JPH01289922A - Nonlinear optical device - Google Patents

Nonlinear optical device

Info

Publication number
JPH01289922A
JPH01289922A JP12026988A JP12026988A JPH01289922A JP H01289922 A JPH01289922 A JP H01289922A JP 12026988 A JP12026988 A JP 12026988A JP 12026988 A JP12026988 A JP 12026988A JP H01289922 A JPH01289922 A JP H01289922A
Authority
JP
Japan
Prior art keywords
nonlinear
optical
nonlinear optical
optical device
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12026988A
Other languages
Japanese (ja)
Other versions
JP2592908B2 (en
Inventor
Kenichi Kubodera
憲一 久保寺
Toshikuni Kaino
戒能 俊邦
Shiro Matsumoto
松元 史朗
Takashi Kurihara
隆 栗原
Hidenori Kobayashi
秀紀 小林
Shogo Saito
省吾 斎藤
Tetsuo Tsutsui
哲夫 筒井
Seishi Tokitou
静士 時任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12026988A priority Critical patent/JP2592908B2/en
Publication of JPH01289922A publication Critical patent/JPH01289922A/en
Application granted granted Critical
Publication of JP2592908B2 publication Critical patent/JP2592908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain a nonlinear optical device having high dependency of wavelength, high response speed, requiring remarkably small intensity of inputted light necessary for operation, by using a specified poly(2,5-thienylene vinylene) (abbreviated to PTV) as optical medium having a nonlinear refractive index. CONSTITUTION:In the title nonlinear optical device, a PTV expressed by the formula I is used as a nonlinear optical medium. Since the PTV can be synthesized by a process via a soluble polymer intermediate, it has superior formability and handleability, as well as chemical stability. The PTV has an extremely large tertiary nonlinear effect, resulting a large value of nonlinear refractive index due to its large tertiary effect. Accordingly, if a nonlinear optical device such as an optical bistable element, optical switch, phase shift conjugate wave oscillator, etc., is constituted by using the material as nonlinear optical medium, a practically usable nonlinear optical device having high performance, usable in a wide wavelength range, having fast response characteristic, requiring small intensity of inputted light for operation, is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光情報処理や光通信システムにおいて、将来
的に用いられる光スィッチや光メモリ、あるいは光信号
演算処理装置などの非線形光学装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to nonlinear optical devices such as optical switches, optical memories, or optical signal processing devices that will be used in the future in optical information processing and optical communication systems. It is.

〔従来の技術および課題〕[Conventional technology and issues]

非線形光学効果とは、物質に光が入(ト)したときに、
物質の電気分極Pが、一般式P−χ  [二十χ  E
2+χ  E3(−・・・(II)で書けるのに対し、
第2項以降の項により発現する効果を言うものである(
χ(i)は1次の電気感受率、Eは光の電界強度である
。)。特に、第2項による第2高調波発生(SHG)や
第3項による第3高調波発生(T HG )は波長変換
効果と1ノでよく知られているが、第3項はまた、光強
度に応じた光学定数の変化、例えば非線形屈折率効果や
非線形吸収効果を与えるものとして重要である。例えば
、非線形屈折率効果は物質の屈折率nが入q4光強度に
比例して変化するものであり、n=n、+n21で記述
される(noは定数、「)2は非線形屈折率係数である
。)。この効果を示す媒質と、光共振器や偏光子あるい
は反射鏡など他の光学素子とを組合わせると、光双安定
素子や光スィッチあるいは位相共役波発生器などの光情
報処理や光通信システムにおいて将来的に用いられる重
要なデバイスの実現が可能である。
Nonlinear optical effect is when light enters a material,
The electric polarization P of a substance is expressed by the general formula P-χ [20χ E
While it can be written as 2+χ E3(-...(II),
This refers to the effect produced by the second and subsequent terms (
χ(i) is the first-order electric susceptibility, and E is the electric field intensity of light. ). In particular, the second harmonic generation (SHG) by the second term and the third harmonic generation (THG) by the third term are well known as wavelength conversion effects, but the third term also It is important as it provides a change in optical constant depending on the intensity, such as a nonlinear refractive index effect or a nonlinear absorption effect. For example, the nonlinear refractive index effect is one in which the refractive index n of a substance changes in proportion to the input q4 light intensity, and is written as n=n, +n21 (no is a constant and 2 is the nonlinear refractive index coefficient). ).When a medium exhibiting this effect is combined with other optical elements such as optical resonators, polarizers, or reflectors, optical information processing such as optical bistable elements, optical switches, or phase conjugate wave generators can be realized. It is possible to realize important devices that will be used in the future in optical communication systems.

このような非線形屈折率効果を示す媒質を用いた非線形
光学装置の従来例として、光双安定素子の実例を第5図
を参照しながら以−トに示づ。
As a conventional example of a nonlinear optical device using a medium exhibiting such a nonlinear refractive index effect, an example of an optical bistable element will be shown below with reference to FIG.

