JPH01291441A - Manufacture of sample for measuring impurity concentration - Google Patents

Manufacture of sample for measuring impurity concentration

Info

Publication number
JPH01291441A
JPH01291441A JP12230388A JP12230388A JPH01291441A JP H01291441 A JPH01291441 A JP H01291441A JP 12230388 A JP12230388 A JP 12230388A JP 12230388 A JP12230388 A JP 12230388A JP H01291441 A JPH01291441 A JP H01291441A
Authority
JP
Japan
Prior art keywords
electrode
small
impurity concentration
electrodes
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12230388A
Other languages
Japanese (ja)
Inventor
Hiroshige Touno
東野 太栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12230388A priority Critical patent/JPH01291441A/en
Publication of JPH01291441A publication Critical patent/JPH01291441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To form an ohmic electrode without addition of a heat treatment by forming a plurality of small and large electrodes on a semiconductor film, and applying a high voltage between one of the small electrodes and the large electrode. CONSTITUTION:A plurality of small electrodes 2 made of aluminium films having 300 to 400mum of diameter and a large electrode 3 made of an aluminum film having sufficiently larger electrode area than that of the electrodes 2 are formed on a semiconductor film 2 to be measured for its impurity concentration. An Au film, a Ti film, etc., may be employed instead of the aluminum film. Then, a DC voltage of several V is applied between one of the electrodes 2 and the electrode 3. After a DC voltage is applied, current/voltage characteristic is measured with probes 5, 6, and if ohmic characteristics are not obtained, it may be discharged by further higher voltage. Thus, since the large electrode is ohmically formed, even if a forward bias is applied or the electrode is small, an accurate impurity concentration can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

「] 産業上の利用分野 本発明は、半導体膜の不純物濃度を1Eff的に評価f
る方法ノーツテあるC−V(Capacltance−
Voltage3法に用いる不純物濃度測定用試料のf
’f−H方法に関する。 切従来の技術 半導体膜の不純物の面内分布、厚さ方向の分布を測定す
る方法としてC−v法が広く用いられているり((株〕
フジ・テクノシステム発行、「薄膜の作製・評へibと
その応用技術へンドプツ列P410〜411参照。入こ
れを行うには、試料にショットキーilc極として金属
膜をつける。このショットキー接合にバイアスV&Pp
k印加し九ときの接合容量Coは、 で与えられる。 ここで(1!を子電荷、ξ:誘電率、Aニジヨツトキー
¥I1.極の面積s V n :障壁羅さ、ND:不純
物濃度である。 厚さ方向の濃度分布を求めるには、(1)式から得られ
る次式を用いる。 ここでXは、接合面から測、た深さ方向の距離である。 測定にエフCOとV亀ppの関係を求め、それからdV
app/dCo とxf計算LND(rJt得る。 現在、この解析法は、測定器と計算機の結合により、自
動化されているのが普通である。 上述し*c−v@を用いるための試料のfv、裏方法を
第3因に基づいて説明する。 不純物濃度を測定しようとする半導体膜αG上に直径2
00〜400声mのAJ膜エク底る複数の小電極11υ
と、この小IC[αBに比較して十分大きな電極面積の
AJ膜Xり収る大電極α2を蒸看にエフ形成することに
より不純物濃度測定用試料が完成する。 このようにして作製された試料の小電極(IDと大電極
α3間に、該小電極αυか逆バイアスされるように電圧
を印加して測定を行うと、小IE[[1υにおける接合
容量のみが測定される。 しかし、ゼロバイアス時の空乏:1深さエフ表面側の濃
度分布を得る几めには、試料の弔電(!(11Jと大電
極α2間に、該小電極σDが順バイアスされるように電
圧を印加して測定を行うが、大側罰つにおける接合容量
が測定値に影響を与えるので、補正が必要となる。さら
に、大電極α2の電極面積が小さいとき、例えば試料が
小さいために大ン
"] Industrial Application Field The present invention is a method for evaluating the impurity concentration of a semiconductor film using 1Eff.
Note how to use C-V (Capacltance-
f of the sample for impurity concentration measurement used in the Voltage 3 method
'f-H method. Conventional technology The C-v method is widely used as a method for measuring the in-plane distribution and thickness direction distribution of impurities in semiconductor films.
Published by Fuji Techno System, "For the preparation and evaluation of thin films, see IB and its application technology" dop column, pages 410 to 411.To do this, a metal film is attached to the sample as a Schottky ILC electrode. Bias V&Pp
The junction capacitance Co when k is applied is given by: Here, (1! is the child charge, ξ: permittivity, Anijot key \I1. Area of the pole s V n: barrier resistance, ND: impurity concentration. To find the concentration distribution in the thickness direction, (1! ) is used. Here, X is the distance in the depth direction measured from the bonding surface. For the measurement, find the relationship between FCO and Vpp, and then
app/dCo and xf calculation LND (rJt is obtained. Currently, this analysis method is usually automated by combining measuring instruments and computers. , the back method will be explained based on the third factor.
Multiple small electrodes 11υ at the bottom of the AJ membrane of 00 to 400 m
A sample for impurity concentration measurement is completed by forming a large electrode α2 that fits the AJ film X, which has a sufficiently large electrode area compared to the small IC [αB]. When a voltage is applied between the small electrode (ID and the large electrode α3) of the sample prepared in this way and a voltage is applied so that the small electrode αυ is reverse biased, only the junction capacitance at the small IE[[1υ However, in order to obtain the concentration distribution on the surface side of depletion: 1 depth F at zero bias, the small electrode σD is placed between the sample's conductor (!(11J) and the large electrode α2 with a forward bias Measurement is performed by applying a voltage so that is large because it is small

