formed on the area B side.

このような各実施例でも、上記第1実施例と同様の効果
を得ることができる。
In each of these embodiments, the same effects as in the first embodiment can be obtained.

第4図(−)及び(b)は、本発明の第6及び第7実施
例の概略的構成図である。
FIGS. 4(-) and 4(b) are schematic diagrams of the sixth and seventh embodiments of the present invention.

同図(a)に示す第6実施例では、領域Bの一方のみに
長さΔtの補助電極4を設け、この長さΔtは式(1)
ヲ実質的に満たすように設定される。
In the sixth embodiment shown in FIG. 3(a), an auxiliary electrode 4 having a length Δt is provided only on one side of the region B, and this length Δt is determined by the formula (1).
It is set to substantially satisfy the requirements.

同図(b)に示す第7実施例では、中央電極3bの両側
の領域Bに各々長さΔt、及びΔt2の補助電極41及
び4bt−Δt、+Δt2■Δtとなるように設ける。
In the seventh embodiment shown in FIG. 3B, auxiliary electrodes 41 and 4bt-Δt, +Δt2×Δt, are provided in regions B on both sides of the central electrode 3b, respectively, with lengths Δt and Δt2.

上記第6及び第7実施例において、出力信号は中央電極
3a及び3bから差動の形で取り出せばよい。いずれの
実施例でも既に述べた第1実施例と同様の効果を得、る
ことかできる。
In the sixth and seventh embodiments, the output signals may be extracted differentially from the center electrodes 3a and 3b. In either embodiment, it is possible to obtain the same effects as in the first embodiment already described.

第5図(a)及び(b)は1本発明の第8及び第9実施
例の概略的構成図である。これらの実施例においても、
領域B側にのみ補助電極を設けている。
FIGS. 5(a) and 5(b) are schematic diagrams of the eighth and ninth embodiments of the present invention. Also in these examples,
An auxiliary electrode is provided only on the region B side.

同図(a)に示す第8実施例では、長さΔtの補助電極
4t−中央電極3bの一方の側に形成し、領域B以外の
領域まで延びている。
In the eighth embodiment shown in FIG. 3A, the auxiliary electrode 4t has a length Δt and is formed on one side of the central electrode 3b, and extends to areas other than area B.

同図(b)に示す第9実施例では、補助電極4a及び4
bが中央電極3bの両側に設けられ、各々Δt、及びΔ
t2の長さに設定されている。
In the ninth embodiment shown in FIG. 4B, the auxiliary electrodes 4a and 4
b are provided on both sides of the central electrode 3b, and Δt and Δ
The length is set to t2.

ただし、Δ1−Δt、+Δt2であり、Δtは式(1)
を実質的に満たす長さである。
However, Δ1 - Δt, +Δt2, and Δt is according to formula (1)
It is a length that substantially satisfies .

第6図(a)及び(b)は、本発明の第10及び第11
実施例の概略的構成図である。
FIGS. 6(a) and 6(b) show the tenth and eleventh embodiments of the present invention.
FIG. 1 is a schematic configuration diagram of an example.

同図(、)に示す第10実施例では、補助電極4a及び
4b′fl:伝搬路に対して斜めに設け、補助電極によ
る反射波の影響を抑えている。
In the tenth embodiment shown in the same figure (,), auxiliary electrodes 4a and 4b'fl are provided obliquely with respect to the propagation path to suppress the influence of reflected waves by the auxiliary electrodes.

同図(b)に示す第11実施例では、領域AとBとの間
の領域に吸音剤5t−設けることで、余分な弾性表面波
の伝搬を抑え、特性を改善することができる。
In the eleventh embodiment shown in FIG. 6B, by providing a sound absorbing material 5t in the region between regions A and B, it is possible to suppress the propagation of excess surface acoustic waves and improve the characteristics.

なお、Δt、及びΔt2については、既に述べた通りで
ある。
Note that Δt and Δt2 are as already described.

上記各実施例において、櫛形電極2をダブル電極の構造
とすれば、更に反射波を抑えてセルフコンポリュージョ
ンを抑圧できる。
In each of the above embodiments, if the comb-shaped electrode 2 has a double electrode structure, reflected waves can be further suppressed and self-convolution can be suppressed.

更に、各実施例では、櫛形電極2で発生した弾性表面波
をそのままのビーム幅で伝搬させているが、マルチスト
リッグカプラやホーン型導波路などを利用してビーム幅
圧縮を行ってもよい。
Furthermore, in each of the embodiments, the surface acoustic waves generated by the comb-shaped electrode 2 are propagated with the same beam width, but the beam width may be compressed using a multi-strip coupler, a horn-shaped waveguide, or the like. .

