JPH01290753A - Production of amorphous alloy-coated metallic material - Google Patents

Production of amorphous alloy-coated metallic material

Info

Publication number
JPH01290753A
JPH01290753A JP11693988A JP11693988A JPH01290753A JP H01290753 A JPH01290753 A JP H01290753A JP 11693988 A JP11693988 A JP 11693988A JP 11693988 A JP11693988 A JP 11693988A JP H01290753 A JPH01290753 A JP H01290753A
Authority
JP
Japan
Prior art keywords
alloy
amorphous alloy
molten
coated
molten alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11693988A
Other languages
Japanese (ja)
Inventor
Takao Handa
隆夫 半田
Shigemori Miyata
宮田 恵守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11693988A priority Critical patent/JPH01290753A/en
Publication of JPH01290753A publication Critical patent/JPH01290753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To efficiently coat the surface of a metallic material with an amorphous alloy with good adhesion by locally melting only the surface part of the metallic material traveling at high speed, injecting a molten alloy onto the molten part, and immediately dipping the material in a refrigerant. CONSTITUTION:A coating alloy 13 is melted in a crucible 12 having a nozzle, the molten alloy 13 is injected upward onto the surface of the metallic material 11 moving at high speed from a nozzle, and the surface is uniformly coated. At this time, the surface part 17 of the material 11 is irradiated with a laser beam or an electron beam 16 immediately before the application of the molten alloy 13 to locally melt only the surface part 17, and the molten alloy 13 is injected onto the part. The material 11 coated with the molten alloy 13 is dipped in the refrigerant 14 to quench and solidify the molten metal, and the material 11 is coated with an amorphous alloy 15. The material 11 and the amorphous alloy coating layer 15 are metallurgically bonded, and the adhesion is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高強度、高硬度、高耐食性等優れた特性を有
する非晶質合金を連続的に金属線、金属板等に被覆する
方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for continuously coating metal wires, metal plates, etc. with an amorphous alloy having excellent properties such as high strength, high hardness, and high corrosion resistance. It is related to.

[従来の技術] 様々な優れた特性を有する非晶質合金は、薄帯として得
ることが容易なため表面改質用の被覆材として適してい
るが、金属板等に張りつける場合、クラツド化の過程で
熱により結晶化して非晶質合金の特性が失われる危険性
がある。また、例えば金属線等に被覆する場合には巻き
つける工程等を必要とするため、いずれにしてもコスト
および量産性の面で問題がある。一方、非晶質合金を直
接被覆する方法として、めっき法やスパッタ法も試みら
れているが、ピンホール等の欠陥が出来やすく、例えば
耐食性表面処理法としては好ましくない。さらに、これ
らの直接被覆法は大量の製造には不向きであり、コスト
および量産性の面でも問題がある。
[Prior art] Amorphous alloys, which have various excellent properties, are suitable as coating materials for surface modification because they can be easily obtained as thin strips. There is a risk that the properties of the amorphous alloy will be lost due to crystallization due to heat during the process. Furthermore, for example, when coating a metal wire or the like, a winding process is required, so in any case there are problems in terms of cost and mass production. On the other hand, plating methods and sputtering methods have also been attempted as methods for directly coating amorphous alloys, but these methods tend to cause defects such as pinholes and are not preferred as, for example, corrosion-resistant surface treatment methods. Furthermore, these direct coating methods are unsuitable for mass production and have problems in terms of cost and mass productivity.

そこで、まず鋼線表面への被覆と非晶質化を同時に行う
ことを考え、効率的に高性能な非晶質合金被N鋼線を製
造する方法について特願昭62−256384 として
出願した。この方法の概念図を第3図に示す。鋼線1の
表面に、るつぼ2内で溶融された合金7が、ドーナツ状
のノズル3から吹とつけられ、鋼線1を被覆する。4は
ヒーター。
Therefore, we first thought of coating the surface of the steel wire and making it amorphous at the same time, and filed an application as Japanese Patent Application No. 62-256384 for a method for efficiently manufacturing a high-performance amorphous alloy coated N steel wire. A conceptual diagram of this method is shown in FIG. The alloy 7 melted in the crucible 2 is sprayed onto the surface of the steel wire 1 from a donut-shaped nozzle 3 to coat the steel wire 1. 4 is a heater.

