JPH01290327A - Superconducting optical communication equipment - Google Patents

Superconducting optical communication equipment

Info

Publication number
JPH01290327A
JPH01290327A JP63119117A JP11911788A JPH01290327A JP H01290327 A JPH01290327 A JP H01290327A JP 63119117 A JP63119117 A JP 63119117A JP 11911788 A JP11911788 A JP 11911788A JP H01290327 A JPH01290327 A JP H01290327A
Authority
JP
Japan
Prior art keywords
temperature
information
communication
cryostat
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63119117A
Other languages
Japanese (ja)
Inventor
Mutsuko Hatano
睦子 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63119117A priority Critical patent/JPH01290327A/en
Publication of JPH01290327A publication Critical patent/JPH01290327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To attain wavelength split multiple communication and to prolong relaying by adding each information bit of a transmission layer for each sequential temperature change while multi-layer structure is adopted for a low temperature tank and using a superconducting element operated at a high speed at each temperature. CONSTITUTION:A low temperature tank 2 is adopted for multi-layer structure as liquid helium liquid hydrogen liquid neon liquid nitrogen, the temperature is changed sequentially, a modulator adding each information bit of the transmission layer required for packet communication for each temperature is constituted by the transmission reception by using processors 6, 7. Photodetectors 8, 10, 13 and light emitting elements 9, 11, 12 made of a superconducting conductor operated at a high speed are used as components at each temperature. Since the depth of modulation is selected sufficiently smaller with respect to the wavelength of the carrier, many information is superimposed on each of carriers varying the frequency by changing the temperature.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明はデジタル通信ネットワークに係り、特に高速通
信に好適な超電導光通信装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a digital communication network, and particularly to a superconducting optical communication device suitable for high-speed communication.

〔従来の技術〕[Conventional technology]

従来の光によるデジタル通信の一方式として、第1のプ
ロセッサで発生する信号情報を通信ネットワークを通し
て第2のプロセッサに伝えるために、途中で中継装置を
用いるパケット通信と称する技術が使われている。
As one method of conventional optical digital communication, a technology called packet communication is used that uses a relay device in the middle to transmit signal information generated by a first processor to a second processor through a communication network.

この場合、情報をひとまとまりの単位で区切ってパケッ
ト化し、中継では情報に誤り訂正符号などの前置制御情
報と後温制御情報を添加する必要がある。従来の装置に
はSiやGaAsなどの半導体が用いられていた。
In this case, it is necessary to divide the information into packets and add pre-control information such as an error correction code and post-temperature control information to the information during relay. Conventional devices have used semiconductors such as Si and GaAs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術によると受信までにかなり多くの情報が添
加されてしまうために、半導体で構成された装置を用い
ると高速化できないという問題があった。また長距離の
通信では中継装置の数が多くなり、情報の伝達の信頼性
が低下してしまう。
According to the above-mentioned conventional technology, since a considerable amount of information is added before reception, there is a problem that the speed cannot be increased when a device made of semiconductors is used. Furthermore, in long-distance communications, the number of relay devices increases, reducing the reliability of information transmission.

また、半導体レーザで発生されるコヒーレント光情報信
号でパルス変調することにより通信を実現するシステム
があるが、パルス変調もしくはパルス受信手段に半導体
装置が構成されているため通信速度に限界があり、数ギ
ガビット/秒(Gb/s)以上のビットレートの通信を
実現することができなかった6上記のような光信号を光
ファイバーを用いて送受信する通信システムは、他の電
気的信号を用いた通信システムに比較し中継距離はのば
せるという特徴があった。しかし光ファイバといえども
、有限の波長分散特性があるため、単一波長のコヒーレ
ント光に乗せられる伝送信号を高くとれないという欠点
があった。
There is also a system that realizes communication by pulse modulating a coherent optical information signal generated by a semiconductor laser, but since the pulse modulation or pulse receiving means consists of a semiconductor device, there is a limit to the communication speed, and the number of Communication systems that transmit and receive optical signals using optical fibers have not been able to achieve communication at bit rates higher than gigabit per second (Gb/s). It had the characteristic of being able to extend the relay distance compared to . However, even optical fibers have a finite wavelength dispersion characteristic, so they have the drawback of not being able to transmit a high transmission signal on a single wavelength of coherent light.