第5図の符号1は非線形屈折率を有する光学材質(非線
形屈折率媒質)、2aおよび2bは非線形屈折率媒質1
の両面にコート−された反射率約90%の誘電体蒸着ミ
ラーである。この構成におい−(は、入力光の波長を僅
かに変化さけて共振条件を満足J−るど、パラj光強度
Piに対して出力光Ptが第1図(c)(d)に示した
様な特性を持つ(動作原理については文献 j)ブライ
ド フィジックスレター(Appl、Phys、Let
’t、  )voJ3!i、  451(1976)に
詳しい)。これらはそれぞれリミッタ動作および双安定
動作に対応しており、光通イMや光情報処理システムに
おいて入力光パルスの波形整形、光スィッチ、あるいは
光信号メモリ、光論理演算動作などへの応用が可能なも
のである。
Reference numeral 1 in FIG. 5 is an optical material having a nonlinear refractive index (nonlinear refractive index medium), and 2a and 2b are nonlinear refractive index media 1.
It is a dielectric vapor-deposited mirror with a reflectance of about 90% coated on both sides. In this configuration, the resonance condition is satisfied by avoiding a slight change in the wavelength of the input light, and the output light Pt is as shown in Fig. 1(c) and (d) for the paraj light intensity Pi. Bride Physics Letter (Appl, Phys, Let
't, )voJ3! i, 451 (1976)). Each of these supports limiter operation and bistable operation, and can be applied to input optical pulse waveform shaping, optical switches, optical signal memory, optical logic operation, etc. in optical communication systems and optical information processing systems. It is something.

ところで、この種の非線形光学装置においては、特性と
して、使用可能な入力光波長ならびに入力光強度、さら
に光信号の強度変化に対して追随可能な応答時間の3つ
の値が重要である。例えば第5図中の非線形光学媒質1
としてGa AsとGaAJASの半導体薄膜を交互に
繰返し成長させて作製した超格子結晶を用いた例におい
−(は、結晶内で励起子が光吸収に伴って励起されるこ
とによって屈折率が光強度依存性を示すこと(吸収非線
形効果)を動作原理としているため、前記一般式(II
>の第3項の係数が大きく(即ち3次非線形の効率が高
り)、動作に必要な人力光強度は5 ×10’W/cm
稈度と小さくて済む点では優れているが、使用可能な入
力光波長が励起子吸収スペク1−ル近傍の極めて狭い範
囲に限られてしまうこと、および応答時間が励起子券命
にJ:り決定され、3X 10 ’sec J、り高速
の光信号処理には使えないという問題点があった。
By the way, in this type of nonlinear optical device, three important values are the usable input light wavelength, input light intensity, and response time that can follow changes in the intensity of the optical signal. For example, nonlinear optical medium 1 in FIG.
In an example using a superlattice crystal made by alternately growing GaAs and GaAJAS semiconductor thin films, the refractive index changes as the light intensity increases as excitons are excited within the crystal as light is absorbed. Since the operating principle is to show dependence (absorption nonlinear effect), the above general formula (II
The coefficient of the third term of
Although it is excellent in terms of culm and small size, the usable input light wavelength is limited to an extremely narrow range near the exciton absorption spectrum, and the response time is critical to the exciton absorption spectrum. The problem was that it could not be used for high-speed optical signal processing of 3×10' sec J.

また、非線形光学媒質どし゛C非線形光学液体である二
硫化炭素(C82)を満したガラスセルを用い、前記誘
電体蒸着ミラー2a、2bの代わりに、外部ミラーを用
いた別の従来例においては、光電界に応じた分子の回転
配列により屈折率が光強度依存性を示すとと(分子回転
非線形効果)を動作原理としているため、使用可能な入
力光波長が可視から近赤外域の広い範囲にわたるという
点では優れているものの、3次非線形の効率がそれ程高
くなく、動作に必要な入力光強度が108W/cd程度
と大きくなること、および応答時間が分子の回転緩和時
間により決定され、10−11.。
In another conventional example, a glass cell filled with carbon disulfide (C82), which is a nonlinear optical liquid, is used as a nonlinear optical medium, and an external mirror is used instead of the dielectric vapor-deposited mirrors 2a and 2b. The operating principle is that the refractive index shows light intensity dependence due to the rotational arrangement of molecules in response to the optical electric field (molecular rotational nonlinear effect), so the input light wavelength that can be used covers a wide range from visible to near-infrared regions. Although it is excellent in this respect, the third-order nonlinear efficiency is not so high, the input light intensity required for operation is as large as about 108 W/cd, and the response time is determined by the rotational relaxation time of the molecules, which is 10- 11. .

10 ” secより高速の光信号処理には使えないと
いう問題点があった。
There was a problem that it could not be used for optical signal processing faster than 10" sec.