5は鋼線1の温度上昇を防止するための断熱材である。5 is a heat insulating material for preventing the temperature of the steel wire 1 from rising.

溶融合金7が吹きつけられた鋼線1は冷媒6中に浸漬さ
れる。溶融合金7は鋼線1への放熱および冷媒6に浸漬
することによる冷媒への放熱により急冷凝固し、非晶質
合金8となる。この二つの放熱過程を組み合わせて超急
冷効率を上げている。溶融合金の鋼線への放熱過程はロ
ール急冷法における放熱過程と同様で、熱伝専率が優れ
た金属への放熱であり、鋼線が太くて熱容量が大きい場
合は100μm程度の被覆厚さの非晶質化が可能である
。また、冷媒への放熱過程は液中紡糸法と同様であり、
その放熱効率は表面積に依存する。従来の液中紡糸法で
は系全体を急冷する必要があるため、非晶質化が可能な
線径は、150μm程度までであるが、この方法におい
ては冷却を要するのは表面に塗布した溶融合金のみであ
るため、線径に依らず非晶質化が可能である。鋼線はこ
の過程においてほぼ常温に保たれるが、被覆した非晶質
合金は凝固温度と常温との温度差により熱収縮し鋼線表
面に強固に被覆され、非晶質合金の形成とこれによる鋼
線の被覆が同時に実現される。この方法は鋼線を連続し
て処理することが可能であり、極めて能率良く非晶質合
金被覆鋼線を製造することが可能となる。この方法は第
4図に示すような工程により鋼板等にも適用できる。す
なわち、高速移動する鋼板9の表面に熔融合金を吹きつ
け、鋼板を冷媒中に浸漬することによって非晶質合金を
被覆することができる。
The steel wire 1 onto which the molten alloy 7 has been sprayed is immersed in the coolant 6. The molten alloy 7 is rapidly solidified by heat dissipation to the steel wire 1 and heat dissipation to the refrigerant by being immersed in the refrigerant 6, and becomes an amorphous alloy 8. These two heat dissipation processes are combined to increase ultra-quenching efficiency. The heat dissipation process of the molten alloy to the steel wire is similar to the heat dissipation process in the roll quenching method, and heat is dissipated to a metal with excellent heat transfer efficiency.If the steel wire is thick and has a large heat capacity, the coating thickness is about 100 μm. It is possible to make it amorphous. In addition, the heat dissipation process to the refrigerant is similar to the submerged spinning method,
Its heat dissipation efficiency depends on the surface area. In the conventional submerged spinning method, it is necessary to rapidly cool the entire system, so the wire diameter that can be made amorphous is up to about 150 μm, but in this method, it is the molten alloy coated on the surface that requires cooling. Therefore, it is possible to make the wire amorphous regardless of the wire diameter. The steel wire is kept at almost room temperature during this process, but the coated amorphous alloy shrinks due to the temperature difference between the solidification temperature and room temperature, and is tightly coated on the steel wire surface, causing the formation of an amorphous alloy and this. Coating of the steel wire is realized at the same time. This method allows the steel wire to be processed continuously, making it possible to produce an amorphous alloy-coated steel wire extremely efficiently. This method can also be applied to steel plates and the like through the steps shown in FIG. That is, the amorphous alloy can be coated by spraying the molten alloy onto the surface of the steel plate 9 moving at high speed and immersing the steel plate in a coolant.

[発明が解決しようとする課題] しかし、この方法では線径と溶融合金の非晶質化臨界冷
却速度によっては金属への放熱過程において結晶化して
しまい、非晶質合金の優れた特性を充分に発揮できない
ことがあった。また、金属面と被覆層とは冶金的結合を
していないため加工あるいは衝撃等によって被覆厚に割
れ等が生じると容易に剥離してしまう場合がある。
[Problem to be solved by the invention] However, with this method, depending on the wire diameter and the critical cooling rate for amorphousization of the molten alloy, crystallization may occur during the heat dissipation process to the metal, and the excellent properties of the amorphous alloy cannot be fully utilized. There were times when I was unable to perform to my full potential. Further, since the metal surface and the coating layer are not metallurgically bonded, they may easily peel off if cracks or the like occur in the coating thickness due to processing or impact.