本発明の目的は、信頼性が高く、高速なデジタル通信が
行える光通信装置を提供することにある。
An object of the present invention is to provide an optical communication device that is highly reliable and capable of high-speed digital communication.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、低温槽を液体ヘリウム→液体水素→液体ネ
オン→液体窒素と多階層構造にして順に温度を変化させ
、各温度毎にパケット通信に必要な伝送階層の各情報ビ
ットを付加する変調装置を、送信、受信側で構成し、素
子として各温度で高速に動作する超伝導体よりなる光検
出素子及び発光素子を用いることにより、達成される。
The above purpose is a modulation device that uses a cryostat to have a multi-layered structure of liquid helium → liquid hydrogen → liquid neon → liquid nitrogen, changes the temperature in order, and adds each information bit of the transmission layer necessary for packet communication at each temperature. This is achieved by using a photo-detecting element and a light-emitting element made of a superconductor that operate at high speed at various temperatures as elements on the transmitting and receiving sides.

〔作用〕[Effect]

超電導体あるいは半導体の光の発振周波数は温度に依存
して変化する。半導体の禁制帯巾であるエネルギーギャ
ップEgはkTに依存して変化する。例えばSiの場合
4.2にでは1.03eV、300にでは1.12eV
である。
The oscillation frequency of light in superconductors or semiconductors changes depending on temperature. The energy gap Eg, which is the forbidden band of the semiconductor, changes depending on kT. For example, in the case of Si, 4.2 is 1.03eV, and 300 is 1.12eV.
It is.

したがってこれを波長iに換算すると4.2にでは10
33.3nm、300にでは1127.2nmである。
Therefore, converting this to wavelength i is 4.2, which is 10
33.3 nm, and 1127.2 nm for 300 nm.

G a A sは300にt’Egが1.4eVであり
λ300に=880nmであり、4.2にではEg=1
.2eVでλ4.2に=1030nmである。一方、超
電導体の発光素子としてErBaCuOやNdBaCu
Oがある。他の酸化物超電導体もルミネセンス素子にな
ることは言うまでもない、超電導体の場合、波長λに対
応するエネルギーギャップEgは温度の上昇とともに著
しく小さくなり超電導転移温度TOでゼロになる。
G a A s has t'Eg of 1.4 eV at 300, = 880 nm at λ300, and Eg = 1 at 4.2.
.. At 2eV, λ4.2=1030nm. On the other hand, as superconductor light emitting elements, ErBaCuO and NdBaCu
There is an O. It goes without saying that other oxide superconductors can also be used as luminescent elements. In the case of superconductors, the energy gap Eg corresponding to the wavelength λ becomes significantly smaller as the temperature increases and becomes zero at the superconducting transition temperature TO.

Er1..2Ba、、、CuO4の組成の場合Tcは9
3にとなる。従って約50に以下でのEgは0.8eV
それに対応するλは1549.9nmと一定値なる。し
かしそれ以上の温度では温度上昇とともにEgは小さく
なりλは大きくなる。例えば液体窒素温度77にでは1
0.6eVとなるので2200.0nmとなる。このよ
うにT。に依存して波長λは著しく変化する。TcはE
rとBaの組成比で決定する。つまり組成比でその温度
における発振周波数を変化させることが可能であるNd
BaCuOの場合も同様である。
Er1. .. For the composition of 2Ba,...,CuO4, Tc is 9
It becomes 3. Therefore, Eg below about 50 is 0.8 eV
The corresponding λ is a constant value of 1549.9 nm. However, at temperatures higher than that, Eg becomes smaller and λ becomes larger as the temperature rises. For example, at a liquid nitrogen temperature of 77
Since it is 0.6 eV, it is 2200.0 nm. In this way T. Depending on the wavelength λ changes significantly. Tc is E
It is determined by the composition ratio of r and Ba. In other words, it is possible to change the oscillation frequency at a certain temperature by changing the composition ratio of Nd.
The same applies to BaCuO.