以上のことから明らかなように、非線形光学装置の性能
は、非線形光学材料の特性によって殆ど決定される1、
従って、使用可能な波長範囲が広く、3次非線形の効率
が高く、動作に必要な人力光強度が小さく、応答時間が
短い材料の開発が熱望され、それに向けて活発な研究が
行われているのが現状である。
As is clear from the above, the performance of a nonlinear optical device is determined mostly by the characteristics of the nonlinear optical material1.
Therefore, the development of materials with a wide usable wavelength range, high third-order nonlinear efficiency, low manual light intensity required for operation, and short response time is eagerly awaited, and active research is being conducted toward this end. is the current situation.

3次非線形効果を示す材料のうちでも、ベンゼン環や2
重あるいは3重結合などのπ電子共役をもつ有機非線形
光学材料が最近特に注目されている。例えば、ポリジア
セチレンビス−(パラトルエンスルホネート)(略称P
 T S )で(ま、3次効果の定数χ(3)ハχ(3
)−1×1O−100Su(非線形屈折率係数に換粋す
ると、n2−2×1O−12(W / cd )−’と
なる。)の値をもち、」−記のC82液体より2桁大き
い。さらに、この非線形効果のメカニズムが吸収による
ものでなく、かつ分子や結晶格子との相互作用によるも
のでもなく、純粋に電子分極に由来するものであるため
に、光信号の強度変化に追随可能な応答時間が1O−1
4secと極めて高速であり、かつ使用可能な入力光波
長も0,65μm付近から2.0μ71L以1の広い範
囲にわたっているという優れIこ特性を持っている。
Among materials that exhibit third-order nonlinear effects, benzene rings and
Organic nonlinear optical materials with π-electron conjugation such as double or triple bonds have recently attracted particular attention. For example, polydiacetylene bis-(paratoluenesulfonate) (abbreviation P
T S ) and (well, the constant of cubic effect χ(3) χ(3
)-1×1O-100Su (converted to a nonlinear refractive index coefficient, it becomes n2-2×1O-12(W/cd)-'), which is two orders of magnitude larger than the C82 liquid in "-". . Furthermore, since the mechanism of this nonlinear effect is not due to absorption or interaction with molecules or crystal lattices, but is derived purely from electronic polarization, it is possible to follow changes in the intensity of the optical signal. Response time is 1O-1
It has excellent characteristics such that it is extremely fast at 4 seconds, and the usable input optical wavelength ranges over a wide range from around 0.65 μm to 2.0 μ71L or more.

しかしながら、上記P T Sなどのポリジアレブレン
は、一般に結晶性高分子であるICめに、光学装置の媒
質として用いる場合には媒質全体が単結晶となっ°(い
ることが必要である。もし、媒質の一部に非晶質部が存
在したり、全体が多結晶状態になっていて微小な単結晶
の集合体であったりすると、とたんに入射光の散乱損失
が増大してしまい、使いものにならない。従って、ポリ
ジアセチレンを用いた光学装置を製造するにあたっては
、目的に応じた大型結晶の育成あるいは薄膜結晶化など
の技術が不可欠であり、さらに、これらの結晶が得られ
た場合でも、結晶を切断したり表面を研磨したりづる加
]、技術を確立することが必要である。ポリジアセチレ
ンに関するこれらの周辺技術は今のところまだ解決され
ていない。従って、ポリジアセチレンを用いた非線形光
学装置はまだ実用に供せられるものは一つも実現してい
ない。
However, since polydialerene such as PTS is generally used as an IC which is a crystalline polymer, when it is used as a medium for an optical device, it is necessary that the entire medium be a single crystal. If there is an amorphous part in a part of the medium, or if the entire medium is in a polycrystalline state and is an aggregate of minute single crystals, the scattering loss of the incident light will immediately increase. Therefore, in manufacturing optical devices using polydiacetylene, techniques such as growing large crystals or thin film crystallization depending on the purpose are essential, and even if these crystals are obtained, It is necessary to establish techniques for cutting the crystal, polishing the surface, and grinding.These peripheral technologies related to polydiacetylene have not yet been solved.Therefore, nonlinear techniques using polydiacetylene have not yet been solved. No optical device has yet been put into practical use.