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明による弾性表面波コ
ンボルバは、伝搬方向の長さが異なる補助電極を設けた
ことで、一方の励振電極から放射された信号は、第1の
中央電極を伝搬したものと第2の中央電極を伝゛搬した
ものとで位相がずれる結果となる。そのため、他方の励
振電極に到達した時に互いに相殺された状態となシ、反
射波の発生を抑制することが可能となる。すなわち、セ
ルフコンゴリュージョンを抑えて特性改善を達成できる
As explained in detail above, the surface acoustic wave convolver according to the present invention is provided with auxiliary electrodes having different lengths in the propagation direction, so that the signal emitted from one excitation electrode propagates through the first central electrode. This results in a phase shift between what is transmitted through the second central electrode and what is transmitted through the second central electrode. Therefore, when the waves reach the other excitation electrode, they cancel each other out, making it possible to suppress the generation of reflected waves. In other words, it is possible to suppress self-convolution and improve characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は、本発明による弾性表面波コンボルバ
の第1実施例〜第11実施例の概略的構成図、 第7図は、従来の弾性表面波コンボルバの概略的構成図
である。 l・・・圧電基板 2・・・櫛形電極 3m、3b・・・中央電極 4t4as4b・・・補助電極 5・・・吸音剤 代理人 弁理士  山 下 積 平 第1図 第2図 41履af++Δ!2 第4図(0) 第4図(b) ΔIl纏414匂12 第5図(a) 第5図(b) 第6図(CI) 第6図(b) 第7図
1 to 6 are schematic configuration diagrams of first to eleventh embodiments of a surface acoustic wave convolver according to the present invention, and FIG. 7 is a schematic configuration diagram of a conventional surface acoustic wave convolver. . l...Piezoelectric substrate 2...Comb-shaped electrode 3m, 3b...Central electrode 4t4as4b...Auxiliary electrode 5...Sound absorbing agent agent Patent attorney Seki Yamashita Figure 1 Figure 2 Figure 41 shoes af++Δ! 2 Figure 4 (0) Figure 4 (b) ΔIl 414 smell 12 Figure 5 (a) Figure 5 (b) Figure 6 (CI) Figure 6 (b) Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)圧電基板上に、弾性表面波を励振する少なくとも
一対の励振電極と、 該励振電極からの弾性表面波を互いに反対方向に伝搬さ
せ且つ出力信号を取り出すための第1及び第2の中央電
極と、 前記一対の励振電極と前記中央電極との間の少なくとも
一方に設けられ、前記弾性表面波が第1の中央電極を伝
搬する領域と第2の中央電極を伝搬する領域との間で伝
搬方向の実質的な長さが異なる少なくとも一つの補助電
極と、 を有することを特徴とする弾性表面波コンボルバ。
(1) At least a pair of excitation electrodes for exciting surface acoustic waves on a piezoelectric substrate; first and second centers for propagating the surface acoustic waves from the excitation electrodes in mutually opposite directions and extracting output signals; an electrode, and provided at least on one side between the pair of excitation electrodes and the center electrode, and between a region where the surface acoustic wave propagates through the first center electrode and a region where the surface acoustic wave propagates through the second center electrode. A surface acoustic wave convolver comprising: at least one auxiliary electrode having different substantial lengths in the propagation direction.
(2)上記補助電極における各領域の実質的な長さの差
Δlは、次式を満たすことを特徴とする請求項(1)記
載の弾性表面波コンボルバ。 Δl・f・{(1/V_m)−(1/V_o)}=n+
(1/2)ただし、V_mは前記補助電極で覆われた基
板表面における弾性表面波伝搬速度、V_oは自由表面
における弾性表面波伝搬速度、fは前記励振電極に入力
する信号の中心周波数、nは整数である。
(2) The surface acoustic wave convolver according to claim 1, wherein the substantial length difference Δl between the regions in the auxiliary electrode satisfies the following formula. Δl・f・{(1/V_m)−(1/V_o)}=n+
(1/2) where V_m is the surface acoustic wave propagation velocity on the substrate surface covered with the auxiliary electrode, V_o is the surface acoustic wave propagation velocity on the free surface, f is the center frequency of the signal input to the excitation electrode, n is an integer.
JP12071488A 1988-05-19 1988-05-19 Surface acoustic wave convolver Pending JPH01291511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12071488A JPH01291511A (en) 1988-05-19 1988-05-19 Surface acoustic wave convolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12071488A JPH01291511A (en) 1988-05-19 1988-05-19 Surface acoustic wave convolver

Publications (1)

Publication Number Publication Date
JPH01291511A true JPH01291511A (en) 1989-11-24

Family

ID=14793182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12071488A Pending JPH01291511A (en) 1988-05-19 1988-05-19 Surface acoustic wave convolver

Country Status (1)

Country Link
JP (1) JPH01291511A (en)

Similar Documents

Publication Publication Date Title
KR100290204B1 (en) Multimode surface acoustic wave filter
JP3882205B2 (en) Vertical multimode SAW filter
US5379010A (en) Surface acoustic wave reflector filter having two non-resonant tracks
JPH0451007B2 (en)
JP3223254B2 (en) 2-track surface wave device
US5003213A (en) Surface acoustic wave convolver with plural wave guide paths for generating convolution signals of mutually different phases
US4405874A (en) Surface acoustic wave (saw) devices having series-connected inter-digital transducers
JPH01291511A (en) Surface acoustic wave convolver
KR100429474B1 (en) Surface acoustic wave device
KR100308867B1 (en) Unidirectional surface acoustic wave transducer and transversal-type SAW filter having the same
KR20000017376A (en) Acoustic filter with two different channels with compensation for rejection
JP3323860B2 (en) Unidirectional transducer and surface acoustic wave filter device including the same
US4965480A (en) Surface acoustic wave convolver with two output electrodes of different lengths
JPH0630433B2 (en) Demultiplexer using surface acoustic wave filter
JP2531020B2 (en) Surface acoustic wave oscillator
JPH0250609A (en) Surface acoustic wave convolver
JPH0770942B2 (en) Surface acoustic wave convolver
JPH05291867A (en) Surface acoustic wave device
JPH0249565B2 (en) HYOMENDANSEIHASOSHI
JPH06169231A (en) Longitudinal multiplex mode surface acoustic wave filter
JPH01252015A (en) Surface acoustic wave transducer
JP2001189637A (en) Surface acoustic wave device
JPH0248812A (en) Surface acoustic wave convolver
JPS6130338Y2 (en)
JPH05226961A (en) Internal reflection type unidirectinal surface acoustic wave converter having floating electrode and surface acoustic wave function element