E r 1 、2 B a t3 、 B Cu O4
はTc=82にであり、40に以下のEgはほぼ一定で
1.2eVとなりλは1078.8 nmとなる。それ
以上の温度では温度上昇とともにλは著しく増大する。
E r 1 , 2 B a t3 , B Cu O4
is Tc=82, Eg below 40 is almost constant at 1.2 eV, and λ is 1078.8 nm. At higher temperatures, λ increases significantly as the temperature increases.

変調深度は搬送波の波長に対して充分小さくとることが
できるため、温度を変化させることにより周波数を変え
た搬送波のそれぞれに多量の情報を独立に乗せることが
できる。
Since the modulation depth can be set sufficiently small relative to the wavelength of the carrier wave, a large amount of information can be independently loaded onto each carrier wave whose frequency is changed by changing the temperature.

したがって、波長分割多重通信ができる。送信側では液
体ヘリウムから順に上記のように室温まで温度が上るた
め、各中継装置で付加される信号の周波数が可変である
上に温度勾配による熱の損失を最小限に抑えることがで
き、エネルギー的にも低温側では低エネルギーで順次上
っていく方式である。このため中継装置の数が少なく信
頼性が高い通信システムを構成することができる。また
超電導体で発光体となる素子と超電導光検出素子を各層
の中継装置に用いることにより、高速で低雑音の通信装
置となる。
Therefore, wavelength division multiplexing communication is possible. On the transmitting side, the temperature rises from liquid helium to room temperature as described above, so the frequency of the signal added at each repeater is variable, and heat loss due to temperature gradients can be minimized, reducing energy consumption. It is also a method that gradually ascends with low energy on the low temperature side. Therefore, it is possible to configure a highly reliable communication system with a small number of relay devices. Furthermore, by using a superconductor element that serves as a light emitter and a superconducting photodetector element in the relay device of each layer, a high-speed, low-noise communication device can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は基本構成である二階層の光通信装置を示す図で
ある。温度T□の低温槽(I)1を、T1より高い温度
T2である低温槽(■)2で囲むことにより、Tよの温
度を一定に保っている。
FIG. 1 is a diagram showing the basic configuration of a two-layer optical communication device. By surrounding the low temperature chamber (I) 1 having a temperature of T□ with the low temperature chamber (■) 2 having a temperature of T2 higher than T1, the temperature of T is kept constant.

第1図の左半分は送信側を表わし、光ファイバ4を通し
て信号送信路3に信号が送られる。信号は光ファイバ4
を通して信号受信路5から第1図の右側に示した受信装
置に送られる。電気的な信号情報を発生するプロセッサ
6は、超電導トランジスタ、あるいはジョセフソン素子
で構成されており、超電導体には超電導転移温度Tcが
T1より高い材料が用いられている。このプロセッサ6
は同時に信号の解読をも行う。
The left half of FIG. 1 represents the transmitting side, where signals are sent to the signal transmission path 3 through the optical fiber 4. The signal is optical fiber 4
The signal is sent through the signal receiving path 5 to the receiving device shown on the right side of FIG. The processor 6 that generates electrical signal information is composed of a superconducting transistor or a Josephson element, and the superconductor is made of a material whose superconducting transition temperature Tc is higher than T1. This processor 6
It also decodes signals at the same time.

プロセッサ6の発生する電気的な信号の情報は発光素子
9で波長λ1の光信号に変換される。
The electrical signal information generated by the processor 6 is converted by the light emitting element 9 into an optical signal having a wavelength λ1.