本発明は、上記事情に鑑みてなされたもので、従来の光
双安定素子を始めとする、光スイッチ、位相共役波発生
装置などの非線形屈折率を利用した非線形光学装置にお
ける問題点、すなわち前記したような使用波長制限、低
速応答性、高動作入力光強度、あるいは所望の光学媒質
を容易に入手できないこと、などの欠点を除去すること
を課題とするものであり、使用波長範囲が広く、高速応
答性を有し、かつ動作入力光強度が小さい実用に供し得
る高性能非線形光学装置を提供することを課題としてい
る。
The present invention has been made in view of the above circumstances, and solves the problems in nonlinear optical devices using nonlinear refractive index, such as conventional optical bistable elements, optical switches, phase conjugate wave generators, etc. The objective of this technology is to eliminate the disadvantages of conventional optical systems, such as wavelength limitations, slow response, high operating input light intensity, and the inability to easily obtain the desired optical medium. It is an object of the present invention to provide a high-performance nonlinear optical device that has high-speed response and low operating input light intensity and can be used in practice.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明は下記の構成からなる
。すなわち、本発明は、 非線形屈折率を有する光学媒質と、光共振器や偏光子、
あるいは反9A鏡などの光学素子とぐ構成される非線形
光学装置において、非線形光学媒質とし°C1下記式(
I>で示されるポリ−(2,!D−ヂエニレンビニレン
)を用いることを特徴とづるものである。
MEANS TO SOLVE THE PROBLEM In order to solve the said subject, this invention consists of the following structure. That is, the present invention includes an optical medium having a nonlinear refractive index, an optical resonator, a polarizer,
Alternatively, in a nonlinear optical device composed of optical elements such as an anti-9A mirror, the nonlinear optical medium is used as °C1 by the following formula (
It is characterized by using poly-(2,!D-dienylenevinylene) represented by I>.

前記ポリ−(2,5−チェニレンビニレン)(略称P 
T V )は、アtルファス構造をもつ導電性ポリマ゛
材料として既に知られている。合成法も公知であり、後
で述べるように、可溶性のポリマ中間体を経由する方法
で合成することができるため、成形性に優れ、取扱いや
すく、かつ、化学的に安定である。このPTVの3次非
線形効果が極めて大ぎな値をもつことを本発明者らは、
はじめて明らかにすることができた。また、その大きな
3次効果故に非線形屈折率係数が大きな値となることを
確認し、この材料を非線形光学媒体として光双安定素子
、光スィッチ、位相共役波発生器などの非線形光学装置
を構成し、それらが実用に供し得るとしたのは、本発明
の最も強調すべき点である。
The poly-(2,5-chenylene vinylene) (abbreviation P
T V ) is already known as a conductive polymer material with an amorphous structure. The synthesis method is also well known, and as described later, it can be synthesized via a soluble polymer intermediate, so it has excellent moldability, is easy to handle, and is chemically stable. The present inventors found that this third-order nonlinear effect of PTV has an extremely large value.
I was able to make it clear for the first time. We also confirmed that the nonlinear refractive index coefficient is large due to its large third-order effect, and used this material as a nonlinear optical medium to construct nonlinear optical devices such as optical bistable elements, optical switches, and phase conjugate wave generators. The most important point of the present invention is that they can be put to practical use.

第4図(a)(b)はPTVの3次効果の効率を評価す
べく行った実験の測定データを示したものである。有機
材料の3次効果は、一般に第3高調波光(丁HG光)の
強度を測定することによって評価される。図4(a)は
厚さの均一・なPTVフィルム(この場合の厚さは0.
17μm)に、波長2.0μm程瓜0レーザパルス光を
入射し、ザンブルをレーザ光の入射方向と垂直な軸の回
りに回転させながら、出てくる一rHG光強麻を測定し
た結果である。このパターンはメーカフリンジと呼ばれ
るものであり、すでに効率が既知の材料(ここでは石英
ガラスを用いた)を同一の観測系で測定して、T HG
のピーク強度と比較すれば、3次効果の効率を測定する
ことができる(測定原理については、文献 エレクトロ
ニクス レターズ(Hectron。
FIGS. 4(a) and 4(b) show measurement data from an experiment conducted to evaluate the efficiency of the third-order effect of PTV. The third-order effect of organic materials is generally evaluated by measuring the intensity of third harmonic light (D-HG light). FIG. 4(a) shows a PTV film with a uniform thickness (thickness in this case is 0.05 mm).
17 μm), a laser pulse beam with a wavelength of about 2.0 μm was input, and while the sample was rotated around an axis perpendicular to the direction of incidence of the laser beam, the output 1rHG light intensity was measured. . This pattern is called a maker fringe, and it is measured using the same observation system using a material whose efficiency is already known (quartz glass was used here).
The efficiency of the third-order effect can be measured by comparing the peak intensity of

Lett、  ) voJ 23. No、11. 5
95 (1987)に詳しい)。
Lett, ) voJ 23. No, 11. 5
95 (1987)).

図4(b)は得られた結果を3次の電気感受率χ(3)
で表わし、入射光波長に対し°℃ブ[1ツトした結果で
ある。χ(3)の値は3 x 10” esu前後であ
り、前述のP T Sと比べると、約173の値である
ことが確かめられた。なお、この測定値から非線形屈折
率はr)z =5x 10   (W/C#り −’前
後と粋出される。
Figure 4(b) shows the obtained results as the third-order electrical susceptibility χ(3)
This is the result obtained by subtracting the incident light wavelength by °C. The value of χ(3) is around 3 x 10" esu, and when compared with the above-mentioned PTS, it was confirmed that the value is about 173. From this measured value, the nonlinear refractive index is r)z =5x 10 (W/C#ri -' It is expressed as before and after.

