JPH01291484A - Method of driving semiconductor laser light amplifier, and semiconductor laser light amplifier - Google Patents

Method of driving semiconductor laser light amplifier, and semiconductor laser light amplifier

Info

Publication number
JPH01291484A
JPH01291484A JP63123175A JP12317588A JPH01291484A JP H01291484 A JPH01291484 A JP H01291484A JP 63123175 A JP63123175 A JP 63123175A JP 12317588 A JP12317588 A JP 12317588A JP H01291484 A JPH01291484 A JP H01291484A
Authority
JP
Japan
Prior art keywords
semiconductor laser
amplifier
voltage
laser optical
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63123175A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Suzaki
哲行 洲崎
Takahiro Aoki
青木 恭弘
Sadao Fujita
定男 藤田
Shuntaro Yamazaki
俊太郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63123175A priority Critical patent/JPH01291484A/en
Publication of JPH01291484A publication Critical patent/JPH01291484A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To assure a predetermined output power even for a high speed optical input signal by providing a regulated voltage driving circuit connected to an electrode of a semiconductor laser optical amplifier for supplying voltage substantially at the same response speed as a rate of carrier variations. CONSTITUTION:A semiconductor laser optical amplifier 1 is connected to a ground at its anode and to a source of an FET 2 at its cathode. Additionally, the FET 2 is connected to a power supply V2 and to the ground through a capacitor 3, at its gate. As light is allowed to enter the amplifier 1 and hence electrode voltage is reduced, a voltage between a source and a drain of the FET 2 is reduced by a fraction of reduction of the electrode voltage, so that the electrode voltage of the amplifier 1 returns to an original potential and an amplification factor of the amplifier 1 is kept at a given value. Then, the electrode voltage can be kept a certain given voltage at a high rate by disposing the FET 2 in the vicinity of the amplifier 1 to the utmost, whereby carrier variations in the amplifier 1 can be returned to a state before the light is allowed to enter the amplifier 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信システム、特に高速デジタル光通信シ
ステム等に用いられる半導体レーザ光増幅器の駆動方法
、及び半導体レーザ増幅装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of driving a semiconductor laser optical amplifier used in an optical communication system, particularly a high-speed digital optical communication system, and a semiconductor laser amplification device.

〔従来の技術〕[Conventional technology]

光通信システム、特に高速デジタル光通信システムにお
いて、光信号を増幅する半導体光増幅器は光信号の伝送
距離を延ばす為の有効な手段である。
In optical communication systems, especially high-speed digital optical communication systems, semiconductor optical amplifiers that amplify optical signals are an effective means for extending the transmission distance of optical signals.

半導体レーザ増幅装置を用いた、光通信システムとして
第4図の様な従来例がある〔オバーグ他、313km)
:yンスミッション イクスヘリメント アット IG
b/s  ユージング オプティカル アンプリファイ
アス アンド ア ロウ チャープ レーザ”、エレク
トロニクス レタース。
There is a conventional example of an optical communication system using a semiconductor laser amplification device as shown in Figure 4 [Oberg et al., 313 km]
:YNS MISSION EXHERIMENT AT IG
b/s Using Optical Amplifiers and a Low Chirp Laser”, Electronics Letters.

vol、24 、 FJnlP38 、1988 (O
berg、M、G、etal、、@313km Tra
nsmission Experiment atI 
Gb/s Using 0ptical Amplif
iers and aLow Chirp La5er
”、 Electronics、’ vol 24゜陽
1.P38,1988))。この従来例では、半導体レ
ーザ光増幅器を用いて光デジタル通信の長距離化を行っ
ている。
vol, 24, FJnlP38, 1988 (O
berg, M, G, etal, @313km Tra
nsmission Experiment atI
Gb/s Using 0ptical Amplif
iers and a Low Chirp La5er
In this conventional example, a semiconductor laser optical amplifier is used to extend optical digital communication over long distances.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来例の半導体レーザ光増幅装置では、情報の伝送速度
が上るにしたがって、半導体レーザ光増幅器内のキャリ
ア密度の変動により、同一レベルの光入力信号に対して
、−様な光出力信号を得られないという問題点がある。
In conventional semiconductor laser optical amplifiers, as the information transmission speed increases, carrier density within the semiconductor laser amplifier changes, resulting in -different optical output signals being obtained for optical input signals of the same level. The problem is that there is no.