発光素子は温度T1で動作する超電導素子あるいは半導
体素子からなる。超電導素子の場合波長λ□はTC近傍
の温度では 定となる。そこでT1を液体ヘリウム温度とすると超電
導素子にEr1,2Ba、)、gcu04を用いた場合
のλ1は1549.9nmとなる。他の超電導体で構成
した場合、あるいは同じ超電導体材料でも組成比の異な
る超電導体で構成した場合も同様に前記式に示した固有
のλ1をそれぞれ持ち、この値は温度とともに変化する
The light emitting element is made of a superconducting element or a semiconductor element that operates at temperature T1. In the case of a superconducting element, the wavelength λ□ becomes constant at a temperature near TC. Therefore, if T1 is the liquid helium temperature, λ1 is 1549.9 nm when Er1,2Ba, ) and gcu04 are used as the superconducting element. Even when it is composed of other superconductors, or when it is composed of superconductors of the same superconductor material but with different composition ratios, it similarly has its own unique λ1 shown in the above formula, and this value changes with temperature.

半導体を用いた場合も、禁制帯幅が温度T、に依存して
変化する。
Even when a semiconductor is used, the forbidden band width changes depending on the temperature T.

波長λ1の光信号は第1の中継装置である低温槽(■)
2に送信する。一部は超電導体あるいは半導体からなる
光検出素子10で電気的な信号に変化させ、第2のプロ
セッサ7にて解読し、アドレスプリアンプルなどの前置
制御情報とフレームチエツクシーケンスなどを含む後温
制御情報を付加して再び光信号に発光素子12にて変化
し、もとの情報と合わせて信号通信路3にて送信される
The optical signal with wavelength λ1 is sent to the first repeater, a cryostat (■).
Send to 2. A portion of the signal is converted into an electrical signal by a photodetector element 10 made of a superconductor or a semiconductor, decoded by a second processor 7, and a post-temperature signal containing pre-control information such as an address preamble and a frame check sequence, etc. Control information is added to the light signal, which is converted into an optical signal again by the light emitting element 12, and is transmitted along the signal communication path 3 together with the original information.

このときの波長λ2は低温槽(■)2の温度T2で決ま
りλ1とは異っている値である。例えばT2を液体窒素
温度とすると、Er1,2Bao8gcuoaを発光素
子に用いた場合、λ2は2200.0nmとなる。
The wavelength λ2 at this time is determined by the temperature T2 of the cryostat (■) 2 and has a value different from λ1. For example, when T2 is the temperature of liquid nitrogen, when Er1,2Bao8gcuoa is used in the light emitting element, λ2 is 2200.0 nm.

このように温度をT1.T2と変えることにより周波数
を変えた搬送波にそれぞれ多量の情報を独立に乗せるこ
とができる。
In this way, the temperature is set to T1. By changing T2, a large amount of information can be independently carried on each carrier wave with a different frequency.

受信方式は、送信方式と逆の順をたどり、最終的に温度
T1の低温槽(I)1中にあるプロセッサ6で情報は解
読される。
The reception method follows the reverse order of the transmission method, and the information is finally decoded by the processor 6 located in the cryostat (I) 1 at temperature T1.

光信号は光ファイバなどの信号通信路5から第1の中継
装置である低温槽(■)2に受信され情報の一部は光検
出素子13で電気的な信号に変換ぎわ、第2のプロセッ
サ7にて解読される。一部の情報とはアドレスプリアン
プルなどの前置制御情報やフレームチエツクシーケンス
などを含む後温制御情報などを意味する。プロセッサ7
で必要な情報を付加して発光素子11で波長λ2の光信
号に変換し、もとの情報と合わせて低温槽(1)1にて
受信される。この光信号よりなる情報は光検出素子8で
電気的な信号に変換しプロセッサ6で解読される。
The optical signal is received from a signal communication path 5 such as an optical fiber to a cryostat (■) 2, which is a first repeater, and a part of the information is converted into an electrical signal by a photodetector element 13, and then sent to a second processor. It is deciphered in 7. Some of the information means pre-control information such as address preamble, post-temperature control information including frame check sequence, etc. processor 7
Necessary information is added thereto, and the light emitting element 11 converts it into an optical signal of wavelength λ2, which is received together with the original information at the cryostat (1) 1. Information consisting of this optical signal is converted into an electrical signal by the photodetector element 8 and decoded by the processor 6.