また、PTVの吸収スペク1〜ルは、厚さ20μm程度
のp l−Vフィルムを用いて分光光度計で測定した。
In addition, the PTV absorption spectra 1 to 1 were measured using a spectrophotometer using a PL-V film with a thickness of about 20 μm.

その結果、無吸収波長域は0.75−・2.2μnLと
極めて広いことが判った。flなわら、この材料は使用
可能波長域が前述のp −r sよりさらに広く優れて
いる。なお、波長域075μ7rL〜18μmにおける
PTVの3次効果効率については未測定ではあるが、非
線形効果のメカニズムがP TSと同じに純粋の電子分
極によることを考えると、これらの波長域においでも、
PTVのχ(3)またはn2は第4図(b)の値とほぼ
同等の値をもつことが容易に推察される。
As a result, it was found that the non-absorption wavelength range was as wide as 0.75-2.2 μnL. However, this material has a wider usable wavelength range than the above-mentioned p-r s. Although the third-order effect efficiency of PTV in the wavelength range 075μ7rL to 18μm has not yet been measured, considering that the mechanism of the nonlinear effect is due to pure electronic polarization like PTS, even in these wavelength ranges,
It is easily inferred that χ(3) or n2 of PTV has a value almost equivalent to the value in FIG. 4(b).

さらに同様な考察から、本材料の応答時間はPT Sと
同様に10−” sec程度と推測され、充分な高速性
を備えている。
Furthermore, from similar considerations, the response time of this material is estimated to be about 10-'' sec, similar to PTS, and is sufficiently high-speed.

以下、実施例を用いて本発明に係るポリ−(2゜5−チ
ェニレンビニレン)を用いた非線形光学装置の特徴を詳
しく説明する。
Hereinafter, the features of the nonlinear optical device using poly(2°5-thenylene vinylene) according to the present invention will be explained in detail using Examples.

〔実施例1〕 第1図(a)は本発明の非線形光学装置の実施例を説明
Jる図であって、本発明C用いる非線形屈折率媒質1は
王妃に述べる方法により作製した1つT■フィルムであ
り、本発明装置においては、入力光を約90%反則し、
残りを透過させる誘電体多層膜ミラー3a、3bを対向
させて配置した外部光共振器である。
[Example 1] FIG. 1(a) is a diagram illustrating an example of the nonlinear optical device of the present invention, in which the nonlinear refractive index medium 1 used in the present invention C is one manufactured by the method described to the queen. ■It is a film, and in the device of the present invention, it deflects about 90% of the input light,
This is an external optical resonator in which dielectric multilayer mirrors 3a and 3b, which transmit the remaining light, are arranged to face each other.

前記1) T Vフィルムの作製法について述べる。The method for producing the 1) TV film described above will be described.

まず、2.5−チェニレンビス(ジメチルスルホニウム
)ジクロライドを0℃条件−トでアルカリ水溶液で処理
したのち、メタノール−水混合溶液中で0.3モルのテ
トラメチル水酸化アンモニウムを加え、−30℃条件下
で撹拌しポリマ化した。得られた黄色の沈澱物を採取し
、ジクロロメタンに溶解させたのち、これをスピンコー
ティング法により石英ガラス板上にノイルム化し、風乾
した。
First, 2.5-chenylenebis(dimethylsulfonium) dichloride was treated with an alkaline aqueous solution at 0°C, then 0.3 mol of tetramethylammonium hydroxide was added in a methanol-water mixture solution, and the mixture was heated at -30°C. The mixture was stirred at the bottom and polymerized. The obtained yellow precipitate was collected and dissolved in dichloromethane, and then coated on a quartz glass plate by spin coating and air-dried.

最後にこれを200〜250℃、5時間、10−2トー
ルの真空下で加熱することにより光学品質に優れたP 
’T Vフィルムが得られた。最後の加熱処理の過程で
の反応ス1−−ムを第1図(b)に示した。この様にし
て1010X10X1程度の大きさのフィルム状の光学
媒質を1!1だ。
Finally, this is heated at 200 to 250°C for 5 hours under a vacuum of 10-2 Torr to produce a PET with excellent optical quality.
'TV film was obtained. The reaction scheme during the final heat treatment process is shown in FIG. 1(b). In this way, a film-like optical medium with a size of about 1010 x 10 x 1 is obtained at a ratio of 1:1.

第1図(a)に示した装置を動作させるには、前記従来
例第5図と同様、入力光波長を僅か変化させるか、ある
いは共振器長(ミラー間隔)を僅か変化させて共振条件
を調整すれば良い。本実施例の場合にはNd”−YAG
レーザからの1064μ肌の光を使用したので、調整は
共振器長を変化させる方法に依った。入力光弾痕Piと
出力光強度Ptとの間には第1図(cHd)で示したよ
うなリミツタ動作J3よび双安定動作が得られた。
To operate the device shown in FIG. 1(a), as in the conventional example shown in FIG. Just adjust it. In the case of this example, Nd"-YAG
Since 1064μ skin light from the laser was used, tuning relied on varying the cavity length. A limiter operation J3 and a bistable operation as shown in FIG. 1 (cHd) were obtained between the input light bullet hole Pi and the output light intensity Pt.

