JPH01290A - Electrolysis method of aqueous alkali chloride solution - Google Patents

Electrolysis method of aqueous alkali chloride solution

Info

Publication number
JPH01290A
JPH01290A JP62-154542A JP15454287A JPH01290A JP H01290 A JPH01290 A JP H01290A JP 15454287 A JP15454287 A JP 15454287A JP H01290 A JPH01290 A JP H01290A
Authority
JP
Japan
Prior art keywords
aqueous alkali
chloride solution
exchange membrane
magnetic field
alkali chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-154542A
Other languages
Japanese (ja)
Other versions
JPS64290A (en
Inventor
淳夫 大河原
啓道 西村
能代 誠
堀江 浩文
Original Assignee
旭硝子株式会社
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP62-154542A priority Critical patent/JPH01290A/en
Publication of JPS64290A publication Critical patent/JPS64290A/en
Publication of JPH01290A publication Critical patent/JPH01290A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁場下で電解することを特徴とする好ましく
はパーフルオロカーボン重合体からなる陽イオン交換膜
を使用する塩化アルカリ水溶液の電解方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for electrolyzing an aqueous alkali chloride solution using a cation exchange membrane preferably made of a perfluorocarbon polymer, characterized in that the electrolysis is carried out under a magnetic field. It is something.

[従来の技術] 塩化ナトリウムを電解して苛性ソーダと塩素を製造する
方法としてパーフルオロカーボン重合体の陽イオン交換
膜(以下パーフルオロ陽イオン交換膜)を隔膜とするイ
オン交換膜法は。
[Prior Art] The ion exchange membrane method uses a perfluorocarbon polymer cation exchange membrane (hereinafter referred to as perfluoro cation exchange membrane) as a diaphragm as a method for producing caustic soda and chlorine by electrolyzing sodium chloride.

従来の水銀法アスベスト隔膜法に比して、公害防止及び
省エネルギーの観点から、有利であり、また塩化ナトリ
ウム含量の少ない高品質苛性ソーダを製造できることか
ら近年注目されている。
Compared to the conventional mercury method and asbestos diaphragm method, this method is more advantageous in terms of pollution prevention and energy saving, and has attracted attention in recent years because it can produce high-quality caustic soda with a low sodium chloride content.

このようなイオン交換膜法においては、電流効率を高め
るため種々の改良が加えられてきた。例えば、特開昭5
0−120492号公報には、パーフルオロイオン交換
膜として、カルボン酸型フルオロモノマーと四フッ化エ
ヂレンモノマーの共重合によるもの及びスルホン酸型フ
ッ素樹脂膜にカルボン酸型モノマーを含浸重合したもの
が記載されている。これらはカルボン酸基による高電流
効率とスル永ン酸基による高い電気伝導度を兼備したも
のであるとされている。
Various improvements have been made to such ion exchange membrane methods in order to increase current efficiency. For example, JP-A-5
Publication No. 0-120492 discloses perfluoro ion exchange membranes made by copolymerizing a carboxylic acid type fluoromonomer and a tetrafluoroethylene monomer, and a membrane made by impregnating and polymerizing a carboxylic acid type monomer into a sulfonic acid type fluororesin membrane. Are listed. These are said to have both high current efficiency due to the carboxylic acid group and high electrical conductivity due to the sulfonic acid group.

また、特開昭52−36589号公報は、カルボン酸型
及びスルホン酸型パーフルオロカーボン重合体とのブレ
ンド膜及びカルボン酸型膜とスルホン酸型膜との積層膜
が記載されている。さらにスルホン酸基を有するパーフ
ルオロカーボン重合体の表面を還元処理及び酸化処理す
ることにより、スルホン酸基をカルボン酸基に化学変化
させ、スルホン酸膜の表面にカルボン酸型薄膜層を形成
する方法(特開昭52−24175.同52−2417
6、同52−24177)等が知られている。
Further, JP-A-52-36589 describes a blend membrane of a carboxylic acid type perfluorocarbon polymer and a sulfonic acid type perfluorocarbon polymer, and a laminated membrane of a carboxylic acid type membrane and a sulfonic acid type membrane. Furthermore, the surface of the perfluorocarbon polymer having sulfonic acid groups is subjected to reduction treatment and oxidation treatment to chemically change the sulfonic acid groups to carboxylic acid groups, thereby forming a carboxylic acid type thin film layer on the surface of the sulfonic acid film ( Unexamined Japanese Patent Publication No. 52-24175. No. 52-2417
6, 52-24177), etc. are known.

しかしながら、これらパーフルオロ陽イオン交換膜を使
用して塩化アルカリ水溶液を電解する場合、更に優れた
電流効率を得るべ(新たなる手段が求められている。
However, when electrolyzing an aqueous alkali chloride solution using these perfluorinated cation exchange membranes, a new means is required to obtain even better current efficiency.

[発明の解決しようとする問題点] 本発明は、イオン交換膜を使用する塩化アルカリ水溶液
の電解の際に従来知られていなかった新たなる手段を採
用することにより、より電流効率の高い電解法を新規に
提供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention provides an electrolytic method with higher current efficiency by employing a new means that was previously unknown when electrolyzing an aqueous alkali chloride solution using an ion exchange membrane. The purpose is to provide new services.

[問題点を解決するための手段] かくして本発明は、陽イオン交換膜で区画した陽極室に
塩化アルカリ水溶液を供給し、陰極室に水又は希釈水酸
化アルカリ水溶液を供給し、磁場の印加下に両電極間に
通電し、陰極室に水酸化アルカリを製造することを特徴
とする塩化アルカリ水溶液の電解方法を提供するもので
ある。。
[Means for Solving the Problems] Thus, the present invention supplies an aqueous alkali chloride solution to an anode chamber partitioned by a cation exchange membrane, supplies water or a diluted aqueous alkali hydroxide solution to a cathode chamber, and applies a magnetic field. The present invention provides a method for electrolyzing an aqueous alkali chloride solution, which is characterized in that electricity is passed between both electrodes to produce alkali hydroxide in a cathode chamber. .

かかる本発明によれば、既に高電流効率な与える陽イオ
ン交換膜の場合には、これまでに得られたことのないよ
うな高電流効率で塩化アルカリ水溶液を電解でき、また
いずれの陽イオン交換膜を用いた塩化アルカリ水溶液の
電解の場合にも電流効率の改善を図ることができる。
According to the present invention, in the case of a cation exchange membrane that already has a high current efficiency, an aqueous alkali chloride solution can be electrolyzed with a high current efficiency that has never been obtained, and any cation exchange membrane can be used. Current efficiency can also be improved when electrolyzing an aqueous alkali chloride solution using a membrane.

更に、本発明によれば、長期的使用又は電解条件例えば
温度変化により電流効率が低下した陽イオン交換膜を使
用する電解でも電解効率を高めることができる。
Further, according to the present invention, the electrolysis efficiency can be increased even in electrolysis using a cation exchange membrane whose current efficiency has decreased due to long-term use or electrolysis conditions, such as temperature changes.

本発明方法において、陽イオン交換膜で区画された陽極
室に存在する塩化アルカリ水溶液からなる陽極液及び陰
極室に存在する水酸化アルカリ水溶液からなる陰極液に
対し、通電され塩化アルカリ水溶液の電解が行なわれる
場合に磁場が印加される。磁場は永久磁石によるもので
も、また電磁石によるものでもよい。
In the method of the present invention, electricity is applied to the anolyte consisting of an aqueous alkali chloride solution present in the anode chamber separated by a cation exchange membrane and the catholyte consisting of an aqueous alkali hydroxide solution present in the cathode chamber, to electrolyze the aqueous alkali chloride solution. When performed, a magnetic field is applied. The magnetic field may be a permanent magnet or an electromagnet.

印加される磁場は、通電方向に対して好ましくは45〜
135°特には75〜105°の角度であるのがよく、
またその大きさは、電流密度IA/dm”体当り好まし
くは80〜500ガウス、特には100〜300ガウス
であるのが好ましい。磁場は、陽極液、陽イオン交換膜
及び陰極液の両方に均一に印加する必要はなく、本発明
者の知見によると、陽イオン交換膜に対して大きな密度
で印加されるのが好ましいことが判明した。
The applied magnetic field is preferably 45~
The angle is preferably 135°, especially 75 to 105°,
The magnitude of the magnetic field is preferably 80 to 500 Gauss, particularly 100 to 300 Gauss per current density IA/dm.The magnetic field is applied uniformly to both the anolyte, cation exchange membrane and catholyte. It is not necessary to apply it, and according to the findings of the present inventors, it has been found that it is preferable to apply it at a high density to the cation exchange membrane.

磁場を印加する方法としては、電解槽を磁場の発生する
磁石内に配置する方法、電解槽を構成する枠体、締付枠
、更にはイオン交換膜の内部又は表面に適宜の形状の磁
石を埋設する方法等適宜の手段が採用される。
Methods for applying a magnetic field include placing the electrolytic cell inside a magnet that generates a magnetic field, placing a magnet of an appropriate shape inside or on the frame, clamping frame, or even the ion exchange membrane that constitutes the electrolytic cell. Appropriate means such as burying are adopted.

本発明で使用される陽イオン交換膜は、好ましくは、パ
ーフルオロ重合体から形成されるが、これらは少なくと
も二種の単量体の共重合体からなり、好ましくは次の 
(イ)、(ロ)の重合単位をもつ共重合体からなる。
The cation exchange membranes used in the present invention are preferably formed from perfluoropolymers, which consist of copolymers of at least two monomers, preferably:
Consists of a copolymer having polymerized units (a) and (b).

(イ”)   (CF、−CXX’) (ロ)   (CF、−CX矢 −A ここで、x、x’は、−F、−C1,−H又は−CF3
テあり、Aは−soaM、又は−COOM (Mは、水
素、アルカ重金属又は加水分解によりこれらの基に転化
する基を表す。)、Yは次のものから選ばれるが、そこ
で、z、 z’は−F又は炭素数1〜10のパーフルオ
ロアルキル基であり、x、yは 1〜10の整数を表す
(A") (CF, -CXX') (B) (CF, -CX Arrow -A Here, x, x' are -F, -C1, -H or -CF3
te, A is -soaM, or -COOM (M represents hydrogen, an alkali heavy metal or a group converted into these groups by hydrolysis), Y is selected from the following, where z, z ' represents -F or a perfluoroalkyl group having 1 to 10 carbon atoms, and x and y represent integers of 1 to 10.

−(CF、 )−、、−0−(CF、矢3.  (0−
CF、−CF矢、。
-(CF, )-,, -0-(CF, arrow 3. (0-
CF, -CF arrow,.

ZZ″ なお、上記重合体を形成する (イ)/(ロ)の組成比
(モル比)は、含フツ素重合体が、イオン交換容量が好
ましくは0.5〜2.0ミリ当量/g乾燥樹脂、特には
0.8〜1.9ミリ当量/g乾燥樹脂になるように選ば
れる。
ZZ'' The composition ratio (molar ratio) of (a) and (b) forming the above polymer is such that the fluorine-containing polymer preferably has an ion exchange capacity of 0.5 to 2.0 meq/g. Dry resin is selected, especially between 0.8 and 1.9 meq/g dry resin.

上記含フツ素重合体は、好ましくはパーフルオロ重合体
が適切であり、その好ましい例は、CF、・CF2 と
CF2・CFOCjaCF (CFs) OCF*CF
−3O□Fとの共重合体、CF、・CF、とCF、・C
FO(CF、) x〜、SO□トとの共重合体、CF*
=CF−とCF、・CFOfcF、) 、−、C00C
11゜どの共重合体、 CF2=CF2とCF 1c)
 QC) zcF (C) alo (CF、)、〜、
C0DCII、lとの共重合体が例示される。
The above-mentioned fluorine-containing polymer is preferably a perfluoropolymer, and preferable examples thereof include CF, CF2 and CF2CFOCjaCF (CFs) OCF*CF
-Copolymer with 3O□F, CF, ・CF, and CF, ・C
FO(CF,) x~, copolymer with SO□, CF*
=CF- and CF, CFOfcF, ) , -, C00C
11゜Which copolymer, CF2=CF2 and CF 1c)
QC) zcF (C) alo (CF,), ~,
A copolymer with CODCII, 1 is exemplified.

本発明で使用される陽イオン交換膜は、その全体の厚さ
100〜400μ、好ましくは100〜300μのもの
が採用される。そして必要により、好ましくはポリテト
ラフルオロエチレンなどからなる布、網などの織布、不
織布、又は金属製のメツシュ、多孔体などを存在せしめ
ることにより、補強することができる。また、特開昭5
3−149881号、同54−] 283号、同54−
107479号、同54−157777号公報などに記
載されているポリテトラフルオロエチレンのフィブリル
化繊維あるいは特開昭56−79110号公報などに記
載されている酸型官能基含有子ツマ−を少量共重合して
変成したポリテトラフルオロエチレンのフィブリル化繊
維をブレンドして補強してもよく、その低分子量体の配
合による補強を採用してもよい。更に、本発明のイオン
交換膜は、その表面を粗面化したりあるいは金属酸化物
粒子からなる多孔質薄層をその表面に形成することなど
も可能である。
The cation exchange membrane used in the present invention has a total thickness of 100 to 400 microns, preferably 100 to 300 microns. If necessary, it can be reinforced by the presence of a cloth, a woven fabric such as a net, a nonwoven fabric, a metal mesh, a porous body, etc., preferably made of polytetrafluoroethylene. Also, JP-A-5
No. 3-149881, No. 54-] No. 283, No. 54-
Copolymerization of a small amount of polytetrafluoroethylene fibrillated fibers described in JP-A-56-79110, etc. It may be reinforced by blending fibrillated fibers of polytetrafluoroethylene modified by polytetrafluoroethylene, or reinforcing by blending a low molecular weight substance thereof. Furthermore, the surface of the ion exchange membrane of the present invention can be roughened or a porous thin layer made of metal oxide particles can be formed on the surface.

本発明の陽イオン交換膜を使用して塩化アルカリ水溶液
を電解する場合、その電解槽は、単極型でも複極型でも
よい。
When electrolyzing an aqueous alkali chloride solution using the cation exchange membrane of the present invention, the electrolytic cell may be of a monopolar type or a bipolar type.

電極を配置する場合、電極は本発明の陽イオン交換膜に
接触して配置しても、また適宜の間隔をおいて配置して
もよい。電極はむしろ陽イオン交換膜に強固に押圧する
よりも、電極は陽イオン交換膜面に例えば0〜2.0k
g/cm”にて好ましくは緩かに押接される。また電解
槽を構成する材料は、例えば塩化アルカリ水溶液の電解
の場合には陽極室の場合には、塩化アルカリ水溶液及び
塩素に耐性があるもの、例えば弁金属、チタンが使用さ
れ、陰極室の場合には水酸化アルカリ及び水素に耐性が
ある鉄、スデンレス又はニッケルなど使用される。
When disposing electrodes, the electrodes may be disposed in contact with the cation exchange membrane of the present invention, or may be disposed at appropriate intervals. Rather than firmly pressing the electrode against the cation exchange membrane, the electrode should be pressed onto the surface of the cation exchange membrane, e.g.
The material constituting the electrolytic cell is preferably one that is resistant to aqueous alkali chloride and chlorine in the case of the anode chamber, for example in the case of electrolysis of an aqueous alkali chloride solution. Certain materials are used, such as valve metal, titanium, and in the case of the cathode chamber, iron, stainless steel or nickel, which are resistant to alkali hydroxides and hydrogen.

本発明の陽イオン交換膜を使用して塩化アルカリ水溶液
の電解を行なうプロセス条件としては、既知の条件が採
用できる。例えば陽極室には好ましくは100〜350
g/Iの塩化アルカリ水溶液を供給し、陰極室には水又
は希釈水酸化アルカリを供給し、陰極室に好ましくは2
0〜45重量%特には25〜40重量%の水酸化アルカ
リ水溶液を製造するべく好ましくは80℃〜120℃、
電流密度lO〜I OOA/dm”で電解される。かか
る場合、塩化アルカリ水溶液中のカルシウム及びマグネ
シウムなどの重金属イオンは、イオン交換膜の劣化を招
くので、可及的に小さくせしめるのが好ましい。又、陽
極における酸素の発生を極力防止するために塩酸などの
酸を塩化アルカリ水溶液に添加することができる。
Known conditions can be employed as process conditions for electrolyzing an aqueous alkali chloride solution using the cation exchange membrane of the present invention. For example, preferably 100 to 350 for the anode chamber.
g/I aqueous alkali chloride solution, water or diluted alkali hydroxide is supplied to the cathode chamber, preferably 2 g/I.
In order to produce an aqueous alkali hydroxide solution of 0 to 45% by weight, particularly 25 to 40% by weight, preferably 80°C to 120°C,
Electrolysis is carried out at a current density of 10 to 100A/dm. In such a case, heavy metal ions such as calcium and magnesium in the aqueous alkali chloride solution cause deterioration of the ion exchange membrane, so it is preferable to minimize them as much as possible. Further, an acid such as hydrochloric acid can be added to the aqueous alkali chloride solution in order to prevent the generation of oxygen at the anode as much as possible.

[作用] 本発明の塩化アルカリ水溶液の電解において、電流効率
を向上させる磁場の効果としては、必ずしも明らかでは
ないが、おおよそ次のように考えられる。パーフルオロ
イオン交換膜のNa”イオンの選択的透過は、膜中に形
成されているイオンクラスター間を結ぶチャンネルの大
きさや含水量によって支配される。Na”イオンには、
交換基と結合・解離を繰り返しながら移動するものと、
膜中の交換基とは関係なく、膜内の自由水中を移動する
ものがあると考えられている(“ソーダと塩素”19B
6.10. p413)。
[Function] In the electrolysis of the aqueous alkali chloride solution of the present invention, the effect of the magnetic field that improves the current efficiency is not necessarily clear, but it is thought to be approximately as follows. The selective permeation of Na'' ions through perfluoro ion exchange membranes is controlled by the size and water content of channels connecting ion clusters formed in the membrane.
Those that move while repeatedly bonding and dissociating with exchange groups,
It is thought that some substances move in the free water in the membrane, regardless of the exchange groups in the membrane ("Soda and Chlorine" 19B).
6.10. p413).

電流効率を減じる要因としてはNa”イオンが交換基に
束縛される、いわゆるイオン対形成が挙げられる。これ
は、含水率が低下する場合、すなわち、運転温度の低下
や、アルカリ濃度の増加により顕著となる。このような
膜に磁場を印加すると、Na″″イオンに対して電場以
外の力が加わり、交換基による束縛を軽減させる効果を
もたらし、Na+イオンが透過しやすくなるために、電
流効率が上昇するものと考えられる。
Factors that reduce the current efficiency include so-called ion pair formation, in which Na'' ions are bound to exchange groups. When a magnetic field is applied to such a membrane, a force other than the electric field is applied to the Na'' ions, which has the effect of reducing the binding caused by the exchange group, making it easier for Na+ ions to permeate, thereby increasing the current efficiency. is expected to increase.

[実施例] 実施例I テトラフルオロエチレンとcF!−、cFo (CF、
) 、C00CILを重合せしめ、イオン交換容量1.
30meq/gである共重合体を得た。この共重合体を
押出成形し厚さ 200μのフィルムを得た。該膜を2
5%苛性ソーダ水溶液で70℃、16時間加水分解を行
ないナトリウム型のイオン交換膜とした。
[Example] Example I Tetrafluoroethylene and cF! -, cFo (CF,
), C00CIL was polymerized and the ion exchange capacity was 1.
A copolymer having a concentration of 30 meq/g was obtained. This copolymer was extrusion molded to obtain a film with a thickness of 200 μm. The membrane is 2
Hydrolysis was carried out with a 5% caustic soda aqueous solution at 70° C. for 16 hours to obtain a sodium type ion exchange membrane.

かくして得られた膜をチタンのパンチトメタルに酸化ル
テニウムと酸化イリジウムと酸化チ1タンの固溶体を被
覆した陽極とSOS 304製パンチトメタルにルテニ
ウム入りラネーニッケル(ルテニウム5%、ニッケル5
0%、アルミニウム45%)を電着した陰極を用いた電
解槽に極間2mmでセットし陽極室に300g/lの塩
化ナトリウム水溶液を、陰極室に水を供給しつつ陽極室
の塩化ナトリウム濃度を200g/Iに、また陰極室の
苛性ソーダ濃度を35重量%に保ちつつ、90℃、30
A/di”の条件で電解を行なった。5日間電解を行な
たつところ電流効率は95%であった。その後電流方向
に垂直に8000ガウスの磁場を印加したところ電流効
率は0.5%上昇し95.5%になった。
The thus obtained film was used as an anode in which a punched titanium metal was coated with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide.
Set in an electrolytic cell using a cathode electrodeposited with aluminum (0%, aluminum 45%) with a spacing of 2 mm, the sodium chloride concentration in the anode chamber was adjusted while supplying a 300 g/l sodium chloride aqueous solution to the anode chamber and water to the cathode chamber. While maintaining the concentration of caustic soda at 200 g/I and the concentration of caustic soda in the cathode chamber at 35% by weight, at 90°C and 30%
Electrolysis was carried out under the conditions of "A/di". After 5 days of electrolysis, the current efficiency was 95%. After that, when a magnetic field of 8000 Gauss was applied perpendicular to the current direction, the current efficiency was 0.5%. The rate rose to 95.5%.

実施例2 実施例1と同様の膜及び電解槽を用い60℃、25A/
dm”の条件で電解を行なった。5日間電解を行なたつ
ところ電流効率は94%であった。その後電流方向に垂
直に10,000ガウスの磁場を印加したところ電流効
率は0.8%上昇し94.8%になった。さらに磁場を
12.000ガウスにしたところ電流効率はさらに0.
5%上昇し95.3%になった。
Example 2 Using the same membrane and electrolytic cell as in Example 1, at 60°C and 25A/
Electrolysis was carried out under the conditions of ``dm''. After 5 days of electrolysis, the current efficiency was 94%. After that, when a magnetic field of 10,000 Gauss was applied perpendicular to the current direction, the current efficiency was 0.8%. The current efficiency increased to 94.8%.When the magnetic field was further increased to 12,000 Gauss, the current efficiency further decreased to 0.
It rose 5% to 95.3%.

実施例3 テトラフルオロエチレンとCF、・CFO(CFi) 
acOOC1+、を重合せしめ、イオン交換容量1.2
0meq/gである共重合体を得た。この共重合体を押
出成形し厚さ約100μmのフィルムを得た。該膜を2
5重量%苛性ソーダ水溶液で70℃、16時間加水分解
を行ないナトリウム型のイオン交換膜とした。
Example 3 Tetrafluoroethylene and CF, CFO (CFi)
acOOC1+ is polymerized, and the ion exchange capacity is 1.2.
A copolymer with a concentration of 0 meq/g was obtained. This copolymer was extrusion molded to obtain a film with a thickness of about 100 μm. The membrane is 2
Hydrolysis was carried out with a 5% by weight aqueous sodium hydroxide solution at 70° C. for 16 hours to obtain a sodium type ion exchange membrane.

かくして得られた膜を実施例1と同様の電極、電解槽、
電解液及び電磁石を用い電解を行なった。90℃、30
A/dm”の条件で5日間電解を行なったところ電流効
率は96%であった。さらに条件を変え60℃、30A
/dm”で3日間電、解を行なったところ電流効率は9
1%になった。再び90℃、30A/dm”で3日間電
解を行なったところ電流効率は93%であった。その後
電流方向に垂直に8000ガウスの磁場を印加したとこ
ろ電流効率は1.5%上昇し94.5%になった。さら
に同様の方向、強さで磁場を印加しつつ60℃に温度を
下げ3日間電解を行なったところ電流効率は92.5%
であった。
The membrane thus obtained was used in the same electrode, electrolytic cell, and
Electrolysis was performed using an electrolytic solution and an electromagnet. 90℃, 30
When electrolysis was carried out for 5 days under the condition of "A/dm", the current efficiency was 96%.Furthermore, the conditions were changed to 60℃ and 30A.
/dm'' for 3 days, the current efficiency was 9.
It became 1%. When electrolysis was carried out again at 90°C and 30 A/dm'' for 3 days, the current efficiency was 93%.After that, when a magnetic field of 8000 Gauss was applied perpendicular to the current direction, the current efficiency increased by 1.5% to 94. The current efficiency was 92.5% when the temperature was lowered to 60°C and electrolysis was carried out for 3 days while applying a magnetic field in the same direction and strength.
Met.

[発明の効果] パーフルオロイオン交換膜の塩化アルカリ水溶液の電解
を磁場下で行なうことにより電流呼応率は向上し、電解
のコスト低減に効果を有する。さらに従来比較的低温で
の電解では電流効率の低下が起こり、電解電流の関係か
ら抑制電解しかできなかったが、発明の方法を採用する
ことにより電力の効率的な利用が可能となる。
[Effects of the Invention] By electrolyzing the aqueous alkali chloride solution of the perfluoro ion exchange membrane under a magnetic field, the current response rate is improved, which is effective in reducing the cost of electrolysis. Furthermore, conventional electrolysis at relatively low temperatures resulted in a decrease in current efficiency, and due to the electrolytic current, only suppressed electrolysis could be performed, but by adopting the method of the invention, it becomes possible to use electric power efficiently.

また、長期使用により性能低下をおこしたものについて
も一部機能の回復が本性により実現するという効果をも
たらす。
In addition, it has the effect that even if the performance has deteriorated due to long-term use, some functions can be recovered by nature.

Claims (5)

【特許請求の範囲】[Claims] (1)陽イオン交換膜で区画した陽極室に塩化アルカリ
水溶液を供給し、陽極室に水又は希釈水酸化アルカリ水
溶液を供給し、磁場の印加下に両電極間に通電し、陰極
室に水酸化アルカリを製造することを特徴とする塩化ア
ルカリ水溶液の電解方法。
(1) Supply an aqueous alkali chloride solution to the anode chamber divided by a cation exchange membrane, supply water or a dilute aqueous alkali hydroxide solution to the anode chamber, apply electricity between both electrodes under the application of a magnetic field, and add water to the cathode chamber. A method for electrolyzing an aqueous alkali chloride solution, characterized by producing an alkali oxide.
(2)磁場の強さが、電流密度1A/dm^2当り、8
0ガウス以上である特許請求の範囲(1)又は(2)の
方法。
(2) The strength of the magnetic field is 8 per current density 1A/dm^2.
The method according to claim (1) or (2), which is 0 Gauss or more.
(3)磁場が電流方向に対して、45゜〜135゜にな
るように印加される特許請求の範囲(1)又は(2)の
方法。
(3) The method according to claim (1) or (2), wherein the magnetic field is applied at an angle of 45° to 135° with respect to the current direction.
(4)塩化アルカリ水溶液の濃度が100〜300g/
lであり、水酸化アルカリ水溶液の濃度が、20〜45
重量%である特許請求の範囲(1)、(2)又は(3)
の方法。
(4) The concentration of aqueous alkali chloride solution is 100 to 300 g/
l, and the concentration of the aqueous alkali hydroxide solution is 20 to 45
Claims (1), (2) or (3) which are weight %
the method of.
(5)陽イオン交換膜が、パーフルオロカーボン重合体
からなり、イオン交換膜として少なくともカルボン酸基
をもつ特許請求の範囲(1)、(2)、(3)又は(4
)の方法。
(5) Claims (1), (2), (3) or (4) in which the cation exchange membrane is made of a perfluorocarbon polymer and has at least a carboxylic acid group as an ion exchange membrane.
)the method of.
JP62-154542A 1987-06-23 Electrolysis method of aqueous alkali chloride solution Pending JPH01290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62-154542A JPH01290A (en) 1987-06-23 Electrolysis method of aqueous alkali chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62-154542A JPH01290A (en) 1987-06-23 Electrolysis method of aqueous alkali chloride solution

Publications (2)

Publication Number Publication Date
JPS64290A JPS64290A (en) 1989-01-05
JPH01290A true JPH01290A (en) 1989-01-05

Family

ID=

Similar Documents

Publication Publication Date Title
US4683040A (en) Process for electrolysis of sodium chloride
US4983264A (en) Four layer cation exchange fluoropolymer membrane
JPH04136196A (en) Cation exchange membrane containing fluorine for electrolysis and production of alkali hydroxide using this membrane
EP0192261B1 (en) Multilayer cation exchange membrane
US5716504A (en) Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity
US4686120A (en) Multilayer cation exchange membrane
JPS621652B2 (en)
CA1333577C (en) Membrane electrolytic process for producing concentrated caustic
CA2010844A1 (en) Cation exchange reinforced membrane and process
JPH01290A (en) Electrolysis method of aqueous alkali chloride solution
JP3112039B2 (en) How to restart the electrolytic cell
JPS60243292A (en) Manufacture of caustic soda of high concentration
EP0069772B1 (en) Sacrificial reinforcement in cation exchange membrane
US4610764A (en) Electrolytic cation exchange membrane
CA1282029C (en) Restoring current efficiency by temporary suspension of electrolysis and reduced catholyte concentration
JPH0633281A (en) Electrolysis method of alkali chloride aqueouse solution
JPS61500669A (en) Zero gap electrolyzer
JPS62199629A (en) Novel multi-layer permeable membrane for electrolysis
JP2623571B2 (en) Method for producing alkali hydroxide
JPH0118156B2 (en)
CA1256062A (en) Electrolytic cation exchange membrane
JPH0320490A (en) Production of alkali hydroxide
JPS63310985A (en) Production of alkali hydroxide
JPH0254791A (en) Production of alkali hydroxide
JPS6383138A (en) Improved fluorinated ion-exchange membrane