本発明の目的は高性能な非晶質合金被覆金属材を低価格
で連続的すなわち大量に製造する方法について、被覆層
の結晶化を未然に防き、かつ金属面と被覆層を冶金的に
結合させ被覆材の信頼性を著しく高めた方法を1足供す
ることにある。
The purpose of the present invention is to provide a method for manufacturing high-performance amorphous alloy-coated metal materials continuously at low cost, i.e., in large quantities, by preventing the crystallization of the coating layer and metallurgically forming the metal surface and the coating layer. The object of the present invention is to provide a method of bonding and significantly increasing the reliability of the covering material.

[課題を解決するための手段] このような目的を達成するために、本発明は高速で移動
する金属材の表面の一部分のみを局部的に溶融し、溶融
部分に被覆する溶融合金を噴出塗布した後、直ちに冷媒
に浸漬することによって金属材に非晶質合金を被覆する
ことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention locally melts only a part of the surface of a metal material moving at high speed, and sprays a molten alloy to cover the melted part. After that, the metal material is coated with the amorphous alloy by immediately immersing it in a refrigerant.

[作 用コ 第1図に本発明の概念図を示す。金属線または金属板な
どの金属材11にむらなく溶融合金を塗布するために、
ノズルを有するるつぼ12において合金を溶融し、図上
部の図示しない高速送り装置から図下部の図示しない高
速巻き取り装置へ高速で移動している金属材11の表面
にるつぼ12のノズルから溶融合金13を噴出して金属
材表面に均一に、方布する。この際、溶融合金を上向き
に噴出し空中に湯溜を形成させて、その範囲に金属材を
通過させる。この溶融合金13を塗布された金属材11
を冷媒14中に浸漬し急冷凝固し非晶質合金15によっ
て被覆された金属材を得る。以上が基本的な製法である
が、さらに、本発明では溶融合金を塗布する直前にレー
ザあるいは電子ビーム16により金属材11の表面部分
17だけを局部的に溶融し、その部分に溶融合金を噴出
塗布することにより、塗布する溶融合金の結晶化を未然
に防ぎ、かつ金属材11と塗布された溶融合金が凝固し
て形成される被覆層との冶金的接合を実現する。本発明
ては、塗布された溶融合金13および金属材11の表面
の局部的熔融部分は金属材への放熱および冷媒に浸漬す
ることによる冷媒への放熱により急冷凝固される。この
二つの放熱過程を組合せて超急冷効率を上げ、金属材の
移動速度により被覆層厚さを制御し適当な厚さの非晶質
合金被覆層をより広い合金組成で形成することが可能に
なるため、非晶質合金の優れた特性を最大限に発揮させ
ることかできる。また、金属材を高速で移動させること
により超急冷効率も高まり、以上の工程は連続的゛かつ
高速で行われ、製品の量産が可能になる。
[Function] Fig. 1 shows a conceptual diagram of the present invention. In order to evenly apply the molten alloy to the metal material 11 such as a metal wire or a metal plate,
The alloy is melted in a crucible 12 having a nozzle, and the molten alloy 13 is applied from the nozzle of the crucible 12 to the surface of the metal material 11, which is moving at high speed from a high-speed feeding device (not shown) in the upper part of the figure to a high-speed winding device (not shown) in the lower part of the figure. Spray it evenly and spread it on the surface of the metal material. At this time, the molten alloy is spouted upward to form a pool in the air, and the metal material is passed through the pool. Metal material 11 coated with this molten alloy 13
is immersed in coolant 14 and rapidly solidified to obtain a metal material coated with amorphous alloy 15. The above is the basic manufacturing method, but furthermore, in the present invention, just before applying the molten alloy, only the surface portion 17 of the metal material 11 is locally melted using a laser or electron beam 16, and the molten alloy is jetted onto that portion. By coating, crystallization of the applied molten alloy is prevented, and metallurgical bonding between the metal material 11 and the coating layer formed by solidification of the applied molten alloy is achieved. In the present invention, the applied molten alloy 13 and the locally melted portions on the surfaces of the metal material 11 are rapidly solidified by heat radiation to the metal material and heat radiation to the refrigerant by immersion in the refrigerant. By combining these two heat dissipation processes, we can increase the ultra-quenching efficiency and control the thickness of the coating layer depending on the moving speed of the metal material, making it possible to form an amorphous alloy coating layer of an appropriate thickness with a wider range of alloy compositions. Therefore, the excellent properties of the amorphous alloy can be maximized. In addition, by moving the metal material at high speed, the ultra-quenching efficiency is increased, and the above steps are performed continuously and at high speed, making it possible to mass produce products.