・1n 動作に必要な最小人力光強度(Pl  )は解析的に pHmfn = (Kλ)/(n2J)(但し、λは光
の波長、Jは光学媒質長、K(・−〇、001)は鎖の
反射率と共振器長調整で決まる係数)で与えられるが、
本実施例ではλ=1゜O1n 64μm、 、1 ”41 ttvnであるから、pi
   =2X106W/ctjと求まる。
・The minimum manual light intensity (Pl) required for 1n operation is analytically determined as pHmfn = (Kλ)/(n2J) (where λ is the wavelength of light, J is the length of the optical medium, and K(・-〇, 001) is It is given by the coefficient determined by the chain reflectance and the resonator length adjustment.
In this example, λ=1°O1n 64μm, , 1''41 ttvn, so pi
=2×106W/ctj.

実効出力300 mW (パルス発振)、発振波長0.
83μIrLの半導体レーザを光源どする場合、ビーム
径を3μmrLまで絞り込むと、光強1良は4.2×1
06W、/cmと計算され、この波長における上記in 非線形光学装置のPi  の値J:り充分大きい。
Effective output 300 mW (pulse oscillation), oscillation wavelength 0.
When using an 83μIrL semiconductor laser as a light source, if the beam diameter is narrowed down to 3μmrL, the light intensity is 4.2×1
The value of Pi of the in nonlinear optical device at this wavelength is sufficiently large.

実際、本非線形光学装置は半導体レーザを光線とした場
合にも動作可能であった。
In fact, this nonlinear optical device was also able to operate when a semiconductor laser was used as the light beam.

本材料< p −r v )の応答時間τはi o −
” sec程度と推測されることについてはすでに述べ
た。
The response time τ of this material < p − r v ) is i o −
” I have already mentioned that it is estimated to be around sec.

但し、VR置とし又の反応時間は、この媒質応答時間τ
と共振器内光子寿命tpとの大きい方の値で決まるが、 tp =−Jalt/ (C左R) (但し、JOpは共振器の光学長、Cは光速、1ではミ
ラーの反射率)から計算されるtpが6×10−11s
ec、と得られ、tp>rなノテ、コノ値が装置の応答
時間どなる。本実施例において番ユ、応答時間は10 
” seeより短いことが確認された。
However, the reaction time of VR placement is this medium response time τ
It is determined by the larger value of tp and intra-cavity photon lifetime tp, but from tp = -Jalt/ (C left R) (where JOp is the optical length of the resonator, C is the speed of light, and 1 is the reflectance of the mirror). Calculated tp is 6×10-11s
ec is obtained, and the value of tp>r is the response time of the device. In this example, the response time is 10
” It was confirmed that it was shorter than “see”.

〔実施例2〕 第2図は、光制御光スイッチの実施例を説明する図であ
る。図中、符号4aと4 b +、を互いに偏光軸が直
交するよう配置された2枚の偏光子からなる直交偏光子
系であり、1は前記実施例1にて得られた媒質結晶であ
る。この構成においては、ゲートパルスPalが入射し
ている間だけ直交偏光子4aを通過した直線偏光が、非
線形屈折率媒質1の屈折率変化によって偏光角の回転を
受り、直交偏光子4 bを通過づる。すなわち入射光は
ゲート光によって光スィッチされる。
[Embodiment 2] FIG. 2 is a diagram illustrating an embodiment of the optically controlled optical switch. In the figure, numerals 4a and 4b+ indicate an orthogonal polarizer system consisting of two polarizers arranged such that their polarization axes are orthogonal to each other, and 1 is the medium crystal obtained in Example 1. . In this configuration, the linearly polarized light that passes through the orthogonal polarizer 4a only while the gate pulse Pal is incident undergoes rotation of the polarization angle due to the change in the refractive index of the nonlinear refractive index medium 1, and the linearly polarized light passes through the orthogonal polarizer 4b. Passing through. That is, the incident light is optically switched by the gate light.

本装置においても、使用可能波長範囲、応答時間、およ
び動作入力光強度(ゲートパルス光)の値は重要である
が、使用可能波長範囲および応答時間について極めて優
れ1いることは実施例1より明らかであって更めて説明
するまでもない。
In this device as well, the values of usable wavelength range, response time, and operating input light intensity (gate pulse light) are important, and it is clear from Example 1 that the usable wavelength range and response time are extremely excellent1. There is no need to explain it further.