【極α2のwL礪而面を小電極dυの
そnに比較して十分大きくできない場合、小XaUが逆
バイアスされるLうに電圧をl:D7JIllシても、
大電極aりにおける接合容量が測定値に影響を与える。 r/→ 発明が解決しようとする課題 上述したように、従来の試料では、順バイアス1−日〕
加した場合や、該試料が小さい場合、正確な不純物a度
を得難い。 この問題を解決するにa大電極α4をオーミンク化する
必要がある。 しかしながら、大電極Ωをオーミック化するには熱処理
が必要となり、試料作製に要する時間が増大し、さらに
、半導体膜(IGの特注変化により正確な不純物濃度を
得ることができない。 本発明に上述の事情に鑑み為されたものであり、熱処理
を加えずとも、オーミック電極を形成できる不純物濃度
測定用試料の作製方法を提供しようとするものである。 に)課題を解決するための手段 本発明rユ、半導体膜上に複数の小電極と、この小電極
に比較して大きな電極面積の大電極を形成し、@記小鷹
僅の1つと前記大通極間に筋電圧を印加して譲大這蓮金
オーミック化することを特徴とする不純物濃度測定用試
料の作製方法である。 (ホ)作 用 1つの小電極と大成極間に筋電圧を印加すると、大T[
のショットキーが破壊され、該大IE極がオーミック化
される。 (へ)実施例 不発明の不純物濃度測定用試料の作裏方法全第1図(a
)(b)に基づいて説明する。 不純物濃度を測定しようとする半導体膜(例えばGaA
s)(1)上に直径200〜400mmのAJ膜より成
る複数の小電極(2)と、この小電極(2;に比較して
十分大きな電極面積のAI!膜エク成る大’1ltN(
3J分形成する。AI!膜九代えてAu膜、T ’)膜
等でもよい。 続いて、小電極(2Jの1つ(2a〕と大電極(3)の
間に数百Vの直流電圧を印加する。本実施例でに、第1
図(a)に示す如くコンデンサ(4)に電Rを蓄え、こ
nを探針(5バ6)間に放電することで小電極(2a)
と大[億(37(7)間に直流電圧を印加し九。 尚、直流電圧印加後、探針(51(61ft用いて、電
流電圧特注を測定し、オーミック特性が得られていない
場合には、更に高い電圧で小電極(2a〕と大電極(3
)間に放電を行なえばよい。 以上の工程を経て、オーミック化した大電極(3)(図
中(IL)t!大電極(3)のうちオーミック化された
部分を示す)を備え比不純物#度測定用試料が完成する
。 この試料の不純物濃度に、小電極【2a】以外(弔電m
c2&)uオーミック化されている〕の小電極(2)の
1つ(ショットキー電極]とオーミック化し友人電極(
3)間に、該小電極(21の1つか順バイアスま之に逆
バイアスされるように電圧を印加するととで測定できる
。 (ト) 発明の効果 本発明は以上の説明から明らかな如く、大電極がオーミ
ック化されているので、順バイアスを印加した場合や、
該料が小さい場合でも正確な不純物濃度を得ることがで
きる。しかも、熱処理を用いずにオーミック化し九大電
厘を得ることができるので、試料f’):裂に要する時
間を短縮し、さらに熱処理によりて生じる半導体膜の特
注変化を防ぐことができる。
[If the wL surface of the pole α2 cannot be made sufficiently large compared to that of the small electrode dυ, even if the voltage is set so that the small XaU is reverse biased,
The junction capacitance at the large electrode a affects the measured value. r/→ Problem to be Solved by the Invention As mentioned above, in the conventional sample, the forward bias is 1-day]
It is difficult to obtain an accurate impurity degree if the sample is small. To solve this problem, it is necessary to make the large a electrode α4 into an ohmink. However, heat treatment is required to make the large electrode Ω ohmic, which increases the time required for sample preparation, and furthermore, it is not possible to obtain an accurate impurity concentration due to custom changes in the semiconductor film (IG). The present invention has been developed in view of the circumstances, and aims to provide a method for producing a sample for impurity concentration measurement that can form an ohmic electrode without heat treatment. Yu, a plurality of small electrodes and a large electrode with a larger electrode area than the small electrodes are formed on the semiconductor film, and a myocardial voltage is applied between one of the small electrodes and the large electrode. This is a method for producing a sample for measuring impurity concentration, which is characterized by forming a lotus metal ohmic. (e) Effect When a muscle voltage is applied between one small electrode and a large polarization, a large T [
The Schottky of is destroyed and the large IE pole becomes ohmic. (f) Example Complete method for preparing samples for measuring impurity concentration of uninvented method Figure 1 (a
) (b). The semiconductor film whose impurity concentration is to be measured (e.g. GaA
s) A plurality of small electrodes (2) made of AJ membranes with a diameter of 200 to 400 mm on (1), and a large '1ltN (
Form 3J. AI! Instead of the film, an Au film, a T') film, etc. may be used. Subsequently, a DC voltage of several hundred V is applied between one of the small electrodes (2J (2a)) and the large electrode (3).
As shown in Figure (a), a small electrode (2a) is created by storing electricity R in a capacitor (4) and discharging this between the probe (5 bars 6).
Apply a DC voltage between 37 (7) and At a higher voltage, the small electrode (2a) and the large electrode (3a)
) may be discharged between the two. Through the above steps, a sample for measuring the specific impurity degree is completed, which is equipped with an ohmic large electrode (3) ((IL) t! in the figure shows the ohmic part of the large electrode (3)). In the impurity concentration of this sample, other than the small electrode [2a]
One of the small electrodes (2) (Schottky electrode) of c2&)u (which is ohmic) and the friend electrode (which is ohmic)
3) Measurements can be made by applying a voltage to one of the small electrodes (21) so as to be reverse biased between the forward bias and the forward bias. Since the large electrode is ohmic, when forward bias is applied,
Accurate impurity concentrations can be obtained even when the material is small. Furthermore, since it is possible to obtain ohmic properties without using heat treatment, it is possible to shorten the time required for sample f'): cracking and to prevent custom-made changes in the semiconductor film caused by heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

81図(aJ(b)は本発明実施例の不純物濃度測定用
試料の上面図、第2図は従来の不純物濃度測定用試料の
上面図である。 +1)・・・半導体膜、(2)・・・小電極、(3)・
・・大¥Il極。
Figure 81 (aJ(b) is a top view of a sample for measuring impurity concentration according to an example of the present invention, and Figure 2 is a top view of a conventional sample for measuring impurity concentration. +1)...Semiconductor film, (2)・・・Small electrode, (3)・
・・大¥Il Extreme.

Claims (1)

【特許請求の範囲】[Claims] 1、半導体膜上に複数の小電極と、この小電極に比較し
て大きな電極面積の大電極を形成し、前記小電極の1つ
と前記大電極聞に高電圧を印加して該大電極をオーミッ
ク化することを特徴とする不純物濃度測定用試料の作製
方法。
1. Form a plurality of small electrodes and a large electrode with a larger electrode area than the small electrodes on a semiconductor film, and apply a high voltage between one of the small electrodes and the large electrode to close the large electrode. A method for preparing a sample for measuring impurity concentration, which is characterized by being ohmic.
JP12230388A 1988-05-19 1988-05-19 Manufacture of sample for measuring impurity concentration Pending JPH01291441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12230388A JPH01291441A (en) 1988-05-19 1988-05-19 Manufacture of sample for measuring impurity concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12230388A JPH01291441A (en) 1988-05-19 1988-05-19 Manufacture of sample for measuring impurity concentration

Publications (1)

Publication Number Publication Date
JPH01291441A true JPH01291441A (en) 1989-11-24

Family

ID=14832619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12230388A Pending JPH01291441A (en) 1988-05-19 1988-05-19 Manufacture of sample for measuring impurity concentration

Country Status (1)

Country Link
JP (1) JPH01291441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217907A (en) * 1992-01-28 1993-06-08 National Semiconductor Corporation Array spreading resistance probe (ASRP) method for profile extraction from semiconductor chips of cellular construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217907A (en) * 1992-01-28 1993-06-08 National Semiconductor Corporation Array spreading resistance probe (ASRP) method for profile extraction from semiconductor chips of cellular construction

Similar Documents

Publication Publication Date Title
JPH01503506A (en) Method and apparatus for determining layer thickness of semiconductor layer structure
Kalinin et al. Local electronic transport at grain boundaries in Nb-doped Sr Ti O 3
US7134785B2 (en) Capacitance temperature sensor and temperature measuring device
Dereggi et al. Effects of space charge on the poling of ferroelectric polymers
US3416078A (en) Method of determining resistivity of a thin layer
McKelvey Experimental determination of injected carrier recombination rates at dislocations in semiconductors
Leroy Simultaneous measurements of the polarization in Hα and D 3 prominence emissions
JPH01291441A (en) Manufacture of sample for measuring impurity concentration
Prodan et al. Correcting the polarization effect in very low frequency dielectric spectroscopy
JPH0329336A (en) Position decomposition measurement for diffusion distance of minority carrier in semiconductor crystalline substance
Ferris Four-electrode electronic bridge for electrolyte impedance determinations
Harten The surface recombination on silicon contacting an electrolyte
Ponpon et al. Thin dE/dx detectors of uniform thickness made on epitaxial silicon
Anderson et al. Penetration depth and flux creep in thin superconducting indium films
Fujibayashi Electronic properties of very thin graphite crystals
Ghosh et al. Electric-field-induced migration of oxygen ions in epitaxial metallic oxide films: Non-Debye relaxation and 1/f noise
Tarantov et al. Physical and chemical processes in ISFETs with chalcogenide membranes
Roth et al. A capacitance displacement sensor with elastic diaphragm
US20070166700A1 (en) Sensing biological analytes on a ferroelectric transducer
Howarth The technique of thermal measurements in excitable tissues
Dadarlat et al. New front photopyroelectric methodology based on thickness scanning procedure for measuring the thermal parameters of thin solids
JPS5871636A (en) Evaluating method for semiconductor wafer surface cleanliness
JPH04258754A (en) Ion-nonsensitive sensor
JPS58103658A (en) Reference electrode
Abatti et al. Development of a new geometrical form of micropipette: electrical characteristics and an application as a potassium ion selective electrode