本実施例によれば、変調深度は搬送波の波長に対して充
分小さくとることができるため、温度を変えることによ
り周波数を変えた搬送波のそれぞれに多量の情報を独立
に乗せることができる。つまり温度ごとにパケット通信
に必要な伝送階層の各情報を付加する変調を行えるので
、多重通信が可能となる。したがって中継装置を設置す
る間隔を大きくすることができる上に、信頼性の高い通
信を行うことができる。
According to this embodiment, since the modulation depth can be set sufficiently small relative to the wavelength of the carrier wave, a large amount of information can be independently loaded onto each carrier wave whose frequency is changed by changing the temperature. In other words, since modulation can be performed to add each piece of information of the transmission hierarchy necessary for packet communication for each temperature, multiplex communication becomes possible. Therefore, it is possible to increase the interval at which relay devices are installed, and also to perform highly reliable communication.

また発光素子、光検出素子を全て超電導素子で構成した
場合は、より高速な伝送、受信ができ。
Furthermore, if the light-emitting element and photo-detecting element are all made of superconducting elements, higher-speed transmission and reception can be achieved.

雑音も低下する。Noise is also reduced.

第2図は、第1図で示した装置を多層化し、温度を液体
ヘリウムから室温まで順に変化させた例を示す構成図で
ある。
FIG. 2 is a configuration diagram showing an example in which the device shown in FIG. 1 is multilayered and the temperature is sequentially changed from liquid helium to room temperature.

液体ヘリウム温度4.2に、液体水素温度21に、液体
ネオン温度28に、液体窒素温度77K。
Liquid helium temperature is 4.2, liquid hydrogen temperature is 21, liquid neon temperature is 28, and liquid nitrogen temperature is 77K.

に階層している。各層にてパケット通信に必要な情報を
その層に応じた波長の信号にて付加していく。
It is layered into At each layer, information necessary for packet communication is added using a signal with a wavelength appropriate for that layer.

各層の発光素子、プロセッサ光検出素子は、液体ヘリウ
ム槽20では4.2に以上の超電導転移温度Tcである
超電導体を用い、液体水素槽30では21に以上のもの
、液体ネオン槽40では28に以上のもの、液体窒素槽
50では77に以上のTcを示す超電導体よりなるもと
を各階層にもつ。
The light emitting elements and processor photodetecting elements in each layer use a superconductor having a superconducting transition temperature Tc of 4.2 or more in the liquid helium tank 20, 21 or more in the liquid hydrogen tank 30, and 28 or more in the liquid neon tank 40. The liquid nitrogen tank 50 has a base made of a superconductor having a Tc of 77 or more on each level.

このような構成にして、超電導素子を用いることにより
、送信側ではエネルギーが室温に行くほど上るため出力
バッファとして有効に機能し、低温側では低エネルギー
が保たれ、温度勾配による熱損失を最小限に抑制するこ
とができる。
With this configuration and the use of superconducting elements, the energy on the transmitting side increases as it approaches room temperature, so it functions effectively as an output buffer, and on the low temperature side, low energy is maintained, minimizing heat loss due to temperature gradients. can be suppressed to

以上実施例で述べた光検出素子、プロセッサ。The photodetector element and processor described in the embodiments above.

発光素子は高速動作−低雑音特性を示す超電導トランジ
スタ、超電導光検出素子やジョセフソン素子などの超電
導素子で構成されていることが望しいが、半導体素子で
構成されていてもよい。
The light emitting element is preferably composed of a superconducting element such as a superconducting transistor, a superconducting photodetecting element, or a Josephson element, which exhibits high-speed operation and low noise characteristics, but may also be composed of a semiconductor element.

〔発明の効果〕〔Effect of the invention〕

本発明のよれば、波長分割多重通信が可能となるために
信頼性が高まり、中継が長くなる。高速光検出素子やス
イッチング素子を用いているために情報の伝達速度が向
上する、下層では低温であるために低雑音となる。温度
による階層構造のため、温度勾配による熱ロスを最小限
に抑制できるなどの効果がある。
According to the present invention, wavelength division multiplexing communication becomes possible, which increases reliability and lengthens the relay time. The use of high-speed photodetection elements and switching elements improves the transmission speed of information, and the low temperature in the lower layer results in low noise. The hierarchical structure based on temperature has the effect of minimizing heat loss due to temperature gradients.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図は第1図
の全体を表わす構成図である。 1・・・低温槽(1)、2・・・低温槽(II)、3・
・・信号送信路、4・・・光ファイバ、5・・・信号受
信路、6.7・・・プロセッサ、8,13,10・・・
光検出素子、9,12.11・・・発光素子。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing the entire structure of FIG. 1...Cryogenic chamber (1), 2...Cryogenic chamber (II), 3.
... Signal transmitting path, 4... Optical fiber, 5... Signal receiving path, 6.7... Processor, 8, 13, 10...
Photodetection element, 9, 12.11... light emitting element.

Claims (1)

【特許請求の範囲】 1、第1の通信主体により発生される第1の情報発生手
段と第1の電磁波パルス発生手段とを含浸する第1の低
温槽と、上記第1の電極波パルス発生手段と第1の電磁
波導波路で接続された第1の受信装置と、第1の受信装
置からの入力情報に基づき第1の情報発生手段により発
生せらる情報を目的とする通信主体に到達させるために
必要な前置制御情報と後置制御情報を第1の情報に添加
する意図を有する第2の通信主体と、該通信主体の出力
情報で変調される第2の電磁波パルス発生手段とを含侵
する第2の低温槽とを含むことを特徴とする超電導光通
信装置。 2、特許請求の範囲第1項において、前記第2の低温槽
の温度は前記第1の低温槽の温度より高温であることを
特徴とする超電導光通信装置。 3、少くとも部分的に超電導体で構成された情報発生手
段と電極波パルス受信手段、電磁波パルス発生手段とを
含む通信主体を複数個直列接続して構成されており、第
1の通信主体が原情報を通信路に送出する意図を有し、
残余の通信主体は該情報を目的とする通信主体に到達さ
せる意図を有し、直列接続されている後段の通信主体は
、それぞれ前段の通信主体の発生する情報信号系列に対
し前温制御情報及び後温制御情報を付加し、第1の通信
主体が最も低温である第1の低温槽に含侵され、第1の
低温槽を囲んで設けられるより温度の高い低温槽がより
温度の低い低温槽を囲むように配置されている複数の低
温槽の各々に、前記垂直接続された前段の通信主体が後
段の通信主体よりもより低温である低温槽に1個ずつ含
侵されていることを特徴とする超電導光通信装置。
[Claims] 1. A first cryostat impregnated with a first information generating means and a first electromagnetic wave pulse generating means generated by a first communication entity, and the first electrode wave pulse generating means. a first receiving device connected to the means by a first electromagnetic waveguide, and causing information generated by the first information generating means based on input information from the first receiving device to reach a target communication entity. a second communication entity that intends to add pre-control information and post-control information necessary for A superconducting optical communication device comprising: a second cryostat for impregnation. 2. The superconducting optical communication device according to claim 1, wherein the temperature of the second cryostat is higher than the temperature of the first cryostat. 3. It is constructed by connecting a plurality of communication bodies in series, each including an information generation means, an electrode wave pulse reception means, and an electromagnetic wave pulse generation means, which are at least partially composed of a superconductor, and the first communication body is with the intention of sending the original information to the communication channel,
The remaining communication entities have the intention of having the information reach the intended communication entity, and the subsequent communication entities connected in series each transmit pre-temperature control information and information to the information signal series generated by the preceding communication entity. Post-temperature control information is added, the first communication entity is impregnated in the first cryostat having the lowest temperature, and the cryostat with a higher temperature provided surrounding the first cryostat is impregnated with a cryostat with a lower temperature. In each of the plurality of cryogenic chambers arranged so as to surround the tank, one communication body in the vertically connected previous stage is impregnated in a cryostat whose temperature is lower than that of the communication body in the latter stage. Features of superconducting optical communication device.
JP63119117A 1988-05-18 1988-05-18 Superconducting optical communication equipment Pending JPH01290327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119117A JPH01290327A (en) 1988-05-18 1988-05-18 Superconducting optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119117A JPH01290327A (en) 1988-05-18 1988-05-18 Superconducting optical communication equipment

Publications (1)

Publication Number Publication Date
JPH01290327A true JPH01290327A (en) 1989-11-22

Family

ID=14753353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119117A Pending JPH01290327A (en) 1988-05-18 1988-05-18 Superconducting optical communication equipment

Country Status (1)

Country Link
JP (1) JPH01290327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146830A (en) * 2002-10-23 2004-05-20 Praxair Technol Inc Method of multi-level cooling used for high-temperature superconduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPAN J APPL PHYS 23=1984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146830A (en) * 2002-10-23 2004-05-20 Praxair Technol Inc Method of multi-level cooling used for high-temperature superconduction
JP4707944B2 (en) * 2002-10-23 2011-06-22 プラクスエア・テクノロジー・インコーポレイテッド Multilevel cooling for high temperature superconductivity.

Similar Documents

Publication Publication Date Title
US6233077B1 (en) Remodulating channel selectors for WDM optical communication systems
US5784184A (en) WDM Optical communication systems with remodulators and remodulating channel selectors
US5715076A (en) Remodulating channel selectors for WDM optical communication systems
Henry High-capacity lightwave local are networks
US4745592A (en) Coherent photonic telecommunications system
US6584245B1 (en) High speed data link including a superconductive plate assembly for use in a data transmission scheme and method
EP1434377B1 (en) Remodulators for WDM optical communication systems
JPH01290327A (en) Superconducting optical communication equipment
Yamada et al. Optical output buffered ATM switch prototype based on FRONTIERNET architecture
JPH08111559A (en) Semiconductor light emitting/receiving element and device
US7333727B2 (en) Reconfigurable, multi-user communications network, with low latency time
Burke et al. 128 line photonic switching system using LiNbO/sub 3/switch matrices and semiconductor traveling wave amplifiers
Zhao et al. Monolithically Integrated Directly Modulated ADR-DFB Laser Array in the O-Band
JPH0591052A (en) Wavelength switching device and method
Mendez WDM matrix coding: a novel approach to ultradense networks
O’Mahony Optical amplifiers
Chien et al. Performance of wavelength-convertible multihop optical ShuffleNets employing convolutional coding under hot-potato routing
KR960015274B1 (en) Semiconductor laser device
Hagimoto et al. Very high speed intra-office optical link experiments for 0.4-and 1.6-Gbit/s trunk lines
KR100492480B1 (en) Realization of All-Optical NOR Logic Gate with Wavelength Conversion
KR20030047974A (en) External optical modulator and modulation method based on fabry-perot laser diode, optical transfer system by using it
Chae OFDM Star Network Based on Homodyne Detection and Laser-free Nodes
Kazovsky On noise immunity of feedback communication systems
Hirata et al. 3.0 Gbit/s wireless links using 120-GHz millimeter-wave photonic techniques
Willner High-capacity multiwavelength optical fiber communication systems