必要なゲートパルス光強度(Pπ/2)は解析的に 1〕rc/2−λ/(2・n2J) で与えられ、本実施例ではλ−1,064μ77L、J
=1繭であるから、P、 72= 1 X 109W/
cmと求められた。実際には、これより低いゲートパル
ス光強度においても、透過率Tが、 T= 5i112((1〕i /P、/2) Xπ/2
)の式に従うので、ビーム径を絞り込んだ半導体レーザ
光によっても動作可能であることがわかった。
The required gate pulse light intensity (Pπ/2) is analytically given by 1]rc/2−λ/(2・n2J), and in this example, λ−1,064μ77L, J
= 1 cocoon, so P, 72 = 1 x 109W/
It asked for cm. In reality, even at gate pulse light intensity lower than this, the transmittance T is T= 5i112((1]i/P,/2) Xπ/2
), it was found that operation is possible even with semiconductor laser light with a narrowed beam diameter.

(実施例3) 第3図は、位相共役波発生装置の実施例を説明する図で
ある。図中符号5aと5bは半透過鏡、6は全反射鏡、
1は実施例1にて得られた光学媒質である。この構成は
縮退4光波混合と呼ばれる光学配置であって、非線形屈
折率をもつ媒質に、AI 、A2  (AI と反対方
向)、△p (傾入!)l)の3つの光波が入射すると
、At)に対して空間位相項のみが共役である第4の光
波(AC”)が発生りる。この位相共役波は画像情報処
理技術におりる像修正や、実時間ホログラフィなどの有
効な手段として注目されでいる(応用については、文献
オ ゛プラス イ(O1otus E )3月号、p、
73(1982)参照)。
(Example 3) FIG. 3 is a diagram illustrating an example of a phase conjugate wave generator. In the figure, 5a and 5b are semi-transparent mirrors, 6 is a total reflection mirror,
1 is the optical medium obtained in Example 1. This configuration is an optical arrangement called degenerate four-wave mixing, and when three light waves, AI, A2 (in the opposite direction to AI), and △p (inclined!)l) enter a medium with a nonlinear refractive index, A fourth light wave (AC") is generated in which only the spatial phase term is conjugate to At). This phase conjugate wave is useful for image correction in image information processing technology, real-time holography, etc. (For applications, see O1otus E, March issue, p.
73 (1982)).

本実施例においても装置の高速応答性、および低動作入
力光強度が確認できた。
In this example as well, the high-speed response of the device and the low operating input light intensity were confirmed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光双安定素子、光スイッチ、あるいは
位相共役波発生装置など将来の光情報処理あるいは光通
信分野で重要な非線形光学装置を、極めて応答速度が大
きく、かつ大きな非線形屈折率を持ち1、可視域から近
赤外領域の広い波長範囲で透光性であるポリ−(2,5
−チェニレンビニレン)のフィルムを非線形屈折率媒質
として構成するもの′Cあるので、従来の非線形光学液
体や半導体超格子結晶を用いたものと比較して波長依存
性、応答速度、動作に必要な入力光強度の点で格段に優
れたものとすることが出来、現存の半導体レーザを光源
として移動させ得るという実用的価値のあるものとする
ことが出来る。
According to the present invention, nonlinear optical devices such as optical bistable elements, optical switches, or phase conjugate wave generators, which will be important in the fields of optical information processing or optical communications, can be used with extremely high response speed and a large nonlinear refractive index. Poly(2,5
-Thienylene (vinylene) film is used as a nonlinear refractive index medium, so compared to conventional nonlinear optical liquids or semiconductor superlattice crystals, there is a difference in wavelength dependence, response speed, and operation required. The input light intensity can be significantly improved, and an existing semiconductor laser can be moved as a light source, which has practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の第1の実施例を示すも
ので、(a)は光双安定素子の構成図、(b)は非線形
光学媒質ポリ−(2,5−チェニレンビニレン)を合成
するときの反応スキーム、(C)(d)は動作特性を示
すもので、(C)はリミッタ動作を示し、(d)は双安
定動作を示し、図中の矢印はPiの増加時、および減少
時の1〕tの特性を現わす経路を示す。 第2図は本発明の第2の実施例を示すもので、光制御光
スィッチの構成図である。 第3図は本発明の第3の実施例を示すもので、位相共役
波発生装置の構成図である。 第4図(a)は本発明に使用するポリ−(2,5=チエ
ニレンビニレン)のT HG強度パターンを示す図、第
4図(b)は同ポリ−(2,5−チエニー 17 = レンビニレン)のχ(3)値のスペクトルを示す図であ
る。 第5図は従来の非線形光学装置(光双安定素子)の−例
を示す構成図である。 1・・・・・・非線形屈折率媒質、 2a、2b・・・・・・誘電体蒸着ミラー(反射率約9
0%)、 3a、3b・・・・・・(外部)誘電体多層蒸着膜ミラ
ー、Pi・・・・・・入力光、 Pt・・・・・・出力光、 4a、4b・・・・・・偏光子(直交偏光子系を構成し
ている)、 PO・・・・・・ゲートパルス光、 5a、5b・・・・・・半透過鏡、 6・・・・・・全反射鏡。 出願人  日本電信電話株式会社
1(a) to (d) show a first embodiment of the present invention, in which (a) is a block diagram of an optical bistable element, and (b) is a nonlinear optical medium poly(2,5- (C) (d) shows the operating characteristics, (C) shows the limiter action, (d) shows the bistable action, and the arrow in the figure shows the reaction scheme when synthesizing chenylene (vinylene). The paths showing the characteristics of 1]t when Pi increases and decreases are shown. FIG. 2 shows a second embodiment of the present invention, and is a configuration diagram of a light-controlled optical switch. FIG. 3 shows a third embodiment of the present invention, and is a block diagram of a phase conjugate wave generator. FIG. 4(a) shows the THG intensity pattern of poly(2,5=thienylenevinylene) used in the present invention, and FIG. 4(b) shows the THG intensity pattern of poly(2,5-thienylene vinylene) used in the present invention. FIG. 2 is a diagram showing the spectrum of the χ(3) value of (vinylene). FIG. 5 is a block diagram showing an example of a conventional nonlinear optical device (optical bistable device). 1...Nonlinear refractive index medium, 2a, 2b...Dielectric vapor deposited mirror (reflectance approximately 9
0%), 3a, 3b... (external) dielectric multilayer deposited film mirror, Pi... input light, Pt... output light, 4a, 4b... ...Polarizer (constituting an orthogonal polarizer system), PO...Gate pulse light, 5a, 5b...Semi-transmitting mirror, 6...Total reflection mirror . Applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 非線形屈折率を有する光学媒質と、光共振器や偏光子、
あるいは反射鏡などの光学素子とで構成される非線形光
学装置において、 非線形屈折率を有する光学媒質として、下記式( I )
で示されるポリ−(2,5−チェニレンビニレン)を用
いることを特徴とする非線形光学装置。 ▲数式、化学式、表等があります▼( I )
[Claims] An optical medium having a nonlinear refractive index, an optical resonator, a polarizer,
Alternatively, in a nonlinear optical device composed of an optical element such as a reflecting mirror, the following formula (I) is used as an optical medium having a nonlinear refractive index.
A nonlinear optical device characterized by using poly(2,5-thennylenevinylene) represented by: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I)
JP12026988A 1988-05-17 1988-05-17 Nonlinear optical device Expired - Fee Related JP2592908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12026988A JP2592908B2 (en) 1988-05-17 1988-05-17 Nonlinear optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12026988A JP2592908B2 (en) 1988-05-17 1988-05-17 Nonlinear optical device