[実施例コ 以下に本発明の詳細な説明する。[Example code] The present invention will be explained in detail below.

実施例1 第2図は本発明の一実施例を説明する図であって、21
は被覆される3mmφの鋼線、22は金属材21の表面
のみを局部的に溶融するためのレーザビーム照射装置、
23は被覆する合金を溶融し、溶融合金を噴出塗布する
ためのノズル23A付きるつぼ、24は冷媒の水である
。溶融合金等の酸化を防ぐため不活性ガス雰囲気中で被
覆処理を行った。
Embodiment 1 FIG. 2 is a diagram illustrating an embodiment of the present invention, with 21
22 is a 3 mmφ steel wire to be coated; 22 is a laser beam irradiation device for locally melting only the surface of the metal material 21;
23 is a crucible with a nozzle 23A for melting the alloy to be coated and spraying the molten alloy, and 24 is water as a coolant. Coating treatment was performed in an inert gas atmosphere to prevent oxidation of the molten alloy.

鋼線21は高速送り装置25および高速巻取り装置26
によって図の上から下へ20m/sの速度で移動してい
る鋼線21の表面を、レーザビーム照射装置22から発
射されたビームにより局部的に溶融し、その直後はとん
ど同時に鋼線にむらなく溶融合金を塗布するために、ノ
ズル23^を有するるつぼ23において配合組成Fe、
5St、。815合金を溶融し、噴出塗布した。この溶
融合金27を塗布された鋼線21を冷却水24中に浸漬
した。以上の工程による超急冷凝固が実現され、溶融合
金は非晶質となり、非晶質合金28を約50μm被覆し
た鋼線を得ることができた。I’e75silOa+5
非晶質合金を被覆したことによって引張強さが330〜
380kg/mm2、破断伸びも2〜4%に向上した。
The steel wire 21 is passed through a high-speed feeding device 25 and a high-speed winding device 26
The surface of the steel wire 21 moving at a speed of 20 m/s from the top to the bottom of the figure is locally melted by the beam emitted from the laser beam irradiation device 22, and immediately after that, the steel wire 21 is melted at the same time. In order to apply the molten alloy evenly, the composition Fe,
5St. 815 alloy was melted and jet coated. The steel wire 21 coated with this molten alloy 27 was immersed in cooling water 24. Ultra-rapid solidification was achieved through the above steps, and the molten alloy became amorphous, making it possible to obtain a steel wire coated with about 50 μm of amorphous alloy 28. I'e75silOa+5
Tensile strength is 330 ~ due to coating with amorphous alloy
380 kg/mm2, and the elongation at break was also improved to 2 to 4%.

使用した鋼線の引張強さは300kg/mm2.破断伸
びは2%である。
The tensile strength of the steel wire used was 300 kg/mm2. The elongation at break is 2%.

実施例2 実施例1の製法を用いて鋼線移動速度を変えて非晶質合
金被覆鋼線を作製し被覆厚さの異なる鋼線を得た。それ
らの関係を第1表に示す。
Example 2 Amorphous alloy coated steel wires were produced using the manufacturing method of Example 1 by changing the steel wire moving speed to obtain steel wires with different coating thicknesses. Their relationship is shown in Table 1.

速度■で動く鋼線表面に溶融合金を噴出塗布するとぎ、
得られる非晶質合金層の厚みtはV’(nは08〜09
の定数)に比例し、■は冷却速度を決定する。非晶質合
金の優れた特性を発揮させるにはtは10μm程度でも
良いが、長時間使用による摩耗等を考慮すると実用的に
は50〜100μmの3金層を得ることが望ましい。溶
融合金を非晶質化するにはIO4に/s以上の冷却速度
が必要であり、そのためにはVは5 m/s以上、上記
の層厚を得るには■は20〜30m/s程度が最適であ
る。これ以上の移動速度では鋼線が溶融合金中に存在す
る時間か短くなるので被M厚さtは逆に小さくなる。
When spraying molten alloy onto the surface of a steel wire moving at speed ■,
The thickness t of the obtained amorphous alloy layer is V' (n is 08 to 09
(constant of ), and ■ determines the cooling rate. In order to exhibit the excellent properties of the amorphous alloy, t may be about 10 μm, but in consideration of wear due to long-term use, it is practically desirable to obtain a 3-metal layer with a thickness of 50 to 100 μm. In order to make the molten alloy amorphous, a cooling rate of IO4/s or more is required, and for that purpose V is 5 m/s or more, and to obtain the above layer thickness, ■ is about 20 to 30 m/s. is optimal. If the moving speed is higher than this, the time during which the steel wire exists in the molten alloy becomes shorter, so the thickness t of the wire becomes smaller.

第1表 鋼線移動速度と被覆厚さの関係実施例3 上記の製法を応用して、第2図においてレーザビーム照
射装置22およびノズル付るつぼ23を複数個併設し、
また、非晶質合金を適宜選択することによって耐食性、
耐摩耗性等に非常に優れる鋼板を得ることができた。例
えば、Fe45Cr25MO+oP 13c7非晶貿合
金を被覆した鋼板は耐食性に優れ、80℃の6規定塩酸
中という非常に厳しい環境でも自己不働態化し浸食され
にくい。
Table 1 Relationship between steel wire moving speed and coating thickness Example 3 Applying the above manufacturing method, a plurality of laser beam irradiation devices 22 and crucibles 23 with nozzles are installed in parallel in FIG.
In addition, by appropriately selecting the amorphous alloy, corrosion resistance and
It was possible to obtain a steel plate with extremely excellent wear resistance. For example, a steel plate coated with Fe45Cr25MO+oP13c7 amorphous alloy has excellent corrosion resistance, and is self-passivated and resistant to corrosion even in the extremely harsh environment of 6N hydrochloric acid at 80°C.

また、Fe4oTa4ocr2o非晶質合金被NvA板
は、耐食性と同時に耐摩耗性に優れ、ゴム砥石(#90
)による最大摩耗深さを比較すると5OS304の17
5以下であった。このように優れた特性を有する非晶質
合金を被覆した金属板は複合材料として互いの長所を十
分に活かすことができ非常に有用である。
In addition, the Fe4oTa4ocr2o amorphous alloy NvA plate has excellent corrosion resistance and abrasion resistance, and has a rubber grinding wheel (#90
), the maximum wear depth is 17 for 5OS304.
It was 5 or less. A metal plate coated with an amorphous alloy having such excellent properties is very useful as a composite material since it can fully take advantage of each other's strengths.

[発明の効果コ 以上説明したように、本発明によれば非晶質合金を金属
材表面に効率的かつ経済的に密着性良く被覆し非晶質合
金の優れた特性を最大限に活かした金属材を製造できる
利点がある。
[Effects of the Invention] As explained above, according to the present invention, an amorphous alloy can be efficiently and economically coated on the surface of a metal material with good adhesion, and the excellent properties of the amorphous alloy can be fully utilized. It has the advantage of being able to manufacture metal materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念図、 第2図は本発明の詳細な説明する模式図、第3図および
第4図はそれぞれ従来法の概念図である。 1・・・鋼線、 2・・・るつぼ、 3・・・ドーナツ状ノズル、 4・・・ヒーター、 5・・・断熱材、 6・・・冷媒、 7・・・溶融合金、 8・・・非晶質合金、 9・・・鋼板、 II・・・金属材、 12・・・るつぼ、 13・・・溶融合金、 14・・・冷媒、 15・・・非晶質合金被覆層、 工6・・・レーザあるいは電子ビーム、17・・・溶融
表面、 21・・・鋼線、 22・・・レーザビーム照射装置、 24・・・冷媒、 25・・・高速送り装置、 26・・・高速巻取り装置、 27・・・溶融合金、 28・・・非晶質合金層。 特許出願人  日本電信電話株式会社
FIG. 1 is a conceptual diagram of the present invention, FIG. 2 is a schematic diagram explaining the present invention in detail, and FIGS. 3 and 4 are conceptual diagrams of the conventional method. DESCRIPTION OF SYMBOLS 1... Steel wire, 2... Crucible, 3... Donut-shaped nozzle, 4... Heater, 5... Insulating material, 6... Refrigerant, 7... Molten alloy, 8...・Amorphous alloy, 9... Steel plate, II... Metal material, 12... Crucible, 13... Molten alloy, 14... Refrigerant, 15... Amorphous alloy coating layer, 6... Laser or electron beam, 17... Melting surface, 21... Steel wire, 22... Laser beam irradiation device, 24... Coolant, 25... High speed feeding device, 26... High-speed winding device, 27... Molten alloy, 28... Amorphous alloy layer. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 1)高速で移動する金属材の表面の一部分のみを局部的
に溶融し、該溶融部分に被覆する溶融合金を噴出塗布し
た後、直ちに冷媒に浸漬することによって前記金属材に
非晶質合金を被覆することを特徴とする非晶質合金被覆
金属材の製造法。
1) Locally melt only a part of the surface of a metal material moving at high speed, spray and apply the molten alloy to cover the melted part, and then immediately immerse the metal material in a coolant to coat the metal material with an amorphous alloy. A method for producing an amorphous alloy-coated metal material characterized by coating.
JP11693988A 1988-05-16 1988-05-16 Production of amorphous alloy-coated metallic material Pending JPH01290753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11693988A JPH01290753A (en) 1988-05-16 1988-05-16 Production of amorphous alloy-coated metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11693988A JPH01290753A (en) 1988-05-16 1988-05-16 Production of amorphous alloy-coated metallic material

Publications (1)

Publication Number Publication Date
JPH01290753A true JPH01290753A (en) 1989-11-22

Family

ID=14699452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11693988A Pending JPH01290753A (en) 1988-05-16 1988-05-16 Production of amorphous alloy-coated metallic material

Country Status (1)

Country Link
JP (1) JPH01290753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341765B2 (en) * 2004-01-27 2008-03-11 Battelle Energy Alliance, Llc Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates
WO2015014401A1 (en) * 2013-08-01 2015-02-05 European Space Agency Method and system for producing and using wires including a core and multi-elemental coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341765B2 (en) * 2004-01-27 2008-03-11 Battelle Energy Alliance, Llc Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates
WO2015014401A1 (en) * 2013-08-01 2015-02-05 European Space Agency Method and system for producing and using wires including a core and multi-elemental coating

Similar Documents

Publication Publication Date Title
US8444042B2 (en) Method for producing steel pipe plated with metal by thermal spraying
CA1234514A (en) Flow coating of metals
JP6667640B2 (en) Hot-dip galvanized steel sheet with excellent surface quality and low-temperature brittle fracture resistance
US2167701A (en) Method of producing aluminum treated articles of iron
JPH01290753A (en) Production of amorphous alloy-coated metallic material
US3079275A (en) Spray-coating process
JPH0293053A (en) Production of zn-mg alloy plated steel sheet having high corrosion resistance
JPH08170160A (en) Production of silicon-containing high tensile strength hot dip galvanized or galvannealed steel sheet
JP6468493B2 (en) High corrosion resistance plated steel material and method for producing the same
KR20190078330A (en) Plated steel wire and manufacturing method for the same
US1740639A (en) Coating and heat treating
JPS5967357A (en) Method for coating metal on steel plate
JP2619771B2 (en) High quality, high coating weight galvanizing method
JPH01100250A (en) Manufacture of amorphous alloy-coated steel wire
JPH01132776A (en) Production of zinc alloy-coated steel wire
JPH01237069A (en) Manufacture of amorphous alloy coating steel wire
JP2727595B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH01240641A (en) Manufacture of amorphous alloy-coating steel plate
JP2727597B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH0320462B2 (en)
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH11117051A (en) Production of thunder resistant electric wire
JPH0774422B2 (en) Method for coloring zinc and method for coloring hot dip galvanized iron or steel material
CN111434402A (en) Method for producing hot stamped parts with a manganese-containing coating on the surface
JP2000198027A (en) Electrode wire for electric discharge machining and manufacture of it