第5図にその例を示す。この様に光出力が変動する原因
は次のようにする。光入力信号がなくなる事により、キ
ャリア密度は元に戻ろうとするが、その前に次の光信号
が入力されると、それに対する半導体レーザ光増幅器の
利得が減少しているから、光出力信号のレベルは低下す
る。
An example is shown in FIG. The reason why the optical output fluctuates in this way is as follows. When the optical input signal disappears, the carrier density tries to return to its original level, but if the next optical signal is input before that, the gain of the semiconductor laser optical amplifier for that signal has decreased, so the optical output signal The level will drop.

本発明は、この点を改善し、高速の光入力信号に対して
も、一定の出力が得られる半導体レーザ光増幅器の駆動
方法、およびその駆動方法を適用するのに適した半導体
レーザ光増幅装置を提供する事を目的とする。
The present invention improves this point and provides a driving method for a semiconductor laser optical amplifier that can obtain a constant output even for high-speed optical input signals, and a semiconductor laser optical amplifier suitable for applying the driving method. The purpose is to provide.

〔課題を解決するための手段〕 前述の課題を解決するために本発明が提供する方法は、
光を直接増幅する半導体レーザ光増幅器の駆動方法であ
って、光入力による前記半導体レーザ光増幅器内のキャ
リア変動を光入力の伝送速度と同程度の応答速度で光入
力前の状態に戻すことを特徴とする。
[Means for Solving the Problems] A method provided by the present invention to solve the above-mentioned problems is as follows:
A method for driving a semiconductor laser optical amplifier that directly amplifies light, the method comprising: returning carrier fluctuations in the semiconductor laser optical amplifier due to optical input to the state before the optical input at a response speed comparable to the transmission speed of the optical input. Features.

前述の課題を解決するために本発明が提供する装置は、
半導体レーザ光増幅器と、この半導体レーザ光増幅器の
電極に接続され、前記半導体レーザ光増幅器内のキャリ
ア変動に対してほぼ同程度の応答速度で電圧を供給する
定電圧駆動回路とを含んでなる。
The device provided by the present invention to solve the above problems is as follows:
It includes a semiconductor laser optical amplifier and a constant voltage drive circuit connected to an electrode of the semiconductor laser optical amplifier and supplying a voltage at approximately the same response speed to carrier fluctuations in the semiconductor laser optical amplifier.

〔作用〕[Effect]

半導体レーザ光増幅器において、同一レベルの光入力信
号に対して、等しい光出力信号を得る為には、半導体レ
ーザ光増幅器内のキャリア密度を常に一定に保つ必要が
ある。ところが光入力がある時には、半導体レーサ光瑚
幅器内のキャリア密度が低下するから、速やかに光入力
前のキャリア密度に戻すことが必要となる。
In a semiconductor laser optical amplifier, in order to obtain equal optical output signals for optical input signals of the same level, it is necessary to keep the carrier density within the semiconductor laser optical amplifier constant at all times. However, when there is optical input, the carrier density in the semiconductor laser beam amplifier decreases, so it is necessary to quickly return the carrier density to the level before optical input.

半導体レーザ光増幅器内のキャリアの変動は、その電極
における電圧の変化となってあられれる。
Fluctuations in carriers within a semiconductor laser optical amplifier result in changes in voltage at its electrodes.

ここでキャリア密度を速く元の状態に戻す為には、この
電圧を一定に保つ様に、高速に動作する駆動回路を用い
ればよい。この駆動回路の応答速度は、光入力の伝送速
度と同程度の高速性が求められる。
In order to quickly return the carrier density to its original state, a drive circuit that operates at high speed may be used to keep this voltage constant. The response speed of this drive circuit is required to be as fast as the transmission speed of optical input.

本発明の半導体レーザ光増幅装置は、トランジスタを用
いた、高速動作を可能とする定電圧駆動回路と、半導体
レーザ光増幅器によるものである。
The semiconductor laser optical amplification device of the present invention includes a constant voltage drive circuit using transistors and capable of high-speed operation, and a semiconductor laser optical amplifier.

この構成において、光入力によって半導体レーザ光増幅
器内のキャリアが減少し、その電圧が下がった場合、高
速の定電圧駆動回路がすばやくその電圧をもとに戻す事
によシ、キャリア密度が元の状態に戻るから、常に一定
の光増幅率を得られる。
In this configuration, when the carriers in the semiconductor laser optical amplifier decrease due to optical input and the voltage drops, the high-speed constant voltage drive circuit quickly returns the voltage to the original level, thereby reducing the carrier density to its original value. Since it returns to the original state, a constant optical amplification factor can always be obtained.

〔実施例〕〔Example〕

以下、第1図〜第3図に例示するところに従って本発明
による装置を説明するとともに、併せて本発明の駆動方
法を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the apparatus according to the present invention will be explained according to the examples illustrated in FIGS. 1 to 3, and the driving method of the present invention will also be explained.

第1図は本発明による半導体レーザ光増幅装置の第1の
実施例を示す回路図である。
FIG. 1 is a circuit diagram showing a first embodiment of a semiconductor laser optical amplification device according to the present invention.

半導体レーザ光増幅器1のアノードはグランドに接続さ
れ、又そのカンードはFET2のソースに接続される。
The anode of the semiconductor laser optical amplifier 1 is connected to the ground, and its cand is connected to the source of the FET 2.

又、FET2のゲートは電源■2に接続され、又コンデ
ンサ3を介してグランドにつながる。一方FET2のド
レインは電源■1に接続され、又コンデンサ4を介して
グランドに接続される。
Further, the gate of FET 2 is connected to power supply 2, and also connected to ground via capacitor 3. On the other hand, the drain of the FET 2 is connected to the power supply 1 and also to the ground via the capacitor 4.

この実施例において、まず半導体レーザ光増幅器1に適
切な電圧、電流を供給する様に電源v1゜■2の値を調
節する。この駆動回路は、半導体レーザ光増幅器1内の
キャリア変動による電極における電圧の変化を、速やか
に元に戻すような働きをする。その作動原理は以下のと
おシである。光が入力し電極電圧が低下すると、それに
つれてFET2のゲート−ソース間の電位が下がるから
、これによってソース−ドレイン間の内部抵抗が低下し
、ソース−ドレイン間の電位が低下する。すなわち、電
極電圧の減少分だけFET 2のソース−ドレイン間電
圧が下がるから、半導体レーザ光増幅器1の電極電圧は
元の電位に戻るとともに、半導体レーザ光増幅器1の増
幅率は所定値に保たれる。
In this embodiment, first, the value of the power supply v1°2 is adjusted so as to supply appropriate voltage and current to the semiconductor laser optical amplifier 1. This drive circuit functions to quickly restore voltage changes at the electrodes due to carrier fluctuations within the semiconductor laser optical amplifier 1. Its operating principle is as follows. When light is input and the electrode voltage decreases, the potential between the gate and the source of the FET 2 decreases accordingly, so that the internal resistance between the source and drain decreases, and the potential between the source and drain decreases. That is, since the source-drain voltage of the FET 2 decreases by the amount of decrease in the electrode voltage, the electrode voltage of the semiconductor laser optical amplifier 1 returns to its original potential, and the amplification factor of the semiconductor laser optical amplifier 1 is maintained at a predetermined value. It will be done.

ここで、FET2として、高速応答の優れたものを用い
、又そのFET2を極力、半導体レーザ光増幅器1の近
傍に設置する事によシ、その電極電位を高速に成る一定
電圧に保つ事ができ、ひいては半導体レーザ光増幅器1
内のキャリア変動を高速に、光入力前の状態に戻す事が
できる。
Here, by using a FET 2 with excellent high-speed response and by installing the FET 2 as close to the semiconductor laser optical amplifier 1 as possible, the electrode potential of the FET 2 can be maintained at a constant voltage for high speed. , and eventually the semiconductor laser optical amplifier 1
It is possible to quickly return the carrier fluctuations within to the state before optical input.

第2図は、第1図実施例の実装例を示す斜視図である。FIG. 2 is a perspective view showing an example of implementation of the embodiment shown in FIG.

この様に半導体レーザ光増幅器1とFET2の間隔を短
かくすると、時間的遅延が起こらないから、高速動作が
可能となる。なお、第2図には、光入力用の光ファイバ
12と光出力用光ファイバ14とが接続されている状態
を示した。
When the distance between the semiconductor laser optical amplifier 1 and the FET 2 is shortened in this way, no time delay occurs, and high-speed operation becomes possible. Note that FIG. 2 shows a state in which the optical fiber 12 for optical input and the optical fiber 14 for optical output are connected.

第3図は、本発明による半導体レーザ光増幅装置の第2
の実施例を表す回路図である。
FIG. 3 shows the second embodiment of the semiconductor laser optical amplification device according to the present invention.
FIG. 2 is a circuit diagram showing an embodiment of the invention.

この実施例は第1の実施例と同様に、半導体レーザ光増
幅器1と定電圧回路とを備えてなシ、その定電圧回路は
トランジスタ5,6、テエナーダイオード7、抵抗8〜
10からなる。
This embodiment, like the first embodiment, does not include a semiconductor laser optical amplifier 1 and a constant voltage circuit.
Consists of 10.

この回路において、トランジスタ6は、半導体レーザ光
増幅器1の電極電圧を検出するものであり、ツェナーダ
イオード7の両端の電圧である基準電圧と半導体レーザ
光増幅器1の電極電圧とを比較する事によシ、トランジ
スタ6のコレクタからその差電流を取シ出し、トランジ
スタ5を駆動する。
In this circuit, the transistor 6 detects the electrode voltage of the semiconductor laser optical amplifier 1 by comparing the reference voltage, which is the voltage across the Zener diode 7, with the electrode voltage of the semiconductor laser optical amplifier 1. Then, the difference current is taken out from the collector of transistor 6 to drive transistor 5.

この実施例においても、第1の実施例と同様、高速性に
優れたトランジスタを用い、かつ半導体レーザ光増幅器
1の近傍に駆動回路を設置することによシ、入光力とほ
ぼ同程度の応答速度を有する事が可能であり、半導体レ
ーザ増幅器の増幅率を常に所定値に保つことができる。
In this embodiment, as in the first embodiment, by using transistors with excellent high speed performance and installing a drive circuit near the semiconductor laser optical amplifier 1, the optical power is almost the same as that of the input light. It is possible to have a high response speed, and the amplification factor of the semiconductor laser amplifier can always be kept at a predetermined value.

以上1本発明の第1.第2の実施例を説明したが、本発
明は以上の実施例の他にも、いろいろな態様で実施でき
る。
The above is the first aspect of the present invention. Although the second embodiment has been described, the present invention can be implemented in various modes other than the above embodiment.

例えば、第1の実施例で述べ九FETを用いた半導体レ
ーザ光増幅装置では、そのFETをバイボー2トランジ
スタ、或いはその他のトランジスタに置換する事によっ
ても可能であシ、第2の実施例についても同様である。
For example, in the semiconductor laser optical amplification device using nine FETs as described in the first embodiment, it is also possible to replace the FETs with two bibor transistors or other transistors; The same is true.

また、第2の実施例においては、半導体レーザ光増幅器
の電極電圧を検出する回路として、トランジスタ1段に
よるものを示したが、よシ安定した動作にする為、差動
増幅型にする事も可能である。さらに、第1.第2の実
施例で述べた、駆動回路としてのFET、)ランジスタ
は1段によるもののみを示したが、これを複数個のトラ
ンジスタを組合せたもの、例えばダーリントン接続回路
等に置き換える事も可能である。
In addition, in the second embodiment, a circuit using one stage of transistors was shown as the circuit for detecting the electrode voltage of the semiconductor laser optical amplifier, but for more stable operation, a differential amplification type may also be used. It is possible. Furthermore, the first. Although only one stage of transistors (FETs and transistors) used as the drive circuit described in the second embodiment is shown, it is also possible to replace this with a combination of multiple transistors, such as a Darlington connection circuit. be.

〔発明の効果〕〔Effect of the invention〕

本発明の利点とするところは次の通シである。 The advantages of the present invention are as follows.

すなわち、従来から行なわれていた半導体レーザ光増幅
装置による光の直接増幅において、その駆動方法を変更
する事によシ同一の光入力信号レベルに対し、常に等し
い光出力信号レベルを得られる。本発明の駆動方法は情
報の伝送速度がよっても有効である。更に、この駆動方
法を実施する本発明の半導体レーザ光増幅装置は、従来
の部品を用いて容易に実現できる。
That is, in the conventional direct amplification of light using a semiconductor laser optical amplification device, by changing the driving method, it is possible to always obtain the same optical output signal level for the same optical input signal level. The driving method of the present invention is effective regardless of the information transmission speed. Furthermore, the semiconductor laser optical amplification device of the present invention that implements this driving method can be easily realized using conventional parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体レーザ光増幅装置の第1の
実施例を示す回路図、第2図は第1図の実施例の実装例
を示す斜視図、第3図は本発明による半導体レーザ光増
幅装置の第2の実施例を示す回路図、第4図は従来の半
導体レーザ光増幅器を用いた光通信システム9例を示す
構成図、第5図は従来の半導体レーザ光増幅器における
光入力信号とキャリア密度と光出力信号との関係を表し
た特性図である。 1・・・半導体レーザ光増幅器、2・・・FET、3゜
4・・・コンデンサ、5.6・・・トランジスタ、7・
・・ツェナーダイオード%8,9.10・・・抵抗、1
1・・・半導体レーザ、12,14,22,28,30
・・・光ファイバ、13.18,23.29・・・半導
体レーザ光増@装置、16,20,2テ・・アイソレー
タ、15,17,19゜21 、24 、27・・・レ
ンズ、26・・・回折格子、31・・・光検出器%  
Vll■2・・・電源。 代理人 弁理士  本 庄 伸 介 1 ・−m−・−半導イ本し一ザ光多l脇a2−・−F
ET 3.4・・−コシプーリ Vl 、V2−一電源 第1図 1−−−−− F 専イ〉トミレーず1゛′贈・ヤ≦レ
ジとダレ8.9.10−払」ん V+−−−−一電原 半s4光増幅 11   12   13  1ム 1516117 
打− 4図
FIG. 1 is a circuit diagram showing a first embodiment of a semiconductor laser optical amplification device according to the present invention, FIG. 2 is a perspective view showing an example of mounting the embodiment of FIG. 1, and FIG. 3 is a semiconductor laser according to the present invention. A circuit diagram showing a second embodiment of the optical amplification device, FIG. 4 is a configuration diagram showing nine examples of an optical communication system using a conventional semiconductor laser optical amplifier, and FIG. 5 shows an optical input in a conventional semiconductor laser optical amplifier. FIG. 3 is a characteristic diagram showing the relationship between a signal, carrier density, and optical output signal. DESCRIPTION OF SYMBOLS 1... Semiconductor laser optical amplifier, 2... FET, 3° 4... Capacitor, 5.6... Transistor, 7...
...Zener diode%8,9.10...Resistance, 1
1... Semiconductor laser, 12, 14, 22, 28, 30
...Optical fiber, 13.18, 23.29... Semiconductor laser beam amplification @ device, 16, 20, 2 Te... Isolator, 15, 17, 19°21, 24, 27... Lens, 26 ...Diffraction grating, 31...Photodetector%
Vll■2...Power supply. Agent Patent Attorney Shinsuke Honjo 1 ・-m-・-Semiconductor Ihonshiichiza Kota l side a2-・-F
ET 3.4...-Koshi pulley Vl, V2--Power source 1 Figure 1-----F Exclusive A〉Tomilezu1゛'Gift・Y≦Register and sauce 8.9.10-Pay'' V+- ---Ichiden Genhan S4 optical amplification 11 12 13 1mu 1516117
Hit - Figure 4

Claims (1)

【特許請求の範囲】 1、光を直接増幅する半導体レーザ光増幅器の駆動方法
において、光入力による前記半導体レーザ光増幅器内の
キャリア変動を光入力の伝送速度と同程度の応答速度で
光入力前の状態に戻すことを特徴とする半導体レーザ光
増幅器の駆動方法。 2、半導体レーザ光増幅器と、この半導体レーザ光増幅
器の電極に接続され、前記半導体レーザ光増幅器内のキ
ャリア変動に対してほぼ同程度の応答速度で電圧を供給
する定電圧駆動回路とを含む半導体レーザ光増幅装置。
[Claims] 1. In a method for driving a semiconductor laser optical amplifier that directly amplifies light, carrier fluctuations in the semiconductor laser optical amplifier due to optical input are suppressed before the optical input at a response speed comparable to the transmission speed of the optical input. A method for driving a semiconductor laser optical amplifier characterized by returning the amplifier to the state shown in FIG. 2. A semiconductor including a semiconductor laser optical amplifier and a constant voltage drive circuit connected to an electrode of the semiconductor laser optical amplifier and supplying a voltage at approximately the same response speed to carrier fluctuations in the semiconductor laser optical amplifier. Laser light amplification device.
JP63123175A 1988-05-19 1988-05-19 Method of driving semiconductor laser light amplifier, and semiconductor laser light amplifier Pending JPH01291484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123175A JPH01291484A (en) 1988-05-19 1988-05-19 Method of driving semiconductor laser light amplifier, and semiconductor laser light amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123175A JPH01291484A (en) 1988-05-19 1988-05-19 Method of driving semiconductor laser light amplifier, and semiconductor laser light amplifier

Publications (1)

Publication Number Publication Date
JPH01291484A true JPH01291484A (en) 1989-11-24

Family

ID=14854043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123175A Pending JPH01291484A (en) 1988-05-19 1988-05-19 Method of driving semiconductor laser light amplifier, and semiconductor laser light amplifier

Country Status (1)

Country Link
JP (1) JPH01291484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295210A (en) * 2003-06-19 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> Optical modulating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348885A (en) * 1986-08-19 1988-03-01 Fujitsu Ltd Laser-diode driving circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348885A (en) * 1986-08-19 1988-03-01 Fujitsu Ltd Laser-diode driving circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295210A (en) * 2003-06-19 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> Optical modulating device

Similar Documents

Publication Publication Date Title
US6566954B2 (en) High frequency amplifier bias circuit, high frequency power amplifier, and communication device
EP0568880B1 (en) Preamplifier for optical communication having a gain control circuit
KR940023027A (en) Differential Amplifiers with Rail-to-Rail Common Mode Range
KR970013821A (en) HIGH-GAIN AMPLIFIER CIRCUIT
KR980012858A (en) Semiconductor amplifier circuit
US5646560A (en) Integrated low-power driver for a high-current laser diode
JPH01291484A (en) Method of driving semiconductor laser light amplifier, and semiconductor laser light amplifier
US4709171A (en) Current limiter and method for limiting current
US5519357A (en) Biasing arrangement for a quasi-complementary output stage
US5012134A (en) DC bootstrapped unity gain buffer
JP2003017950A (en) Semiconductor amplifier circuit
US6788149B2 (en) Broad-band biasing system for biasing an electronic circuit and an amplifier incorporating the system
JP3500960B2 (en) Optical receiver
US6137350A (en) Differential amplifier circuit
JP3265675B2 (en) Bias circuit and integrated circuit using the same
US5086281A (en) Optical control circuit for a microwave monolithic integrated circuit
US5764098A (en) Bias circuit
JPH01192207A (en) Optical reception circuit
JP3714688B2 (en) Control feedback type charge / voltage converter
JP3628367B2 (en) Driving circuit for optical modulator
JPH06132590A (en) Semiconductor laser driving circuit
JP2002290168A (en) Optical receiver
US5473467A (en) Linear optical amplifier
JPS5935494A (en) Semiconductor laser driving circuit
JP3747046B2 (en) Driving circuit for optical modulator