Publications (2)

Publication Number Publication Date
JPH01289922A true JPH01289922A (en) 1989-11-21
JP2592908B2 JP2592908B2 (en) 1997-03-19

Family

ID=14782039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12026988A Expired - Fee Related JP2592908B2 (en) 1988-05-17 1988-05-17 Nonlinear optical device

Country Status (1)

Country Link
JP (1) JP2592908B2 (en)

Also Published As

Publication number Publication date
JP2592908B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
US5787102A (en) Light generating device and method using a periodically structured non-linear material and orthogonal optical interaction
Fichou et al. α‐Sexithiopene; A new photochromic material for a prototype ultrafast incoherent‐to‐coherent optical converter
JPH0227A (en) Third-order nonlinear optical material and element
Cao et al. Large enhancement of second harmonic generation in polymer films by microcavities
Wang et al. Visible optical parametric oscillation in LiB3O5
JP2565964B2 (en) Optical medium for nonlinear optical devices
JPH01289922A (en) Nonlinear optical device
US5368782A (en) Method of operating third-order nonlinear optical element
JPH04251830A (en) Organic optical logic element
JPH05297426A (en) Nonlinear optical material and nonlinear optical device
JP2592926B2 (en) Nonlinear optical device
JP3271463B2 (en) Nonlinear optical material and device
JP3207534B2 (en) Optical media for nonlinear optical devices
JPH063715A (en) Optical medium for nonlinear optical device
JP2672850B2 (en) Non-linear optical device
Jung et al. Structural design of nonlinear optical chromophores for high-performance photorefractive polymers
JPS62211622A (en) Nonlinear optical device
Yamamoto et al. Linear and nonlinear optical properties of a new organic crystal, N-(4-aminobenzenesulfonyl) acetamide
JP3273476B2 (en) Nonlinear optical device and nonlinear optical waveguide
Sutter et al. Linear and nonlinear optical properties of 2-(N-prolinol)-5-nitropyridine (pnp
Mosini et al. Cholesteric liquid-crystal resonators and systems with addressable colors
Sasabe et al. Photonics and organic nanostructures
JP3249208B2 (en) Nonlinear optical device
JPH06289444A (en) Nonlinear optical device
JPH02130537A (en) Nonlinear optical device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees